
MPT
Machine
Perception
Toolbox

Ian Fasel, Brett Fortenberry and Javier R. Movellan
Machine Perception Laboratory

Institute for Neural Computation
University of California, San Diego

http://mplab.ucsd.edu

Copyright c© 2004 Machine Perception Laboratory,
University of California San Diego.

http://mplab.ucsd.edu

Contents

1 INTRODUCTION

Welcome to MPT, the Machine Perception Toolbox, from the UCSD Machine Per-
ception Laboratory. The MPT (pronounced “Empty” or “Empty Box”) supplies
cross-platform libraries for real-time perception primitives, including face detection,
eye detection, blink detection, color tracking. Soon it will also include expression
recognition, predictive color tracking, and tracking based on multisensor fusion. In
addition, it supplies many example applications which show how to embed the MPT
functions in applications, and which are useful applications in their own right. Fi-
nally, Matlab .mex interfaces are provided for many of these core libraries for those
who like using Matlab.

1.1 History of the MPT

Include developers, PIs and sponsors

1.2 References to the the MPT

Please use reference [4] in the references section, and the MPLab Web Site
(http://mplab.ucsd.edu) for citing work related to the MPT.

We should provide binary installation with programs and libraries.

2 BUILDING THE MPT

2.1 BUILD PROCESS OUTLINE

The MPT is divided into Libraries, which provide the core functionality, and appli-
cations (Apps), which use the libraries. While the libraries are cross-platform, each
architecture has its own build process. The build process for UNIX-like platforms is
handled via Boost.Build, which is a replacement for the GNU automake, autoconf,
etc. build process. On these platforms, Jamfiles replace Makefiles, and the entire
set of libraries and applications can be built with a single command. Please read
below for instructions on how to use this system. For Mac OS X and Windows plat-
forms, each library has its own project file – Xcode on mac or MSVC on Windows.
The Applications also come with their own project files.

Requirements: ImageMagick, liblcms, libtiff, ljpeg. Available via fink for free at
fink.sourceforge.net Requirements for Mac OS X: Xcode, available at apple.com for
free The libraries included are

1. libmputil – a library of cross-platform wrappers and utilities.

2. libmpisearch – a library for real-time frontal face detection.

3. mpisearchMex – a Matlab interface for this library.

4. libmpeyefinder – a library for real-time eye detection.

5. mpeyefinderMex – a Matlab interface for this library.

6. libmpcolortracker – real-time color tracking, adapts using frontal face de-
tector.

7. libmpblinkdetector – real-time blink detection, using eye detector.

The “mp” needs to be added to eyefinder and colorTracker The applications included
are:

• Linux / Unix

1. mpisearch – a command line executable that finds faces in images
2. eyefinder – a command line executable that finds faces and eyes within

faces in images

• Mac OS X

1. MPISearch QT.app – a Mac OS X application that uses a QuickTime
compatible camera for input (e.g., an iSight) and finds faces in the
image. Note that the libraries may be built with the boost.build
system on Mac OS X but this application is not configured to use
them. Rather, it assumes that libmpisearch.framework has been built
using the Xcode project. However, in this case, the applications in
the Apps/linux directory may be used if ImageMagick and X11 are
installed.

• MS Windows

1. MPT – an executable that allows the user to run face finding, color
tracking, eye detection and eye-blink detection on live video.

Note that the default setting for all of these libraries is to be shared libraries on all
supported platforms. Some platforms require extra effort to get shared libraries to
be easily useful. In any event, Read on for your specific platform

2.2 TO BUILD ON LINUX / DARWIN / OTHER UNIXES

Here are the instructions to build everything with Boost.Build. Boost.Build re-
lies on jam/Jamfiles, a modern replacement to make/Makefiles, that ease project
compilation across multiple platforms1

Note for Mac OS X Users: You have an option to build MPT using the general
UNIX approach explained in this section or the Mac specific approach explained in
Section 2.3. If you need to work across platforms, you may find the UNIX approach
useful. If you will use MPT on Macs only, you may find more useful the Mac specific
approach . The Mac specific approaches uses Xcode and creates frameworks instead
of just dylibs.

1. Compile the version of bjam used by MPT: bjam, (BoostJam), is
an application needed to build MPT. Note you need to compile and use
the version of bjam provided by MPT, for it contains some modifications
that were needed to build MPT. These modifications will become stan-
dard in future official distributions of bjam. Hereafter we will assume you
temporarily located MPT in a directory named ¡MPT¿.

cd ~/MPT/boost-build/jam_src
./build.sh

Under Linux successful compilation will create the executable bjam and
place it at

<MPT>/boost-build/jam_src/bin.linuxx86

1To learn more about Jam you can take look at the Jam.html file included in the
boost-build/jam src directory of this distribution of MPT.

Under Mac OS X bjam will be placed at

<MPT>/boost-build/jam_src/bin.macosxppc/bjam

2. Add the path of bjam to your PATH variable. For example, if you are using
tcsh under Mac OS X, this would be done as follows

setenv PATH ${PATH}:<MPT>/boost-build/jam_src/bin.macosxppc

3. Build MPT:.

(a) Modify the file
<MPT>/boost-build/user-config.jam

For Linux, the file should look as follows
Mac OS X / darwin configuration
using darwin ;

GCC configuration

Configure gcc (default version)
using gcc ;

For Mac OS X the file should look as follows
Mac OS X / darwin configuration

using darwin ;

GCC configuration

Configure gcc (default version)
using gcc ;

(b) Go to the root MPT directory
cd <MPT>

(c) Build MPT using bjam
bjam release

Note: Some targets may fail if you don’t have Matlab installed or you
don’t have ImageMagick. Don’t worry, your libraries may have still
compiled fine even though boost reports that some targets failed to
build.

(d) Successful compilation creates the directory

<MPT>/Libraries/bin

and places the following libraries there: libmpisearch, libmputils, libm-
peyefind, libmpcolortracker, libmpblinkdetector. So far only libmp-
isearch, libmputils, libmpeyefinder, also we need to add the mp to
libeyefinder
Command-line applications using ImageMagick under Linux or under
Mac OS X are placed in
<MPT>/Apps/unix/bin

4. Run the Applications:

(a) Set the environment variables needed for programs to find the shared
libs. Under linux:
setenv LD_LIBRARY_PATH MPT/Libraries/bin

or under Mac OS X

setenv DYLD_LIBRARY_PATH MPT/Libraries/bin

Alternatively, you could softlink or copy these into /usr/local/lib or
/usr/lib. Finally, you could build everything with static linking, like
this: bjam release toolset=gcc link=static

(b) Run the applications:
First let’s run the eyefinder on an example image.
<MPT>/Apps/unix/bin/eyefinder <MPT>/Apps/Media/ExampleImage.jpg

This should create a file named “face1.jpg”, which contains a face,
cropped from ExampleImage.jpg, with the eyes marked.

Note: The Apps will only work if you have installed ImageMagick with the
Magick++ developer headers included. If you can run the command

Magick++-config --version

then you probably are good to go. Otherwise, do what you will need to in-
stall ImageMagick and make the above command work. You can download
ImageMagick from wwww.imagemagick.org

2.2.1 MATLAB SUPPORT

To get Matlab support, you have to set the MATLAB environment variable to be
the path to the Matlab installation (not just the binary, but everything) before
running the bjam release command. e.g.,

setenv MATLAB /Applications/MATLAB7
<MPT>/bjam release

After successful build you shall see the mex files at

/Users/movellan/MPT/Libraries/mpisearch/matlab

They are named *.mexmac under Mac OS X and *.mexglx under Linux.

2.3 TO BUILD ON MACINTOSH (Mac OS X 10.3 and up) USING
XCODE

The Mac OS X specific build uses Xcode and provides an application that detects
faces in real time.

2.3.1 Bulding the mpisearch framework

1. Open the following file using Xcode

<MPT>/Libraries/mpisearch/mac/mpisearch.xcode

2. Build the framework (click the Build icon or Build-¿ Build menu. This shall
produce the file

<MPT>/Libraries/mpisearch/mac/build/mpisearch.framework

and the symbolic link

/Library/Framework

pointing to the previous file.

2.3.2 Building the real time video face detection application

1. Open the following file using Xcode:

<MPT>/Apps/mac/MPISearch.pbproj project

2. Build the application. This shall produce the application file

<MPT>/Apps/mac/build/MPISearch.app

You can run the application by double-clicking it on the Finder, opening it
on a terminal window, or running clicking on the Run icon within Xcode.
The application requires a Mac OS X compatible video camera (e.g., iSight,
Pyro WebCam, Logitech QuickCam, etc).

2.4 TO BUILD ON WINDOWS (VISUAL C++ 6.0)

2.4.1 Configuring and installing the MPT environment

1. Ensure that visual studio is not currently open
2. Edit registry to allow visual studio to compile and deal with .cc files

(a) See http://www.mvps.org/vcfaq/ide/1.htm
(b) Or go to

<MPT>\Libraries\mpisearch\windows

and double click cc.reg. Note Visual C++ cannot be open.
3. Download and Install DirectX 9.0 SDK from Microsoft (only needed for

filters)
(a) Download from http://www.microsoft.com/downloads
(b) Go to

<DXSDK>\SAMPLES\C++\DirectShow\BASECLASSES

where “¡DXSDK¿” stands for the directory where the DirectX 9.0 SDK
was installed2. Open baseclasses.dsw using Visual C++

(c) Build the release version. The settings to choose the release version
can be found under Build → Set Active Configuration.

4. Add DirectX libs and includes to Visual C++
(a) Open Visual C++
(b) Go to Tools → Options → Directories
(c) Under “Show Directories For” go to “Include Files” and do the follow-

ing:
i. Add

<DXSDK>\Include
and move it to the top of the list.

ii. Add
<DXSDK>\SAMPLES\C++\DIRECTSHOW\BASECLASSES
and move it below the top item of the list.

(d) Under “Show Directories For” go to “Library Files” and do the follow-
ing:
i. Add

<DXSDK>\lib
and move it below the top item in the list.

2Note older versions of DirectX the C++ directory will be named MULTIMEDIA

ii. Add
<DXSDK>\Samples\C++\DirectShow\BaseClasses\Release
and move it below the second item in the list.

2.4.2 Building the MPT Projects

The current version of MPT contains the following Visual C++ projects:

1. Mpisearch: A black and white, real time, frontal face finder using a Viola
and Jones style approach.

2. Eyefinder: an eyedetector based on the mpisearch face detector

3. Blinkdetector: Real time blink detection.

4. Colortracker: A very fast face tracker based on simple color features
adapted based on information from a face detector running in parallel.

5. MPutil: Utilites used to make code work across multiple platforms

The projects are located on direcctories of the form

<MPT>\Libraries\project_name\windows

Hereafter we will describe how to build and run the Colotracker project. The other
projects can be build in an analogoous manner.

1. Go to the directory

<MPT>\Libraries\colortracker\windows

and open “MPColorTrackerApp.dsw” using Visual C++.

2. Under Visual C++ go to the Build to “Set Active Configuration” menu
and chose the “MPColorTrackerApp Win 32 Release” option.

3. Go back to the “Build” menu and click on “Build MPColorTracker-
App.exe”. This will build the colortracker application.

2.4.3 Running the Projects

1. Go to directory

<MPT>\Libraries\colortracker\windows\bin

2. Click on CHANGETO release.cmd. This registers the active X control and
copies the appropriate executable into the bin directory.

3. Make sure a camera is connected

4. Run the executable MPColorTrackerApp located in that directory.

3 Frequently Asked Questions

3.0.4 MS Windows build

1. Is there example code to reference for the projects?:
Yes all projects have a FilterInterface class that is used for the filters to
utilize the projects. The class is located at

<MPT>\Libraries\project_name\windows\FilterSrc

2. The App does not work.
This is a basic app that just takes the first camera from a list of WDM
cameras. Often there will be drivers for cameras in the cue that are not
plugged in. If one of those cameras is higher in the cue the app will try to
open the wrong camera. Some higher camera drivers do not register as a
WDM camera. To check follow the procedure below:

(a) Open up GraphEdit Start → Programs → Microsoft DirectX SDK →
DirectX Utilities → GraphEdit

(b) Open Insert Filters under the Graph menu
(c) Expand Video Capture Source
(d) If the camera is listed then it is in the cue for WDM cameras

4 Research related to the MPT

The following articles report work that used components of the MPT. Please use
reference [1, 2, 3, 4, 5, 6, 7, 8, 9]

5 History:

• The first version of this document was put together by Ian Fasel on Septem-
ber 2004. It contained 2 pages of build and installation instructions.

• Javier R. Movellan designed the “Empty” logo, and included it on the first
latex version of the document.

References

[1] M. Bartlett, G. Littlewort, I. Fasel, and J. Movellan. Real time face detection
and expression recognition: Development and application to human-computer
interaction. In CVPR Workshop on Computer Vision and Pattern Recognition
for Human-Computer Interaction. 2003.

[2] M. Bartlett, G. Littlewort, C. Lainscsek, I. Fasel, and J. Movellan. Machine
learning methods for fully automatic recognition of facial expressions and facial
actions. In IEEE International Conference on Systems, Man & Cybernetics,
The Hague, Netherlands, October 2004.

[3] M. S. Bartlett, J. R. Movellan, G. Littlewort, B. Braathen, F. M. G., and T. J.
Sejnowski. Towards automatic recognition of spontaneous facial actions. In
P. Ekman, editor, What the Face Reveals. Oxford University Press, 2003.

[4] I. Fasel, B. Fortenberry, and J. R. Movellan. A generative framework for real-
time object detection and classification. Computer Vision and Image Under-
standing, In Press.

[5] T. Kanda, N. Miralles, M. Shiomi, T. Miyashita, I. Fasel, J. R. Movellan, and
H. Ishiguro. Face-to-face interactive humanoid robot. IEEE 2004 International
Conference on Robotics and Automation, in press.

[6] G. Littlewort, M. Bartlett, I. Fasel, J. Susskind, and J. Movellan. Dynamics
of facial expression extracted automatically from video. In IEEE Conference
on Computer Vision and Pattern Recognition, Workshop on Face Processing in
Video, 2004.

[7] G. Littlewort, M. Bartlett, C. J, I. Fasel, T. Kanda, H. Ishiguro, and J. Movellan.
Towards social robots: Automatic evaluation of human-robot interaction by

face detection and expression classification. In Advances in neural information
processing systems, volume 16. MIT Press, Cambridge, MA, in press.

[8] J. R. Movellan and M. S. Bartlett. The next generation of automatic facial
expression measurement. In P. Ekman, editor, What the Face Reveals. Oxford
University Press, 2003.

[9] J. R. Movellan, J. Hershey, and J. Susskind. Large scale convolutional HMMs
for real time video tracking. Computer Vision and Pattern Recognition 2004,
2004.

