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1. Overview of Approaches
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How We Came Along?

 Turing test and dreams of AI

 Knowledge based approach
 Book “Computers and Thought”

 CYC, WordNet

 Marr’s primal sketch

 Expert systems

 Work in vision, such as stereo and motion
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Learning-Based Approaches
 Turing’s imaginary “child machine”

 Pre-designed representation for a given task

 Some undetermined parameters in the
representation
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Neural Networks

 Numeric representation

 Learning as a regression problem

 Feed forward network: state less

 Recurrent network: with state

 Supervised learning and reinforcement
learning

 Most incremental

 System example: ALVINN by Dean Pomerleau
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A Model by James Albus
(James Albus)

 Symbolic representation

 Belongs to behavior-based approach

 Four-element module:
Sensory processing (SP), world modeling (WM),
value judgement (VG) and behavior generation (BG)

 Hierarchy in sensory space and behavior space

 Not meant for automatic development

 An architecture outline, missing some crucial detail

 Has not implemented yet
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Behavior-Based Framework by Brooks
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Behavior-based Methods

 Do not require explicit world representation

 Symbolic states of the environment

 Emphasis on generation of behaviors

 Hand-programmed, supervised learning and
reinforcement learning

 Use of probabilistic models to improve
system reliability

 System example: Pavlov by S. Mahadevan
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Markov Decision Process

 One of the most general frameworks for learning

 State is about the world, not internal state

 Partially observable version: state of world is not totally
observable.

 Programmer typically imposes task-specific internal
representation:
 The number of states

 The distribution restriction (e.g., left to right model)

 Initial estimate of probability (transition and observation)

 Difficult to grow (develop)

 Hard to scale up
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Hierarchical HMM:
Multi-level Stochastic Processes (Mahadevan)

Abstract State:
(corridor)

Production
State: 
(segment)

(intersection)

Vertical
transition probabilities

Horizontal 
transition
 probabilities



Michigan State University 11

Partially Observable Markov Decision Process
(Mahadevan)

Abstract states: corridors, “facing the wall”

Lower level “production” states: regions of a corridor
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Evolutional Approach

 Steps:
 Task definition

 Problem formulation

 Chromosome representation

 Population generation

 Fitness computation
 Mate and reproduction

 Generation replacement

 Repeat above steps
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Evaluation of Evolutional Approach

 Pros:
 Can perform high dimensional search
 Simpler programming
 For highly complex fitness functions

 Cons:
 Extremely slow
 Computationally expensive
 For a given task
 Human designed task-specific chromosome

representation



Michigan State University 14

Lessons We Learned

 AI fragmentation: Task-specific

 Humans design task-specific representation

 Learning is not autonomous

 Learning is off-line

 Learning and performance are separate phases

 Machines cannot acquire tasks autonomously

 Task-specific representation cannot scale up to
more other tasks
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2. AMD Approach
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Change of Engineering Paradigm
 Traditional paradigm:

 Start with a task and the
environment.  Humans
understand the task,
not the machine

 Humans design task-
specific representation

 Task-specific
programming plus task
specific learning

 Run the program to
perform

 New paradigm:
 Given rough ecological

conditions of muddy
environment, design a
robot body

 Design developmental
program

 Birth: run the
developmental program

 Develop mind:
robot autonomously
interacts with the world
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Alan Turing’s Child Machine

        Our hope is that there is so
little mechanism in the child
brain that something like it
can be easily programmed.
The amount of work in the
education … to be much the
same as for the human child

                - Alan Turing, 1950
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Traditional Manual Development

A = H(Ec , T)
A: agent
H: human
Ec: Ecological condition
T: Task
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New Autonomous Development

A = H(Ec )
A: agent
H: human
Ec: Ecological condition
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Task Nonspecificity

 A program is not task specific means:
1. Open to muddy environment
2. Tasks are unknown at programming time
3. “The brain” is closed after the birth
4. Learn an open number of muddy tasks after birth

 Avoid trivial cases:
 A thermostat
 A robot that does task A when temperature is high and

does task B when temperature is low
 A robot that does simple reinforcement learning
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Two Types of Work on Robot Development

 Emulate some phenomena in the developmental
process:  About development but not AMD
 Useful as a component study

 Not AMD by itself

 Setting specific

 Task specific

 AMD: what we mean by developmental approach
 Eight operational requirements

 Aim at muddy environments and muddy tasks
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Comparison of Approaches

ApproachesSpeciesArchitectureWorld KnowledgeSystem behaviorTask-specificKnowledge-basedProgrammingManual modelingManual modelingYesBehavior-basedProgrammingAvoid modelingManual modelingYesLearning-basedProgrammingModels withparametersModels withparametersYesEvolutionaryGenetic searchModels withparametersModels withparametersYesDevelopmentalProgrammingAvoid modelingAvoid modelingNo
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8 Requirements for Practical AMD

 Eight necessary operational requirements:
 Environmental openness: muddy environments
 High dimensional sensing, but without loss of essential information
 Online
 Real time speed, with a large memory
 Incremental:

for each fraction of second (e.g., 10-30Hz)
 One-instance learning
 Mixed learning modes
 Muddy tasks

 Existing works (other than SAIL) aimed at some, but not all.
 SAIL deals with the 8 requirements altogether
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3. Neuroscience and
Developmental Psychology
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Why Autonomous Mental Development?

 Developmental mechanisms are easier to program:
lower level, more systematic, task-independent, clearly
understandable

 Relieve humans from intractable programming tasks: vision,
speech, language, complex behaviors, consciousness

 User-friendly machines and robots:
humans issue high-level commands to machines

 Highly adaptive manufacturing systems
(e.g., self-trainable, reconfigurable machining systems)

 Help to understand human intelligence
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Why Active Body?
Kitten Carousel Experiment

 A classic study by Held & Hein 1963

 Kittens raised from birth in total
darkness

 When old enough to walk, placed in
“kitten carousel” for 42 days

 One kitten harnessed to pull the
carousel

 Another just being carried in a box.

 The behavior of the kittens is
strikingly different at ‘visual cliff’.

 Thus, autonomous actions are very
important to understanding.
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Visual Cliff
 Visual cliff:

 A transparent platform
 Visual sharp drop in elevation

 Human infants:
 6 – 8 months old, a week or two after

they began to crawl
 all would cross a visual cliff in initial

trials
 They became increasingly reluctant to

cross in later trials, although nothing
bad had happened during crossing.

 Carousel kittens:
 Passive one does not fear
 Active one does

 Implication:
 Vision is very much developed from

experience!
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Stages of Cognitive Development

Abstract, formal, deductive reasoningFormal operational12 -

Operational thinking with concrete objects
and actions;

Doing so in the presence of concrete
objects and events

Concrete operational6 - 12

Ego-centric;

Captured by surface appearance;

Pre-operational2 - 6

Coordinating sensory perception with
motor behaviors;

Not capable of symbolic representation

SensorimotorBirth - 2

CharacteristicsStageAge
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Robot “Brain” and Its Developer

“Brain”
Response

Representation
Architecture

Timing

Developer

External
sensory
input

External
motor
output

Internal sensors
and effectors are
not shown
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Cross-Modality Cortex Plasticity
(Mriganka Sur and coworkers, Nature April 2000)

 Rewiring:
 Ferret

 Visual signal is rewired to
auditory cortex early in life

 Results:
 Orientation selectivity appeared in rewired auditory cortex,

statistically identical

 The ferrets have been successfully trained to perform vision tasks
using auditory cortex

 Implication:
 Similar developmental mechanisms shared by different sending

modalities
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Rewiring
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Receptive Fields Change with Experience
(Mike Merzenich and coworkers)

 Experiment:
 Adult owl monkeys
 Synchronized stimulus cross fingers
 Repeated training for weeks

 Result:
 Receptive fields cross fingers
 Normal cases: receptive fields cover a single finger

 Implication:
 Even adults are developing every day!
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Developmental Psychology

 Biological-maturation perspective
Maturation of central nervous system in explaining early
behavior in infants

 Environmental-learning perspective
Contribution of the environment

 Constructivist perspective
Jean Piaget: active and constructive

 Cultural-context perspective
The impact of custom and culture

 Current lack of computational perspective
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Animal Learning Models

 Nonassociative learning:
habituation. (e.g., bored to seeing the same toy)
sensitization (e.g., after being startled by a snake, startle by a rope)

 Classical conditioning:
Training: CS - US – UR (e.g., tone - food - salivation)
Result: CS – CR (e.g., tone – salivation)
C: conditional; U: unconditional; S: stimulus, R: response

 Instrumental conditioning (also reinforcement, shaping):
Training: E - R – UR
(e.g., red/green buttons – press red – shock;
         red/green buttons – press green – juice)
Result: R or avoidance depending on UR (e.g., pressing green not red)

 Animal cognitive learning
No apparent reinforcer, very complex behaviors, establishing value system
(e.g., following owner’s instructions, kids learning at schools)
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4. Learning Types for Machines
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Existing Machine Learning Types

 Supervised learning
Class labels (or actions) are given in training

 Unsupervised learning
Class labels (or actions) are not given in
training

 Reinforcement learning
Class labels (or actions) are not given in
training but reinforcement (score) is given
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Mode of Development: AA-Learning

AA-learning: Automated animal-like learning

Unbiased Sensors

biased Sensors

Effectors

Closed brain

World
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Flowchart of AMD Learning

 Modified Q-learning: integration of supervised
learning and reinforcement learning

Supervised
learning

Reinforcement
learning
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New Classification for Machine Learning

 Need for considering state imposability after the
task is given

 3-tuple (s, b, e):
state imposable, biased sensor, effector

 State: state imposable after the task is given

 Biased sensor: whether the biased sensor is used

 Effector: whether the effector is imposed
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8 Types of Machine Learning

TypeStateBiasedEffector0 (000)state-autonomouscommunicativeeffector-autonomous1 (001)state-autonomouscommunicativeeffector-imposed2 (010)state-autonomousreinforcementeffector autonomous3 (011)state-autonomousreinforcementeffector-imposed4 (100)state-imposablecommunicativeeffector autonomous5 (101)state-imposablecommunicativeeffector-imposed6 (110)state-imposablereinforcementeffector autonomous7 (111)state-imposablereinforcementeffector-imposed

Learning type 0-7 is based on 3-tuple (s, b, e):

State imposable (s=1), biased sensor used (b=1) effector-imposed (e=1)
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Existing Developmental Robots
 Darwin robot:

 Series:
 Darwin IV:  Classical condition

 Darwin V: Reinforcement learning

 Constrained environment (two types of cubes)

 MSU:
 Series:

 Cresceptron (91 – 95): grow architecture

 SHOSLIF (93 – 00): scalable real-time regression

 SAIL (95 – present):  our first AMD robot

 Dav (99 – present):  the next generation of developmental humanoid

 Unconstrained environments
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5. Representation
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Two Types of Concept

 World concept:
a concept about objects in the external environment and their
properties
E.g., In front of the agent, there is an apple.
Properties: grounded in the world, well understood by the
human society

 Mind concept:
a concept that is internal with respect to a nervous system
E.g., In front of me (agent) there is a pear.
Properties: individualized, incomplete, not necessarily a
correct representation of the real world
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World Centered vs Body Centered

 World centered:
Every item corresponds to a world concept

 Body centered:
Every item corresponds to a mind concept
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World Concept and Mind Concept
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Symbolic vs. Numeric Representation

 Symbolic:
use symbols to represent objects.
E.g., name, weight, house, neuron, signal

 Numeric:
use numeric numbers to represent objects.
E.g., value of a pixel, the firing rate of a
neuron
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World Centered Symbolic Representation

 World-centered symbolic representation:
 World centered: one-to-one correspondence between a

world object and an instance of representation type
 In the form of
 Example: Apple = (weight, color)

 Properties:
 Each component (attribute) has a predefined meaning
 Each attribute is represented by a unique variable
 Each object (e.g., apple) is uniquely represented by an

instance

),,,( 21 nvvvA L=
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Mind Centered Numeric Representations

 Body centered numeric representation:
 Body centered
 In the form
 But each component corresponds to

 A sensory element
 A motor control terminal
 Or a function of a multiple of the above

 Example: a brain image

 Properties:
 Each component often does not correspond to any world

concept

),,,( 21 nvvvA L=
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Type of Internal Representation for AMD

 Internal representation: non-terminal (not sensor
and effector ends)

 World-centered symbolic representation is not
suited for internal representation for AMD:
It is world centered, symbolic, not suited for internal
representation of a developing brain

 A body-centered numeric representation is suited
for internal representation for AMD:
It does not have to be a one-to-one correspondence
to a world concept, could be body centered

 Implication to human brain?
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Sources for Grow Representation
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Epigenetic Representation

1. Raw vector from sensors.

2. Raw control vector to effectors generated by
task-nonspecific program.

3. Representation generated by a task-nonspecific
program using the input of epigenetic
representation.

4. Nothing other than those generated by
recursive  applications of the above three steps.
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An Example
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Raw Sensory Representation

 Vector representation
 Sensor independent:

 Individual sensors:
e.g. light sensors

 Linear sensory array:
e.g., linear camera

 Surface sensory array:
e.g., image

 Volume sensory array:
e.g., video

Image:

Intensity:

Representation:

100 150 250

x1

x2

x3

100 200 300

100

200

300

100
200

300
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Attributes of Signal Source

 Avoid symbolic representation

 Four attributes at signal source:
Modality, location, intensity and time

 Three attributes for processing:
Line, intensity and time

At signal source: Modality Location Intensity Time

For processing: Line Intensity Time



Michigan State University 55

Information Hierarchy

 Response level
e.g. Inborn behaviors and learned cognitive skills.

 Representation level
e.g., neural weights

 Architecture level
e.g., a cortex area is prepared for eyes and how neurons are
connected.

 Timing level
e.g., the time schedule of neural growth

The lower the level, the more is wired in.
But all are experience-dependent.
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Self-Adaptive Position and Scale

 Too many lines with different meanings

 Position: mean

 Scale: variance

X(t)

Normalization

X(t) – X(t)

σ (t)
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How to Grow Internal Representation?

Sensors Effectors
Grown

Internal brain
Representation

No consistent access of world concept into internal representation!
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6.  Mental Architecture
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Past Major Work on Mental Architecture
 Perception architectures:

 Neisser 1967: Two stages: pre-attentive then attentive.
 Deldman & Ballard 1982: 100-step rule
 Tsotsos’ 1990:  complexity analysis of immediate vision

 Cognitive architectures (no perception):
 Subsumption by R. Brooks 1986
 Soar by Laird, Newell & Rosenbloom 1987
 Outline by J. Albus 1991
 ACT-R by J. Anderson 1993

 Developmental, incl. perception, cognition and behavior
 Darwin V by  Edelman et al. 1998 (inter-cortical adaptation)
 SAIL-3 by Weng et al. 1998 (intra- and inter cortical adaptation)
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AMD Architecture Considerations

 Intelligent controller or task decomposer? No.
 No intelligent component
 Each component is very mechanical and “dumb”

 Symbolic representation? No.
 A symbol is unbreakable, abstract
 Difficult for robot to generate new symbols

 Vector (distributed) multilevel representation?  Yes.
 Automatic context formation
 Competing percepts
 Competing behaviors
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Soar

 Symbolic representation

 Model goal-oriented cognition and reasoning

 Task-specific knowledge built in
representation

 Sequencing of decision learned from
interactive training

 System example: robot-Soar by Laird at al.
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Darwin V
(Gerald Edelman, N. Almassy and Olaf Sprons and )

 Plasticity in feature integration and in behavior
generation

 A set of programmed-in behaviors

 A value system

 “Taste” as wired-in appetitive and aversive stimuli

 Real-time, online, embodied development by a robot

 Developed capabilities:
Feature invariance linked to behaviors
Vision-based object selection behaviors
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SAIL-3 Developmental Robot

 Automatically developed internal representation from
sensory and effector space

 Sensory mapping: hierarchical feature spaces from input
 Cognitive mapping:

 forming states as working memory from input of sensory mappings
 Self-organizing cognitive maps as long-term memory

 Internal behaviors:
attention selection, action release

 4 learning modes, including effector-imposed, reinforcement
and communicative learning

 Value system, vigilance, forgetting.
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Three Mappings

Sensory
mapping

Sensors
Cognitive
mapping

motor
mapping

Effectors

Only input
space is
available

Only output
space is
available

Input and
output spaces
are indirectly

available
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Overview of Sensorimotor System



Michigan State University 66

Some Related Work

Sensory Mapping
(5k-D to 100k-D):

J. Weng 91
J.  Atick 93
D. Field 97
T. Sejnowski 97
J. Weng 00

Hierarchical Memory
Self-organization
(Dynamic D):

T. Kohonen 88
J. Weng 91
J. Friedman 93
S. Murthy 98
J. Weng 98
J. Weng 00

Motor mapping
(2-D to 10-D):

J. Weng 96
B. Scassellati 96
S. Schaal 99  
M. Mataric 99
C. Breazeal 00

Value System (distributed):
T. Sejnowski 96, G. Edelman 98, R. Sutton 98, J. Weng 02
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Type 1: Observation-driven MDP

R: Regressor
L: Set of states
V: Value system
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Formulation: POMDP and ODMDP

POMDP

ODMDP
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Comparison of POMDP and ODMDP

 POMDP is world centered
ODMDP is mind centered

 Each state of POMDP is hand specified
Each state of ODMDP is automatically generated

 POMDP has two layers of probability
P(st | xt , st-1 ) and P(xt | st ).
ODMDP has one layer of probability
P(pt | lt ).
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From Sensory input to Behavior output

 Cognitive
mappings:

 Value system:
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Types 2 through 5

T: Attention selector
R: Regressor
L: Set of states
M: Motor mapping
V: Value system
D: Delay unit

Type 2: Add T (selective)

Type 3: Add M (reheasable)

Type 4: Add Si  (SASE)

Type 5: Developmental
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A Flaw of the Model for Agents

 A well accepted model: Sense and respond to external
world
E.g., the excellent text by Russell & Norvig

 The flaw:
 Absence of self-generated representation

 Lack of sensing and learning internal activities



Michigan State University 73

The New Model: SASE Agent
(Weng ICDL’02)

 SASE:
Self-Aware and Self-Effecting

 External world: the world
around including the body

 Internal world: brain
 Sensing:

 External:
 internal: brain

(e.g., primed sensation)

 Effecting:
 external world
 internal world

(e.g., attention selection)
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Necessary Conditions of Self-Awareness

Suppose an agent is aware of its mental
activities (sensations and actions) about a
task b in an environment E.  Then:

1. It senses such mental activities using its
(internal) sensors

2. It feeds the sensed signal into its
perceptual entry point just like that for the
external sensors
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Why SASE?

 Self-generated internal representation (at least the later
conscious part) should be a part of the internal world to be
aware of: SA

 Autonomous operations on the internal representation is
necessary: SE

 A half century of mistake:
overlook the need for the machine to be aware of its own
internal world and its operations (autonomous thinking
process )

 Autonomous thinking using autonomously developed
internal  representation: an essence of consciousness?
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How the Architecture Enables Generalization?

Several mechanisms for generalization:

 Value system: value-sensitive events
 Pleasure seeking and pain-avoidance

 Novelty seeking

 Values of many contexts depending on experience

 Value-insensitive events (nearly-equal values)
 Attention selection from new settings

 Autonomous thinking:
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External and Internal Reasoning

 Three types of reasoning processes:
 External, through ej’s
 Internal, through ij’s
 Mixed

 Attention model T selects which is attended
 Type-1 through Type-3 allow external

reasoning, not internal ones
 Type-4 allows all three types of reasoning
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Autonomous Planning

 Type-4 allows internal reasoning to
realize autonomous planning
Plan (a):

Plan (b):

Selection based on the value system
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Type 6: Multi-level DOSASE MDP

T: Attention selector
R: Regressor
L: Set of states
M: Motor mapping
V: Value system
D: Delay unit
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Architecture Types

 Type 1: Observation-driven MDP

 Type 2: Observation-driven Selective MDP

 Type 3: Observation-driven Selective Rehearsed MDP

 Type 4: Observation-driven SASE MDP

 Type 5: Developmental Observation-driven SASE MDP

 Type 6: Multi-level DOSASE MDP
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SAIL-3 Architecture
 Develop via experience

 Lower level:
 More reflexive

 Limited extent of sensory
association

 Fast behaviors

 Higher level:
 More deliberative

 Extensive sensory
association

 Slower response

 Mediation of levels
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7. Sensory Mapping
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Input Map and Receptive Fields
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Staggered Hierarchical Mapping (SHM)
(Zhang, Weng & Zhang ICDL 2004)

0

483216

Output of
SHM

Cognitive
Mapping(HDR)
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How Neurons Derive Features?

 Hebbian Rule:
updating weights when
output is strong

 Lateral Inhibition:
suppressing neighbors
when the neuron output is
high

 Hebbian Rule + Lateral
Inhibition develops feature
detectors
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2-D Sensory Mapping

 Goal:
 reduce

dimension

 allow control

 Methods:
 PCA, ICA, LCA

 Attention
selection



Michigan State University 87

SAIL: Spatiotemporal Sensory Mapping
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Example of Sensory Mapping Development

 Natural images digitized from video

 5,000 image samples, each with 160x120 pixels

 Each receptive field cover 32x32 pixels

 Incremental PCA to generate and update wavelet filters
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Samples of Training Images
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Developed Visual Filters
 Similar to Gabor filters and Wavelets, but better and complete
 Automatically developed, not hand designed!
 Representation for higher perception becomes manageable

Red

Green

Blue

Luminance
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Incremental PCA (IPCA)

 Principal components:
 Covariance matrix of R

 eigenvectors associated with the largest eigenvalues of
R

 R is too big and it is batch processing

 Incremental PCA:
 Without using R

 Update eigenvector (eigenvalue) one sample at a time
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Candid Covariance-free Incremental PCA (CCIPCA)
(PAMI Aug. 2003)

 Scatter vector:

 Amnesic updating principal component vector

 Compute output yi as projection on the vector

 Residual vector for next principal component
vector:
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IPCA: Most Efficient Estimate

 A most efficient estimate is one
that has the least variance from
the real parameter, e.g. sample
mean
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Convergence of IPCA Algorithms

Oja's SGA Our IPCA
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Other Eigenvectors

Oja's SGA Our IPCA
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IPCA Convergence Comparison

Convergence of the first 5 eigenvectors for 5632-dimension data (88-by-
64 images): (a) Oja’s SGA (b) Sanger’s GHA (c) Proposed CCIPCA

(a)

(b)

(c)
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IPCA and Most Efficient Estimate

The most efficient estimate:
 A most efficient estimate is one that has the least variance

from the real parameter.
 The sample mean of data is a most efficient estimate of

mean, if the distribution satisfies some regularity conditions

IPCA:
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IPCA: Eigenfaces

The first 10 eigenfaces obtained by (a) batch
PCA, and (b) CCIPCA shown as images
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CCI Lobe Component Analysis

 Lobe: concentration of probability density
 Whitening:

Decorrelation of input components
Normalize the power along each direction
Lobe components are salient

 Lobe Component Analysis:
corresponding to Independent Component
Analysis (ICA) for super-Gaussians
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Use of SHM: Occluded Face Recognition

 Training phase:
Complete face (G) available

 Testing phase:
Only occluded faces:
Upper view (U)
Lower view (L)

 Solution:
 Training using active vision:

Acquires U and L views during
training

 Testing detects U and L views
 U and L integration



Michigan State University 101

Summary of Occlusion Experiment

1008.3702.4702.4SHM+HDR

1131.5765.5765.5Monolithic+NN

U+LLU

Testing Time (ms)
Method

98.57%95.95%92.86%SHM+HDR

82.38%75.83%51.43%Monolithic+NN

U+LLU

Recognition Rate
Method
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SAIL: Motor Mapping

 The reverse of sensory mapping

 Additional: signal reconstruction from projections

 Two action source at each level:
 Innate behaviors, programmed in our learned offline
 Learned behaviors from higher levels

 Mediating actions from high levels:
Soft-subsumption
From high level (vh, ch); from low level (vl, cl)
winner: max{chwh, clwl}, where wh > wl > 0
The control signal of the winner is executed
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8. Cognitive Mapping
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The Last Context and the Primed Context

TimeNow

Last context:
1. Last sensation
2. Last action

Primed context:
1. Primed sensation
2. Primed action
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Working Memory and Long Term Memory

 Long term memory        :
 Representation level

 Architecture level

 Timing level

 Working memory         :
 Context that the brain currently attend to

 Depends on robot’s internal and external behaviors

 E.g.,

)(tl

)(tw

))3(),2(),1(()( −−−= txtxtxtw
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Cognitive Mapping: Regression

 Last context:

 Cognitive mapping:
generate action and update long term memory

))(),(()( twtxtc =

))(|)(),(())1(),1(( tltwtxftatl =++
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Cognitive Mapping

 Goal: approximate a function y = f (x)
where x is any vector in a d-dimensional space
(e.g., d = 10,000)

 Allow supervised learning:
training samples (xi, yi), i=1, 2, …

 Allow reinforcement learning
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Seven Regression Requirements

1. High dimensional (5k-D and more)
2. One-instance learning
3. Adapt to increasing complexity
4. Deal with local minima problem
5. Incremental
6. Long term memory without catastrophic

memory loss, but forget old details
7. Very low time complexity with large

memory
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Coarse to Fine

 Input: x

 Starting from root

 Coarse-to-fine
search using a tree

 Each leaf node has
sample pairs (xi , yi )

 Output: yi from the
best matches xi
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Hierarchical Discriminant Regression
(PAMI Nov. 2000)

 The tree is constructed
incrementally from
(xi , yi ), i = 1, 2, …
where yi may be missing

 Given unknown x, the tree
finds the best match xi fast

 Each node has a memory
trace register

 A tree node is forgotten
(deleted) if this memory
trace is low

   

      

         

   

   

         

State space

      
Forgetting

Partition tree
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Forgetting Using Memory Trace Decay

Memory strength

Time

T
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Why Features?

 Many components in
the raw input are
irrelevant to output

 Impractical to use
nearest-neighbor
rule:
Cannot exhaust all
the possible
combinations!
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Each Node Automatically Derives
its Most Discriminating Feature Subspace
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Disregarding Irrelevant Input Components
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HDR: Hierarchical Structure
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Handling Unbalanced Samples: SDNLL

 SDNLL: size-dependent negative log likelihood

 Smooth transition among three types of likelihood:
Euclidean, Mahalanobis, and Gaussian

 Transition points are automatically determined by
the statistics of estimates

L(x, ci) = 1/2 (x - ci)T Wi
-1(x - ci) + 1/2 ln( |Wi | )

Wi  =  we r2I  +  wm Sw  +  wg Gi 
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Fitting Class Boundaries:
Few Samples

Euclidean

SDNLL

Mahalanobis

Bayes

Gaussian
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Fitting Class Boundaries:
Median Sample Sizes

Euclidean

SDNLL
Mahalanobis

Bayes

Gaussian
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Fitting Class Boundaries:
Large Sample Sizes

Euclidean

SDNLL
Mahalanobis

Bayes

Gaussian
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Fitting Class Boundaries:
Unbalanced Sample Sizes

Euclidean
SDNLL
Mahalanobis
Bayes

Gaussian
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Industrial Applications of HDR
 Innovation:

 Automatic derivation of features, instead of human
designing features

 Fast real time speed, easier for system development

 Applications:
 Recognition: recognize shapes or patterns
 Defect detection: position and types
 Detection for missing component
 Pose estimation: given a known pattern, determine its

position, orientation, etc
 Sensor and effector calibration: mapping from sensory

space to effector space (learning based calibration)
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An Overview of Existing Trees

 Well-known classification and regression trees: not
suited for high-dimension input
 CART and C5.0:  univariate tree

 OC1: multivariate tree

 SAIL: hierarchical discriminant regression (HDR) for
high-dimensional input
 Multivariate tree

 Automatic subspace derivation: doubly clustered

 Unify classification and regression problems
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Classification: Weizmann Set

 Total 28 subjects
 Each subject under:

5 orientations
3 lighting conditions
2 expressions

 30 frontal views each

 Leaving-one-out test
and cross validation
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Classification: FERET Set

 Total 457 subjects
 1 subject: 6 images

 34 subjects: 4 each

 423 subjects: 2 each

 Images are normalized to
the same size and intensity
range

 Gaussian mask applied to
suppress periphery

 Leaving-one-out test
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HDR: Performance Comparison

Method Error 
rate 

Search  
time (s) 

PCA 12.80% 0.115 
PCA tree 14.58% 0.034 
LDA 2.68% 0.105 
NN 12.80% 0.164 
SVM+PCA 12.5% 0.090 
HDR 1.19% 0.078 

 
 

Weizmann face database FERET face database

MethodErrorrateSearchtime (s)CART53%0.029C5.041%0.030OC156%0.047CART+PCA53%0.047C5.0+PCA41%0.047OC1+PCA41%0.046HDR0.00%0.027
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Characteristics of HDR tree

Depth vs degree of tree (q)

Measured from the trees automatically constructed from FERET face data set

Distribution of nodes over levels (q=2)
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Hand-Written OCR Images

 MNIST hand-written digits

 60,000 training samples, 10,000 test samples

 IHDR: 3.24% error rate
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Features in IHDR Tree for OCR
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9.  Abstraction Levels
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SAIL: Open View

 Each state is a vector in a
high dimensional space

 At each state:
 take a vector input
 update memory
 output a vector output

 The finite state machine
is autonomously
generated from
experience!
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SAIL: Recursive View

 Active: what is in the state depends on
internal behavior
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Context state

 Content: last experience
 Sensory input, including “pain” and “pleasure”
 Recalled action

 Internal action on state
 Push in: moving on through time
 Hold: pondering
 Clear: take the new setting

 How internal actions are learned: shaping
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Abstraction Levels

 Higher levels cover larger spatial and
temporal scale

 State in the lower level as input to higher
level

 Attention as internal action that turn to levels
 Action from attended level is selected as

current pending system action
 “Go ahead” internal behavior releases

pending action to motor mapping
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SAIL: From Low to Higher Levels

 Primed
sensations
and actions in
new clustered
space

 Composite
effects of
multi-level
internal
behaviors
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Developing Behaviors

 Early period:
 Some “innate” behaviors, programmed or learned off-line
 Occasionally imposed actions
 Reinforcement learning
 Behavior shaping: changing reinforcement schedule

according agent performance

 Later period:
 Learn language, from simple to complex
 Learn the value system: criteria for success
 Mostly learn through communications in language
 Less use of low-level reinforcers.
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10. System Integration
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A Unified View of Multimodality

 Vision: image stream

 Speech: cepstrum stream

 Language:
 sign language: image stream and motor actions

 spoken language: speech stream in and out

 written language: image stream

  Reasoning, thinking and decision making

All sensori-state-motor:
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Projects

 SHOSLIF (1993 - 2000)
 Classification and regression tree for high dimensional inputs (D >

5000)

 Use of PCA and LDA for automatic derivation of features for space
partition

 SAIL (1996 - present)
 Developmental algorithm: SAIL (Self-organizing Autonomous

Incremental Learner)

 SAIL robot, custom made

 Multimodal integration: vision, speech, language, navigation, object
manipulation, and attention.
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SAIL: Reinforcement Leaning and
Communicative Learning
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Demo: Multimodal Integration
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SAIL: Action Chaining Video
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SAIL Novelty Test
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SAIL’s “Draw-Bridge” Test
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Dav: Range-based Collision Avoidance
with Attention Selection
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Some SAIL References

 J. Weng, “The Living Machine Initiative ,”
Technical Report MSU-CSE-96-60, 1996

 International Conf. Humanoid Robots, 1999, Japan
 International Conf. Humanoid Robots, 2000, MIT
 W. Hwang and J. Weng, HDR, IEEE PAMI, Nov. 2000
 Weng et al. “Mental Development by Robots and

Animals,” Science, Jan. 26, 2001
 Weng, “Developmental Robotics: Theory and

Experiments,” International Journal of Humanoid
Robotics, vol. 1, no. 2, 2004
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Future

 A new industry:
 New type of software industry
 Service robots and smart toys entering homes
 Robots widely used in defense and public environments

 Systematic break throughs in artificial intelligence
along all fronts:
 Vision
 Speech
 Natural language
 Robotics
 Creative intelligence


