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Abstract

While great strides have been made in computer vision
toward automatically recognizing human affective states,
much less is known about how to utilize these state esti-
mates in intelligent systems. For the case of intelligent tu-
toring systems (ITS) in particular, there is yet no consen-
sus whether responsiveness to students’ affect will result in
more effective teaching systems. Even if the benefits of af-
fect recognition were well established, there is yet no obvi-
ous path for creating an affect-sensitive automated tutor. In
this paper we present the first steps of the OASIS project,
whose goal is to develop Optimal Affect-Sensitive Instruc-
tional Systems. We present results of a pilot study to develop
affect-sensitive tutors of “cognitive skills”. The study was
designed to: (1) assess the importance of affect to teaching,
and also (2) collect training data with ecological validity
that could later be used to develop an automated teacher.
Experimental results suggest that affect-sensitivity is asso-
ciated with higher learning gains. Behavioral analysis us-
ing automatic facial expression coding of recorded videos
also suggests that smile may reveal embarrassment rather
than achievement in learning scenarios.

1. Introduction

Skilled human teachers and tutors are capable of adjust-
ing to such factors as what the student knows and does not
know, and how far along he/she is towards completing a
particular task. They are also able to sense a student’s emo-
tional, or affective state – including frustration, confusion,
boredom, engagement, or even despair – and adjust their
teaching actions accordingly. The goal of intelligent tutor-
ing systems (ITS) research (e.g., [11, 3, 16]) is to implement
the most important faculties possessed by human teachers in
an automated system.

Until recently, ITS typically employed only a relatively

impoverished set of sensors consisting of a keyboard and
mouse, which amounts to only a few bits per second that
they process from the student. In the OASIS project at
UCSD and VSU, our goal is to go beyond these standard
sensing devices and to harness more sophisticated, higher-
bandwidth “affective sensors” such as automatic facial ex-
pression [13, 12] and body posture analysis [20] to yield an
Optimal Affect-Sensitive Instructional System. The formal
foundation of the project is the early theoretical work on
optimal teaching (e.g., [4]) based on control theory, as well
as more recent advances in machine learning, reinforcement
learning, and computer vision.

While various researchers in the field of ITS have been
migrating towards modeling affect in their instructional sys-
tems [19, 6, 17], there is, surprisingly, no firm consensus
yet on whether affect sensitivity actually makes better auto-
mated teachers: In his keynote address [15] to the ITS’2008
conference in Montreal, Kurt VanLehn, a prominent ITS re-
searcher who pioneered the Andes Physics Tutor [16], as-
serted that affective sensors such as automatic facial ex-
pression recognition systems were not useful in ITS, and
efforts to utilize them for automated teaching were mis-
guided. Indeed, it is conceivable that the explicit feedback
given by the student to the teacher in the form of keystrokes,
mouse clicks, and screen touches might constitute all that is
needed for the teacher to teach well. On the other hand,
we posit two reasons why modeling of affect may be im-
portant: (1) State preference: Certain affective states in
the student may be more desirable than others. For exam-
ple, a teacher might wish to avoid a situation in which the
student becomes extremely upset while attempting to solve
a problem. (2) State disambiguation: Consider a student
who has been asked a question and who has not responded
for several seconds. Is the student confused? Is he/she still
thinking of the answer and just about to respond? Or has
the student disengaged completely and perhaps even left the
room? Without some form of affective sensors, these very
different states may not be easily distinguished.
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In this paper we tackle two problems: (1) For one partic-
ular domain of learning – cognitive skill training (described
in Section 3) – we investigate whether affective state in-
formation is useful for human teachers to teach effectively.
We analyze the utility of affective state in terms of learn-
ing gains as assessed by a pre-test and post-test on a spatial
reasoning task. We use a Wizard-of-Oz (WOZ) paradigm
to simulate the environment a student would face when in-
teracting with an automated system. While conducting this
experiment, we also (2) Collect data that could be used to
train an automated cognitive skills teacher. These data con-
sist of timestamped records of the student’s actions (e.g.,
move cards on the screen), the teacher’s commands (e.g.,
change task difficulty), and the student’s face video. The
ultimate goal of our research is to identify learning domains
in which affect sensitivity is useful to human tutors, and to
develop automated systems that utilize affective informa-
tion the way human tutors do.

2. Related work

Although a number of affect-aware ITS have emerged in
recent years, such as affect-sensitive versions of AutoTutor
[6] and Wayang Outpost [19], it is still unclear how benefi-
cial the affect sensitivity in these systems actually is. Some
research has been conducted on the impact of the use of ped-
agogical agents on student’s engagement and interest level
[19], but studies on the impact of actual learning gains are
scarce. The only study to our knowledge that specifically
addresses this point is by Aist, et. al [2]: They augmented
an automated Reading Tutor, designed to boost reading and
speech skills by asking students to read various vocabulary
words out loud, with emotional scaffolding using a WOZ
framework. In their experiment, a human teacher (in a sepa-
rate room) watching the student interact with the tutor could
provide supplementary motivational audio prompts to the
student, e.g., “You’re doing fine.” Compared with students
in a control condition who received no emotional scaffold-
ing, students in the affect-enhanced condition chose to per-
sist in the learning task for a longer time. However, no sta-
tistically significant increase in learning gains was found.
In their study, the only action the human teachers could ex-
ecute was to issue a prompt – teachers could not, for in-
stance, also change the task difficulty. Moreover, the study
did not assess whether the tutors could have been as effec-
tive if they did not have access to the video of the student,
i.e., if their prompts had been based solely on the student’s
accuracy on the task.

3. Cognitive skills training

In recent years there has emerged growing interest in
“cognitive training” programs that are designed to hone ba-
sic skills such as working memory, attention, auditory pro-

cessing, and logical reasoning. The motivation behind cog-
nitive skills training is that if basic cognitive skills can be
improved, performance in academic subjects such as mathe-
matics and reading may also increase. In recent years cogni-
tive training has been shown to correlate both with increased
cognitive skills themselves [14] as well as increased per-
formance in mathematics in minority students [8]. Certain
cognitive training regimes have also been shown to boost
fluid intelligence (Gf), with larger doses of training associ-
ated with larger increases in Gf [10].

In some cognitive skill training programs such as Learn-
ing Rx [1], cognitive training sessions are conducted 1-on-
1 by a human trainer. Since employing a skilled human
trainer for every pupil is expensive, it would be useful to
automate the cognitive training process, while maintaining
the benefits of having a human teacher.

3.1. Human training versus computer training

Learning Rx prescribes a dose of both 1-on-1 human-
facilitated training, along with “homework” consisting
of computer-based training of the same skills using the
same games. In a study comparing the effectiveness of
human-based versus computer-based learning with Learn-
ing Rx cognitive skill-building games, Hill, et. al found that
human-based 1-on-1 training was more effective in terms
of learning gains both on the cognitive skills tasks them-
selves as well as in associated mathematics performance
[8]. When trying to develop an automated teaching system
of cognitive skills, it is important to understand the causes
of this result. We suggest three different hypotheses:

1. Skill level hypothesis: Human teachers are very adept
at adapting their teaching to the the student’s apparent
skill level and explicit game actions.

2. Affect-sensitivity hypothesis: Human teachers can
adapt to the affective state of the student and thereby
teach more effectively.

3. Mere presence hypothesis: The mere presence of a
human observer can positively influence the student’s
performance [7].

When creating an affect-sensitive teaching system, it is
important to choose a learning domain in which affect-
sensitivity is fruitful. If the reason why human tutors per-
formed better than computer trainers in [8] was due to
the skill level hypothesis alone, then clearly cognitive skill
training is not the right domain. Similarly, if the mere pres-
ence of a human, or perhaps a human teacher’s ability to
converse freely with the student using perfect speech recog-
nition is the deciding factor in effectiveness, then there is
little hope that an automated system can match a human.
If, however, affect sensitivity is important for the human
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teacher, then it may also prove useful for automated sys-
tems. In the experiment we describe in the next section, we
examine the three hypotheses above.

4. Experiment
We conducted an experiment to assess the importance of

affect in cognitive skills training by an automated teacher.
Since we have not yet built such a system, we simulate it
using a WOZ paradigm. In WOZ experiments, a human op-
erates behind a “curtain” (a wall, in our case), unbeknownst
to the student, and controls the teaching software. For our
experiment we developed a battery of three cognitive games
that we developed for the Apple iPad:

• Set: Similar to the classic card game, Set consists of
cards that contain shapes with multiple attributes in-
cluding size, shape, color, and (for higher-difficulty
levels) orientation. The goal is to make as many valid
“sets” of 3 cards each during the time allotted. A set is
valid if and only if, for each dimension, the values of
the three cards are either all the same or all different.

• Remember: A series of randomly generated patterns
appear for a brief moment (the duration depends on
the current difficulty level) on the screen. If the cur-
rent pattern is the same as the previous pattern, then
the student presses the left button on the screen. If the
pattern is different, he/she presses the right button. At
each time step the student must both act (press a but-
ton) and remember the current card.

• Sum: Similar to Remember, a series of small integers
is presented to the user at a variable rate dependent
on the current difficulty level. If the sum of the current
and previous numbers is even, then the user presses the
left button; if it is odd, he/she presses the right button.

During piloting, students typically found the Set game the
most challenging, and the other two tasks were perceived as
more recreational and diverting. Hence, we used Set as the
primary task that teachers should focus on. The other two
tasks were provided as options to the teachers with which to
give “breaks” to the students. However these breaks were
to be taken only to the extent that they would help with the
long term performance on Set. Before each training ses-
sion, each student performed a 2-minute pre-test on Set,
and after the training session (30 minutes) each student per-
formed a 2-minute post-test on the same task. The perfor-
mance metric during tests was the number of valid sets the
student could make in the time allotted. A screenshot of
Set (recorded on the iPad simulator) is shown in Figure 1.
Students control by the game by touching an iPad-1. Stu-
dent actions consist of dragging cards in the Set task, and
pressing a Left or Right button during the Remember and

Figure 1. A screenshot of the “Set” game implemented on the Ap-
ple iPad for the cognitive skill learning experiment.

Sum tasks. The students’ game inputs, along with videos of
their face and upper body, were timestamped and recorded.
In addition, we also recorded the teacher’s actions, which
consisted of increasing/decreasing task difficulty, switch-
ing tasks, giving a hint, and providing motivation in the
form of pre-recorded audio prompts. The teachers were in-
structed to execute whatever commands they deemed nec-
essary in order to maximize the student’s learning gains on
Set. These data was collected with an eye towards analyz-
ing the teaching policies used by teachers and porting them
into an automated teacher (see Section 6).

4.1. Conditions

We compared learning gains on Set across three experi-
mental conditions:

1. 1-on-1: The student works 1-on-1 with a human trainer
who sits beside the student and makes all teaching
decisions. The student is free to converse with the
teacher. All of the student’s and teacher’s actions on
the iPad, as well as a video of the student, are recorded
automatically and synchronously.

2. WOZ (full): The student works by him/herself on the
iPad. The student is told that the iPad-based game soft-
ware is controlled by an automatic teacher. In real-
ity, it is controlled by a human trainer in another room
who sees both the student’s actions on the iPad as well
as the student’s face and upper body behavior over a
videoconference. The student does not see or hear the
teacher. The teacher’s actions, student’s actions, and
student’s video are all recorded automatically and syn-
chronously.
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Figure 2. Three experimental conditions. Top: Human teacher
sits with the student in a 1-on-1 training setting. Middle: An
“automated” teacher is simulated using a Wizard-of-Oz (WOZ)
technique. The iPad-based game software is controlled by a hu-
man teacher behind a wall. The teacher can see live video of the
student. Bottom: Same as middle condition, except the teacher
cannot see the live video of the student – the teacher sees only the
student’s explicit game actions.

3. WOZ (blind): This condition is identical to the WOZ
(full) except that the teacher cannot see or hear the stu-
dent – the video camera records the student’s behavior
but does not transmit it to the teacher. In other words,
the teacher is forced to teach without seeing the affec-
tive information provided by the student’s face, ges-
tures, and body posture.

Of all the students we interviewed afterwards who had par-
ticipated in a WOZ condition, none suspected that the “au-
tomated teacher” was actually human.

The three conditions were designed to help distinguish
which of the three hypotheses given in Section 3.1 is most
valid. Consider the following possible outcomes, where

Wizard−of−oz (blind) Wizard−of−Oz 1−on−10.5

1

1.5

2

2.5

3

3.5

4
Posttest minus Pretest (Set game) versus Condition

Figure 3. Average PostTest-minus-PreTest scores versus experi-
mental condition on the “Set” spatial reasoning game. Error bars
represent the standard error of the mean. In the two highest-
scoring conditions (WOZ and 1-on-1) the teacher was able to ob-
serve the student’s affect.

performance is measured in learning gains (PostTest minus
PreTest):

1. 1-on-1 human training is better than WOZ (full): This
supports the hypothesis that merely a human’s pres-
ence influences learning.

2. All three conditions are approximately equal: This
supports the skill level hypothesis that affect is irrel-
evant to good teaching in this domain.

3. WOZ (full) is better than WOZ (blind): This supports
the hypothesis that affect-sensitivity is important to ef-
fective teaching.

4. 1-on-1 is worse than the two WOZ conditions: This
would suggest that a human’s presence could actually
detract from learning, possibly because the student felt
intimidated by the human trainer’s presence.

4.2. Subjects

The subject pool for this experiment consisted of 66
undergraduate students (51 female), all of whom were
African-American, who were recruited from Virginia State
University. Each subject was randomly assigned to one of
the three conditions described above.

5. Experimental Results
5.1. Learning conditions

Performance was measured as the average PostTest mi-
nus PreTest score across each condition; results are shown
in Figure 3. Although the differences (assessed by 1-way
ANOVA) were not statistically significant, the two higher-
performance conditions were WOZ (full) and 1-on-1. These
were the two conditions in which the student’s affect was
visible to the teacher, thus suggesting that affect sensitivity
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may indeed be important for this learning domain. Inter-
estingly, the WOZ (full) was also higher than 1-on-1 – it is
possible that the human teacher’s presence was intimidating
for some students and thus led to smaller learning gains.

5.2. Facial expression analysis

In addition to assessing differences in learning gains,
we also examined how learning performance relates to stu-
dents’ facial expressions. One particular question of note
is the role of smile in learning: Does occurrence of smile
perhaps indicate mastery? To investigate this question we
performed automatic smile detection across the videos col-
lected of the students during the game play. We employed
the Computer Expression Recognition Toolbox (CERT)
[13], which is a tool for fully automatic real-time facial ex-
pression analysis from video.

To our surprise, the correlation between the average
smile intensity (as estimated by CERT) over each video
with PostTest-minus-PreTest performance was −0.34 (p <
0.05). In other words, students who learned more tended to
smile less. This suggests that the smiles that do occur may
be due more to embarrassment than to a sense of achieve-
ment. This also dovetails with findings by Hoque and Picard
[9], who found that smiles frequently occur during natural
episodes of frustration. Broken down by gender, the corre-
lations were r = −0.24 for male (p > 0.05, N = 15), and
r = −0.35 for female (p < 0.05, N = 51), suggesting that
the effect may be more pronounced for females. We cau-
tion, however, that the reliability of CERT’s smile detector
on the cognitive training data has yet to be thoroughly vali-
dated against manual expression codes. Accuracy of con-
temporary face detection and smile detection systems on
dark-skinned people in particular is known to be less reli-
able than for other ethnicities [18].

Examples of smiles that occurred during the experiment
are shown in Figure 4. In Figure 4 (right), the subject had
just made a mistake (formed an invalid set from 3 cards)
which resulted in the game making a “buzzer” sound. Sim-
ilarly, in Figure 4 (left), the teacher had just given a “give-
away” hint consisting of all 3 cards necessary to form a valid
set. The student “took” the hint (made the hinted set) and
then produced the expression shown, which suggests that
she may have been embarrassed at needing the assistance.
In contrast, the subject in Figure 5 was in the midst of scor-
ing multiple points in rapid succession. Her facial expres-
sion during this time period shows relatively little variability
in general, and no smile in particular.

6. Towards an automated affect-sensitive
teaching system

The pilot experiment described above was conceived
both to evaluate the hypotheses discussed in Section 3, and

Figure 4. Left: A student who smiles as a result of receiving and
acting upon a “giveaway” hint after having not scored any points
for approximately 20 seconds. Right: A student who smiles after
making a mistake, which resulted in a “buzzer” sound.

Figure 5. A student who is in the midst of scoring multiple points.

also to simultaneously collect training data that can be used
to create an automated cognitive skills trainer. Recall that,
in the WOZ (full) condition, the student interacts with an
apparently “automated” iPad-based teacher, and that in this
experimental condition no human was present. This inter-
action setting closely resembles the setting in which the stu-
dent interacts with a truly automated trainer. Were training
data collected from a 1-on-1 setting in which the student in-
teracted with another human, the elicited affective states and
behavior might be very different, and the collected training
data might lead the automated system astray.

Given the “traces” of interactions between students and
teachers recorded during the experiment (see Figure 6),
there are several possible strategies for how to develop an
affect-sensitive tutor, including rule-based expert systems,
stochastic optimal control [4, 5], machine learning, or per-
haps some combination of the three. In Woolf, et. al [19],
for example, the authors combine manually coded rules
with machine learning.

In our project we are pursuing a machine learning ap-
proach toward developing an affect-sensitive tutor:

1. Ask expert human teachers to label the key affective
states of the student based both on the student’s actions
and his/her video.

2. Perform automatic facial expression recognition on the
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Figure 6. An example of the “traces” collected of the student’s
actions, the student’s video, and the teacher’s actions, all recorded
in a synchronized manner.

student’s video, in order to convert the raw video into
a form more amenable to automated teaching. Classi-
fiers such as CERT [13] output the estimated intensity
of a set of facial muscle movements.

3. Train affective state classifiers that map from the out-
puts of the facial expression classifier to the higher-
level states labeled in the first step.

4. Use supervised learning to compute a policy, i.e., a
map from a history of estimated affective states ex-
tracted from the live video, the student’s actions, and
the teacher’s previous actions, into the teacher’s next
action. The data necessary for training are available in
the recorded traces.

7. Summary and further research
We have presented results from a pilot study assessing

the importance of affect in automated teaching of cogni-
tive skills. Results suggest that availability of affective state
information may allow the teacher to achieve higher learn-
ing gains in the student. In addition, we have found evi-
dence that smile during learning may indicate more embar-
rassment than achievement. Finally, we have proposed a
methodology and software framework for collecting train-
ing data from the aforementioned experiment that can be
used to train a fully automated, affect-sensitive tutoring
agent. In future research we will extend the cognitive train-
ing experiment from 1 day to 6 days in an effort to elicit
states with more variety, e.g., with more student fatigue.
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