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Machine Perception Lab

® Research activities:

® Study natural human behavior from a
computational perspective.

® Develop machine sensors to mimic the perceptual
power of humans.

® Create intelligent systems that interact with
humans, e.g., social robots, automated teaching
systems.
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Machine Perception Lab

® Most of our projects require lots of labeled training data:
® Computer Expression Recognition Toolbox (CERT):

® Tool for fully automatic real-time facial expression
recognition from images/video.

® Face detector:~100,000
training images labeled for ™I 1

face location.

® Expression classifiers:
~10,000 face images
labeled for ~50 facial

attributes each.
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Machine Perception Lab

® Most of our projects require lots of labeled training data:
® Automated teaching system of math/logic skills:

® Automatic “mood” detectors: ~50,000 face images
labeled |-4 for engagement, confusion, frustration,
etc.
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Data labeling

® J[raditionally, data were labeled by hiring

S~

undergraduate students. ,‘ v

® Expensive, slow: thousands of dollars over 4
months to collect 60,000 smile/non-smile labels.

® More recently, crowdsourcing services such as ESP

Game, Herdlt, and Amazon Mechanical Turk have
been used. amazonmechanical turk

® Cheap, fast: $200 over | week to collect
1,000,000 smile/non-smile labels.
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Data labeling

® Unfortunately, crowdsourcing suffers from two problems:

|. Unreliable -- the labelers’ accuracy may be questionable.
Welinder, et al., 2010; Ruvolo, et al., 2010; Whitehill, et al., 2009

2. Insecure -- the data may be too sensitive to distribute
widely, e.g.:

® |dentity of a face image, e.g,,
students’ faces in automated teaching study.

® Some students in our experiments are portrayed
in unflattering ways (e.g., crying).

® Geographical location of a satellite image.

6
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Filtering out identity

® What if we could filter the images/videos to
“remove” the person’s identity (face de-
identification; Newton, et al. 2005), yet preserve the
attribute to be labeled!?

® Crowdsourcing might then be viable, as the
“sensitive information” is erased.

® For simple applications, we could try constructing
the filter manually...
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Filtering out identity

® We explored this idea on video data already

collected for a study on driver fatigue (Vural,
et al. 2008).

® |n videos on the next slide, subjects are
playing a race car driving game.

® Videos were filtered using hand-selected
Gaussian blur filter (0 = 12 pixels).

® |n which video does the subject appear more
fatigued (2AFC task)?
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Which shows more fatigue?

(2) (b)




Which shows more fatigue?

(2) (b)




Which shows more fatigue?

(2) (b)




Filtering our identity

® |n pilot experiment, labels from 69 MTurk labelers

agreed |100% (after taking majority vote) on 55
blurred videos compared to original videos when

labeling “more/less engaged”.

® |.e,fatigue is still discriminable despite blur.

® As intended, much of the identity information is
suppressed by the filter.

® |dentity is less discriminable.

|0
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Filtering out identity

® This pilot study suggested that “filtering out identity”
is possible.

® However, it was also too “easy’:
® Fatigue is contained in low-frequency components.
® |dentity is contained in high-frequency components.
® A simple low-pass (Gaussian) filter works well.
® VWhat about more general settings?

® |s it possible to design the filter automatically?
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Filtering our identity

® VWhat we want is to discriminately decrease
discriminability:

® Decrease discriminability of identity.
® Preserve discriminability of attribute-of-interest.

® Note that discriminability can apply both to human
perception as well as machine classification.

® |n this work, we address both types of
discriminability.

Tuesday, October 4, 2011



Discriminately
decreasing
discriminability




Discriminately decreasing
discriminability

® VWe approached the task of discriminately
decreasing discriminability ("DDD”) as an
optimization problem.

® |[nput:a set of data points, each of which is
labeled for a “target” task A and a
“distractor’” task B.

® Qutput: a filter O that maximally increases
discriminability of task A, while maximally
decreasing discriminability of task B.

| 4
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Discriminately decreasing
discriminability
® We focus on the case of binary labeling tasks, e.g.:
® Student appears engaged/not engaged.
® Person is smiling/not smiling.
® Person is male/female.

® Binary labels do not directly capture identity.

® However, it turns out that suppressing gender
seems to implicitly suppress identity as well
(more later).

|5
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Simple example in R?

. . Original data
® Consider data { x; } in R%:

® Binary labeling Task A:

-versus-black %32 @

® Binary labeling Task B: %D
O-versus-X. o

® Both labeling tasks A and B
are both highly
discriminable.
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Simple example in R?

. Original data
® Suppose we wish to preserve "
discriminability of Task A ( - B¢

5_

versus-black), but suppress %32
discriminability of Task B (O-versus- |

&

® We can filter the { x; } with some L R
filter O: Filtered data
® |n this case, F(0, x) = Ox §
where O is a 2 x 2 matrix (general .
linear transformation). o 0 = [ —0.00ar - 0.0107 ]
0.0124 —0.0285
® Task A (black versus magenta)
is still highly discriminable, but Task | i -

B is not.
|7
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Simple example in R?

Original data
® Alternatively, we can apply a filter g ;(
that preserves discriminability of | e
Task B (O-versus-X) while 3
decreasing discriminability for %sg &
Task A ( -versus-black). %3

-10 -5 0 5 10

® How can we learn such filters O
. Filtered dat
and 02 automatically? é%;e ™

0.1} @
0.05}

of g, _ | —0.0057  0.0028
7 [ 00106 —0.0052

-0.1r
-0.15¢
—0.2-1 L L & L

-0.2 -0.1 0 0.1 0.2
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Discriminately decreasing
discriminability: formalization

® Four inputs:

|. { xi }, where each column-vector x; € R?

® FEach x; might be an image with d pixels.

2. L.:RI—= {01}, “target” task
[b:RI— {0, 1} “distractor” task

® [.,(x) might represent whether a face image
x is smiling/not smiling.

Lb(x) might represent whether a face image
x is male/female.

19
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Discriminately decreasing
discriminability: formalization

® From { x; } and L,, Ly, we can define four
matrices (each with d rows), each containing
some of the data points:

® Xoa: contains all x; for which Ly(x;)) = 0
Xia: contains all x; for which Li(xj) = |

® Xob: contains all xj for which Ly(x;)) = 0
Xip: contains all xi for which Ly(x;) = |

20
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Discriminately decreasing
discriminability: formalization

® Four inputs (continued):

3. A filter function F(0, X) that filters each data point x
in matrix X.

4. Some “discriminability metric” D(F(0, Xo), F(0, X))
which measures the real-valued “discriminability” of
filtered data in Xo from filtered data in X.

® Then, our goal is to find O for which:
® D(F(0O, Xoa), F(9, X4)) is large. “target” task
® D(F(O, Xob), F(O, Xib)) is small. “distractor” task

21
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Discriminately decreasing
discriminability: formalization

® One way of finding such a O is to optimize the negative
ratio of discriminabilities, R(0), of Tasks A and B:

D(F(evXOa)vF(eaXla))
D(F (8, Xop), F'(0, X1p))

where B is the regularization strength on 0.

R(6) = —log - 30" 6

® R is small when discriminability of Task A is large, and
when discriminability of Task B is small.

® We can then minimize R w.r.t. filter parameters 0.

0" = arg m@in R(6)

22
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Discriminately decreasing
discriminability: formalization

® As long as D is differentiable in F,and F is differentiable in

O, then we can find a local minimum 0" of R using gradient
descent.

® For a variety of filters, the function derivative of F w.r.t.
O can be found analytically.

® E.g,convolution filters, general linear
transformations, and pixel-wise “mask” filters are all

linear in © and X.

® But how do we define the “discriminability metric” D?

23
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Discriminability metric D

® One notion of discriminability is the
margin of an SVM (shortest distance

to separating hyperplane).

® Hence, to compute
Dsm(F(8, Xo), F(6, X1)), we could train
an SVM on the filtered data points,
and then compute the margin.

Image courtesy of Wikipedia.

24
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Discriminability metric D

® One notion of discriminability is the
margin of an SVM (shortest distance
to separating hyperplane). X

® Hence, to compute
Dsm(F(8, Xo), F(6, X1)), we could train
an SVM on the filtered data points,
and then compute the margin.

® Problem:the optimal hyperplane, and
hence Dsym, must be found
numerically by solving a quadratic
programming problem.

/

Image courtesy of Wikipedia.

® Hence, the derivative of Dy is

not available in closed form.
25
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Discriminability metric D

® We need a discriminability metric that can be found in closed
form and that is differentiable in F.

® Here, the classic method Linear Discriminant Analysis (LDA)
(Fisher 1936) is useful:

® LDA projects each point onto a vector p and then
computes the ratio of between-class variance to within-class
variance (sometimes called J):

p' (To—71)(To—71) ' p
p [(Xo—X0)(Xo—Xo)T + (X1 — X1)(X1— X1)"]p

Within-class variance

T is mean vector of class 0.
X contains ng copies of Ty, where ng is number of data labeled 0.

J(p7 XOaXl) —

® In LDA, the separating hyperplane is defined to have
normal vector p* that maximizes | for Xo and X.
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Discriminability metric D

® | DA is useful because the maximum of J, as well its argmax
b", can both be found analytically:

J* (X0, X1) = maxJ(p, Xo,X1)
p

*

p* = argmng(p,Xo,Xl)
= [(Xo—X0)(Xo—Xo)" + (X1 — X)) (X1 — X1) '] (@0 — 1)

® We then define our discriminability metric D in terms of the
the “maximum Fisher discriminability” |* of the filtered data:

Dlda(F(eaXO)vF((g?Xl)) — J*(F((97XO)7F(6)7X1))

® Through straightforward linear algebra, we can find a closed-
form expression for the derivative of Dida w.r.t. F.

27
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Discriminately decreasing
discriminability: formalization

® Using Di4a as the discriminability metric, we
can optimize the objective function R w.r.t.
O so that Task A is highly discriminable
while Task B is not:

D(F(8, Xoa), F(0, X14))

| T
D(F(0, Xo), F(0, X13)) bo" o

R(#) = log

We abbreviate this gradient ascent procedure as
“DDD?” (discriminately decreasing discriminability).

28
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Experiments

29




Experiment |: Crossing lines

® As a proof-of-concept experiment, we generated
1000 images (16x16 pixels) consisting of
| vertical line + | horizontal line + uniform noise:

30
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Experiment |: Crossing lines

® \We then defined Task A and Task B
as follows:

® TJask A: Task A

0 1
® x is class O if vert. line is in gy
left half of image. g |
Task W

® x is class | if vert.line is in

right half of image. ° 1
® Task B:

® x is class O if horz. line is in
top half of image.

® xis class | if horz. line is in
bottom half of image. )
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Experiment |: Crossing lines

® VWe then attempt to use “‘DDD”
to preserve discriminability of
Task A, while suppressing

0 1
discriminability of Task B. -
0 0
® As the filter function Fwe will .. R
use 2-D convolution, i.e., B
F(O,x) = O * x. 1

® The filter parameter O is the
convolution kernel, which will
be initialized to a 5x5 matrix
sampled from U[0, ).

Task A

32
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Experiment |: Crossing lines

O after 0 gradient

Gradient descent over 0 descent steps

0 10 20 30 40 50
# gradient descent steps

Unfiltered images

Filtered images

BEENE L E
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Experiment |: Crossing lines

O after 3 gradient

Gradient descent over 0 descent steps.

. n
T o-\\ - i

0 10 20 30 40 50
# gradient descent steps

Unfiltered images

1 ‘ m— _ -u B 2
Py ’ - n
l o u | | L

Filtered images
34
Tuesday, October 4, 2011




Experiment |: Crossing lines

O after 5 gradient
descent steps.

2_ _
S
o O \\ _
=2t

0 10 20 30 40 50
# gradient descent steps

Gradient descent over 6

Unfiltered images

1 ‘ — . === B
Py ’ - n
l o u | | L

Filtered images
. ll H ll‘ ! ': 'I IE ‘IE i ll-:> | ]
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Experiment |: Crossing lines

O after 10 gradient
descent steps.

2_ _
S
o O \\ _
=2t

0 10 20 30 40 50
# gradient descent steps

Gradient descent over 6

Unfiltered images

|
l !
| |
o u | 1

Filtered images

i | | ' . =
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Experiment |: Crossing lines

O after |5 gradient
descent steps.

2_ _
S
o O \\ _
=2t

0 10 20 30 40 50
# gradient descent steps

Gradient descent over 6

Unfiltered images

1 ‘ — . === B
beee e » :
l o u | | n L

Filtered images
: . . N B ' 3 |
| IR R ORI
o X : m ) i I ‘.
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Experiment |: Crossing lines

O after 20 gradient
descent steps.

S~ 2- |

D

T o \\ - B
_ol

0 10 20 30 40 50
# gradient descent steps

Gradient descent over 6

Unfiltered images

1 ‘ — . === B
Py ’ - n
l o u | | L

Filtered images
kT | I | ' - ‘ 1S
d E ‘- : m i 8 1 |
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Experiment |: Crossing lines

O after 25 gradient
descent steps.

2_ i
S
o Of \\ |
_2-

0 10 20 30 40 50
# gradient descent steps

Gradient descent over 6

Unfiltered images
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Filtered images
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Experiment |: Crossing lines

O after 30 gradient
descent steps.
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# gradient descent steps

Gradient descent over 6

Unfiltered images
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Experiment |: Crossing lines

O after 35 gradient
descent steps.
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Experiment |: Crossing lines

O after 40 gradient
descent steps.
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Gradient descent over 6

Unfiltered images
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Experiment |: Crossing lines

O after 45 gradient
descent steps.
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Experiment |: Crossing lines

O after 50 gradient
descent steps.

2_ i
S
o Of \\ |
_2-

0 10 20 30 40 50
# gradient descent steps

Gradient descent over 6

Unfiltered images

ll | =
I I

) 1

Y u |

Filtered images

TITE I
i ! : , i 1 h : ) L L &S
44

Tuesday, October 4, 2011



Experiment 2:
Preserve smile, suppress gender

® |n our second experiment, we applied the “DDD”
algorithm to the GENKI dataset, consisting of thousands
of face images downloaded from the Web.

L3 AT%--. Lif

f*f}:r "i

® GENKI was used to train a commercial smile detector.

® |mages have been labeled for smile, gender, age, glasses,
and more.

45
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Experiment 2:
Preserve smile, suppress gender

® We assessed whether “DDD” procedure could:

® Preserve discriminability of smile, while
decreasing discriminability of gender.

® Discriminability was assessed by uploading filtered images
and querying human labelers on the Mechanical Turk.

® We used a pixel-wise “mask” filter:

® F(0,x) = 0x
where 0 is a diagonal matrix whose jth diagonal entry
modulates the intensity of jth pixel of image x.

46

Tuesday, October 4, 2011



Experiment 2:
Preserve smile, suppress gender

® We selected 1740 frontal GENKI images
(downscaled to |6x16 pixels):

® 50% smile, 50% non-smile

® 50% male, 50% female

® Pixel-wise mask O was initialized to random
values.

® Executed “DDD” procedure to obtain

optimal filter © to maximize discriminability
of smile, minimize discriminability of gender.

47




Experiment 2:
Preserve smile, suppress gender

® The filtered images F(0, X) are highly distorted compared to
original X so that a human would not recognize them as faces.

® Hence, we execute an additional “reconstruction” step:

® Apply linear ridge regression to regress from filtered images
back to original images.

® Ridge term ensures that only the “more discriminable”
aspects of image are fully restored.

e “DDD” property is maintained.

' > . >
E | F(e’ X) Rldge i |

Original Filtgred reSTESION - Reconstructed
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Experiment 2:
Preserve smile, suppress gender

® The“DDD” procedure learns the filter illustrated below:

Learned filter 1: !
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Experiment 2:
Preserve smile, suppress gender

® The“DDD” procedure learns the filter illustrated below:

Female Male
Non-smile Smile Non-smile
r SR AT
£ L"lﬂ

|
Learned filter 1: !

ooy vy

50




Experiment 2:
Preserve smile, suppress gender

® The“DDD” procedure learns the filter illustrated below:

Female Male

Non-smile Smile Non-smile

6%&4&4
o . N

Learned filter 1: !

I
o o

y
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Experiment 2:
Preserve smile, suppress gender

® The“DDD” procedure learns the filter illustrated below:

Female Male

Non-smile Smile Non-smile

T
t|7 k'l .L‘lﬂ |
Learned filter 1:

v vy

o -e
£ =
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Experiment 2:
Preserve smile, suppress gender

® The“DDD” procedure learns the filter illustrated below:

Female Male
= - 4 .
3 ’
f‘ L= L‘ﬂ |

|
Learned filter 1: !

d‘.l‘ ¢
a - P
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Experiment 2:
Preserve smile, suppress gender

® The“DDD” procedure learns the filter illustrated below:

Female Male
Non-smile Smile Non-smile

feﬁ - o
Learned filter 1: .

dcoh -¢O
4= D
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Experiment 2:

Preserve smile, suppress gender

® Using the learned preserve-smile,
suppress-gender filter, we posted 50
pairs of filtered images --
| smiling, | non-smiling -- to the
Mechanical Turk.

® |0 Turk workers were asked to
select which image of each pair
was “smiling more”.

55
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Experiment 2:

Preserve smile, suppress gender

® Using the same filter, we posted 50
pairs of filtered images --
| male, | female -- to the Mechanical
Turk.

® |0 Turk workers were asked to
select which image of each pair
was ‘more feminine”.

56

MTurk Task
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Experiment 2:

Preserve smile, suppress gender

® Finally, for comparison, we posted 2
more MTurk tasks:

® 50 smile/non-smile pairs of
unfiltered images.

® 50 male/female pairs of unfiltered
Images.

57

MTurk Task
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Experiment 2:
Preserve smile, suppress gender

® Accuracy on each MTurk task was computed by
taking majority vote across all 10 labelers for each

pair.
® Results:
Filtered Unfiltered
Smile/non-smile 96% 94%

Male/female 58% 98%

58
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Experiment 3:
Hand-constructed filter

. ° [ 1
® For the task of preserving smile/non-smile EE

OLeft  ORight

discriminability, we could easily construct a EE
2
filter by hand:
DLeft  ORight
® Only show the “mouth region” of each face. E

OLeft  ORight

® How well does this work compared to the EE
M ¢¢ I 4
filter learned using “DDD"?

® We posted another MTurk task to test this. s !B

OLeft  ORight

59
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Experiment 3:
Hand-constructed filter

® [t turns out that this manually-constructed filter allows
considerable “male/female” information to pass through.

® Despite strong prior domain knowledge, the learned
filter performs better than manually created one.

® Results:

Learned filter | Manual filter

Smile/non-smile 96% 96%

Male/female 58% 74%

60
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Experiment 4:
Preserve gender, suppress smile

® We also tried the opposite DDD task:

® Preserve discriminability of gender, while
decreasing discriminability of smile.

® We used exactly analogous procedures as
for previous experiment.
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Experiment 4:
Preserve gender, suppress smile

® Results:

Learned filter 2: E
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Experiment 4:
Preserve gender, suppress smile

® Results: Female Male
Smile Non-smile Smile Non-smile
t R d e
£ L=

. I
Learned filter 2: n

YooYy vy
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Experiment 4:
Preserve gender, suppress smile

® Results: Female Male

Smile Non-smile Smile Non-smile

g g

Learned filter 2: n

oYy vy

o
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Experiment 4:
Preserve gender, suppress smile

® Results: Female Male

Smile Non-smile Smile Non-smile

SR
|

45 \

rtlJ L > L‘lﬂ -

Learned filter 2: H
Y

Vv oy
R

i \
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Experiment 4:
Preserve gender, suppress smile

® Results: Female Male

Smile Non-smile Smile Non-smile

el
Learned filter 2: ‘

Vv oy
SR E -

b Lo I8
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Experiment 4:
Preserve gender, suppress smile

® Results: Female Male

Smile Non-smile Smile Non-smile

CHENT)

Learned filter 2:
¢
s
L ..
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Experiment 4:
Preserve gender, suppress smile

® Accuracy on each MTurk task was computed by
taking majority vote across all 10 labelers for each

pair.
® Results:
Filtered Unfiltered
Smile/non-smile 64% 949

Male/female 86% 98%

68
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Suppression of facial identity

® As mentioned earlier, it would be useful to create a filter
to preserve expression but suppress facial identity.

® |n practice, we found that suppressing gender also
removed considerable identity information.

® Consider the image below that was filtered with the
preserve-smile, suppress-gender filter:

® Which of the 10 faces below it is the unfiltered face?

, filtered

o il JeEge ]
a b ¢ d e f g h i j
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Suppression of facial identity

® TJo test efficacy of “face-deidentification” using “DDD”
procedure, we created 20 face recognition questions:

® Match filtered face to one of |0 unfiltered faces.

® TJo control for possibly “sloppy labelers”, we randomly
added 20 “control” questions:

® Match unfiltered face to one of |10 unfiltered faces
(this is trivial).

® The 10 labelers’ responses were combined on each
question using majority vote.

70
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Suppression of facial identity

® Results:

® Face recognition accuracy on filtered faces: 15%
(guess rate = |0%)

® Accuracy of best labeler on filtered faces: 30%

® Face recognition accuracy on unfiltered faces:

100%

® Results suggest that suppression of gender also
suppresses identity.

71
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DDD for regularization

72




DDD for regularization

® The previous experiment described how DDD
can be useful for face de-identification --
suppressing facial identity (via gender) while
maintaining discriminability of expression.

® Another application of DDD is to partially
counteract covariate shift.

® |n this setting, we are more interested in machine
classification of a “distractor” Task B (instead of
human perception).

73
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DDD for regularization

® Suppose we wish to train a classifier of attribute A
using a training dataset D.

® Suppose that, in D, the attribute A is highly
correlated with some other attribute B.

® E.g.,perhaps smile is strongly correlated with
gender.

® [f we apply the classifier trained on D to some other
dataset in which corr(A, B) is different, then the
classifier may perform very poorly.

74
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DDD for regularization

® Using the “DDD” technique, we may be able to partially
counteract this problem by suppressing discriminability of B
prior to training the classifier for A.

® |n this case, DDD acts as a “application-specific
regularizer” to ensure invariance to attribute B.

® Procedure for “regularizing” a training set using DDD:

|. Label training set for both A and B.
2. Learn filter O using DDD to preserve A and suppress B.
3. Apply filter O to training set.

4. Train classifier.

5. To classify a novel image, first filter it using 0, then

classify.
75
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Proof-of-concept experiment

® As a simple “proof-of-concept” experiment, we
subsampled 4062 GENKI training images so that
COITeain(smile, gender) = +0.64

® We also selected a disjoint test set containing 970
images for which corres(smile, gender) = -1

® We then trained two SVMs (RBF kernels) to classify an
image as smile/non-smile:

|. SVM with DDD-regularization (filter was optimized to
preserve smile, suppress gender)

2. SVM without regularization (classify unfiltered images).
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Proof-of-concept experiment

® Ve then evaluated the trained SVMs on the test set.
® Results:

® The “unregularized” SVM suffered due to the
correlation between smile and gender on the training
set:

® Accuracy = 0.79 (area under ROC curve)

® |n contrast, the “regularized” SVM (using filter learned
by DDD) was somewhat invariant to this correlation:

® Accuracy = 0.92 (area under ROC curve)
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Summary

® The proposed “DDD"” algorithm can learn filters to
preserve an attribute A while suppressing an attribute B.

® Requirements: discriminability metric D, and filter
function F, are available in closed form.

® We used “maximal Fisher discriminability” for D --
other choices may work too.

® DDD can help to “de-identify” frontal face images while
preserving their facial expression.

® |n a proof-of-concept experiment, we illustrated how
DDD can help to counteract covariate shift by providing
invariance to specific image attributes (e.g., gender).

78

Tuesday, October 4, 2011



N

79

Tuesday, October 4, 2011



