Let positive integers \(s_1 \) and \(s_2 \) denote the “speeds” of Iterator 1 and 2, respectively, where speed is the number of nodes that each iterator traverses in one timestep. Let non-negative integer \(l \) denote the number of nodes in the linked list prior to the start of the loop. Finally, let positive integer \(k \) denote the number of nodes in the loop.

Here we show that the two iterators must “intersect” at the same node inside the loop after a finite number of timesteps. An intersection is defined to occur when the “distance” of Iterator 1 from the start of the loop is equal to the “distance” of Iterator 2 from the start of the loop at the same moment in time. The distance is a number in \(\{0, \ldots, k-1\} \) that specifies which node in the loop (starting at 0) the iterator currently points to. Let \(m \) be the smallest non-negative integer such that \(ms_1 \geq l \) and \(ms_2 \geq l \). In other words, \(m \) is the number of timesteps that Iterator 1 and 2 must iterate so that they have both entered the loop. Then \(ms_1 - l \mod k \) (or \(ms_2 - l \mod k \)) is the distance of Iterator 1 (or Iterator 2) from the start of the loop after \(m \) timesteps.

We wish to find a number of additional timesteps \(t \geq 0 \) (after the initial \(m \) timesteps) such that the two iterators intersect in the loop. More precisely, we wish to find a \(t \) that satisfies the congruency

\[
ms_1 - l + ts_1 \equiv ms_2 - l + ts_2 \mod k \quad (1)
\]

\[
m(s_1 - s_2) + t(s_1 - s_2) \equiv 0 \mod k \quad (2)
\]

\[
(m + t)(s_1 - s_2) \equiv 0 \mod k \quad (3)
\]

If \(s_1 = s_2 \) (i.e., the iterators travel at the same speed), then this congruency is satisfied for all values of \(t \). Otherwise \((s_1 \neq s_2) \), this congruency is satisfied whenever \(m + t = nk \) for any integer (of our choosing) \(n \geq 0 \) because then \((m + t)(s_1 - s_2) \) is an exact multiple of \(k \). In order to guarantee non-negativity of \(t \), we choose \(n \) to be the smallest integer such that \(nk \geq m \). Then, a suitable \(t \) can be found by solving

\[
m + t = nk \quad (4)
\]

\[
t = nk - m \quad (5)
\]

Since we have found a \(t \geq 0 \) at which both iterators intersect, and since \(t \) was the number of additional timesteps after the initial \(m \) timesteps required to enter the loop, we conclude that the two iterators will intersect after a total of \(t + m = nk - m + m = nk \) timesteps, where \(n \) is the smallest non-negative integer such that \(nk - m \geq 0 \).