
CSE 12:
Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture One
1 Aug 2011

Monday, August 1, 2011

Welcome
• CSE 12 is a programming-oriented introduction to

fundamental data structures of computer science.

• By the end of this course, you will hopefully know:

• What data structures are.

• Why selecting the right data structure is important.

• When to use a particular type of data structure.

• How the most common data structures are
implemented in code and in memory.

• How object-orientation can facilitate good program
design.

Monday, August 1, 2011

Administrivia.

Monday, August 1, 2011

Course structure
• 4 lectures/week:

• M, T, W, Th
11:00a - 12:20p
Here

• 4 programming assignments (45%)

• 1 midterm (20%), 1 final (30%)

• Class participation (5%)

• CSE 12 Moodle web forum

• In-class unannounced quizzes (yay!)

Monday, August 1, 2011

Teaching staff
• Lecturer:

• Me

• Teaching assistant (TA):

• Vineet Kumar

• Tutors/graders:

• Stephanie Yeh

• Anthony Dang

• Kerwin Azares
Monday, August 1, 2011

Course website

• http://ieng6.ucsd.edu/~cs12v

Monday, August 1, 2011

Moodle forum

• http://csemoodle.ucsd.edu

• Appropriate contributions:

• Questions about programming projects, data
structures, or anything else in computer
science.

• Answers to the above.

• Suggestions for topics you want to hear
about during lecture and/or discussion section.

Monday, August 1, 2011

Discussion section

• Go to CSE 12 Moodle web forum and list
your availability!

Monday, August 1, 2011

Warning on grammar

• “Data” is technically a plural (“your data
are so lovely”)

• BUT:

• Data in plural form can sound very
pretentious.

• In this course I will alternate between them
inconsistently.

Monday, August 1, 2011

Storing information in a
river of 1’s and 0’s.

Monday, August 1, 2011

Consider the following
request:

•Dear you,

Please email me your phone
number.

Thanks,
Someone else

Monday, August 1, 2011

Transmitting your phone #
• To transmit your phone number by email,

the 10 digits must be converted into a
binary sequence of 1’s and 0’s.

• That’s all you (ever) have to
work with.

Your
computer

Someone else’s
computer

10000101100010000010001001...

Monday, August 1, 2011

Transmitting your
phone #

• Phone numbers in USA: 10 decimal digits,
e.g., (858) 822-5241.

• Step 1: concatenate 10 digits into one
simple string.

• 8588225241

• Step 2: encode each digit using a few bits
(how many?).

Monday, August 1, 2011

Transmitting your
phone #

• For example, to encode digit 8 using 4 bits,
we write 1000.

• To encode 1 in binary, we write 0001.

• Given the binary codes for each decimal
digit, we concatenate all the codes together
(in order), e.g.,

10000101100010000010001001010010
01000001

Monday, August 1, 2011

Transmitting your
phone #

• We then send this bit sequence over the
network to Someone else.

Your
computer

Someone else’s
computer

1000010110...

Monday, August 1, 2011

Transmitting your
phone #

• We then send this bit sequence over the
network to Someone else.

Your
computer

Someone else’s
computer

1000010110...

Monday, August 1, 2011

Transmitting your
phone #

• We then send this bit sequence over the
network to Someone else.

Your
computer

Someone else’s
computer

1000010110...

Monday, August 1, 2011

Transmitting your
phone #

• We then send this bit sequence over the
network to Someone else.

Your
computer

Someone else’s
computer

1000010110...

Monday, August 1, 2011

Transmitting your
phone #

• We then send this bit sequence over the
network to Someone else.

Your
computer

Someone else’s
computer

1000010110...

Monday, August 1, 2011

Decoding your phone #

• Someone else then has to decode the bit
sequence you sent:

1000010110001000001000100101001001000001

• How?

Monday, August 1, 2011

Decoding your phone #
• Questions:

• How does Someone else know when to
stop reading bits?

• Consider the binary code for decimal
digit 1:

•0001

• Isn’t this wasteful? Why can’t we just
encode 1 as 1 (with no 0’s)?

Monday, August 1, 2011

Decoding your phone #
• Consider the number 515...:

•0101 0001 0101 ...

• Without the leading 0’s, we have:

•101 1 101 ...

• The problem is that Someone else doesn’t see
the spaces -- all they see is 1011101.

• No way to infer where each digit starts/ends.

• We need to structure the data by making
each decimal digit have the same length.

Monday, August 1, 2011

A slightly more
ambitious task...

Monday, August 1, 2011

How would you handle this?

•Dear Google,

Please send me all
of your Google Earth
data.

Thanks,
Some Other Company

Monday, August 1, 2011

Data transmission

• To handle such a request, we could either:

• Transmit the data over a network using a
very long sequence of 1’s and 0’s.

• Write the entire Google Earth database
to a large number of hard disks
(containing 1‘s and 0‘s) of high capacity.

•Ultimately, we need to encode a
huge amount of information as 1’s
and 0’s.

Monday, August 1, 2011

1’s and 0’s
• What we would like to do is send separate

“groups” of bits for different parts of the data:

1101010000110011010
1001100101011101010
0110100011001000101
1101000101000101001
0110000111010110100
1010100011001001011

1010001...

1011011010
0000001111
0010000001
1100101110

...
1001001110
0010101110
11011...

0000001000000110100
0011100001110110011
1001110001101100000
1001011001010110001
0110101011111010010

00111...

Images of
Australia

Images of
Europe

Marker of
Eiffel Tower

Marker of
Mt. Everest

Monday, August 1, 2011

1’s and 0’s

• In the real world, we must unfortunately
encode everything in a single stream of 1’s
and 0’s.

• We must somehow structure our data (1’s
and 0’s) to allow meaningful information to
be extracted.

• First, how many bits are we dealing with?

Monday, August 1, 2011

How much data is
there in Google Earth?

• Satellite imagery:

• Surface area of earth:
510,072,000 km2

• Markers:

• Landmarks, campgrounds,
museums, restaurants...

• (and much more)

Monday, August 1, 2011

Satellite imagery
• Estimate resolution at highest zoom:

Monday, August 1, 2011

How much data is
there in Google Earth?
• Back-of-the-envelope calculations:

• Satellite imagery: 510,072,000 km2 * X
pixels/km2 * 3 bytes/pixel * 8 bits/byte
= ?? bits

...011100100110110011100010011111010001011...

Monday, August 1, 2011

Satellite imagery
• How might we store the satellite imagery?

1. Convert image of 3-D spherical surface
to 2-D image.

3-D sphere 2-D image

Mercator
projection

Monday, August 1, 2011

Satellite imagery

• What is an image in terms of 1’s and 0’s?

1. Image is a 2-D grid of pixels.

M columns

N rows

Monday, August 1, 2011

Satellite imagery
• What is an image in terms of 1’s and 0’s?

2. Each pixel consists of red, blue, and green
color channels.
Each color channel is between 0-255.

N rows

M columns
R=119
G=115
B=85

Monday, August 1, 2011

Satellite imagery
• What is an image in terms of 1’s and 0’s?

2. We can represent a 2-D image as a
3N x M array of numbers.

N rows

M columns M columns

3N rows

255 255 255 255 255 255 ...
255 14 23 24 24 23

255 17 25 27 25 24

255 255 255 255 255 255

255 255 255 255 64 64

255 53 61 63 64 64

... ...

(R,G,B) for
one pixel

Monday, August 1, 2011

Satellite imagery
• What is an image in terms of 1’s and 0’s?

3. We can concatenate the 3N * M array
elements into one large vector of numbers.

255 255 255 255 255 255 ...
255 14 23 24 24 23

255 17 25 27 25 24

255 255 255 255 255 255

255 255 255 255 64 64

255 53 61 63 64 64

... ...

M columns

3N rows 255 255 255 255 14 17 255 23 25 255 ...

2-D array 1-D vector of numbers
Monday, August 1, 2011

Satellite imagery
• What is an image in terms of 1’s and 0’s?

4. We convert each element of the vector
(0-255) to binary representation.

1 1 1 1 1 1 1 1 1 1 ...

1-D binary vector

255 255 255 255 14 17 255 23 25 255 ...

1-D vector of integers

Done!
Monday, August 1, 2011

Storing the markers

• Each marker consists of:

• Location (latitude & longitude)

• Name

• Example:

• Belem, Brazil:
1 deg 28’ S latitude,
48 deg 29’ W longitude

Monday, August 1, 2011

Storing the markers

• Location, e.g.,
1 deg 28’ S, 48 deg 29’ W

• Integers (4 bytes) for degrees/minutes of
latitude/longitude.

• Single characters (1 byte) for South/North/
West/East.

• Name:

• String of characters (bytes), e.g.,
“Belem, Brazil”

Monday, August 1, 2011

Storing the markers
• To encode a marker we simply concatenate the

name and the location:

Aberdeen, Scotland00570009N00020009WAdelaide,
Australia00340055S01380036EAlgiers,
Algeria00360050N00030000EAmsterdam,
Netherlands00520022N00040053EAnkara, Turkey...

100000000000000010000000000000000000000010000000100000000000000000000000000000001000000010000000100000000
000000000000000100000000000000000000000000000000000000010000000100000000000000000000000000000001000000000
001000000010000000100000000000000010000000000
000001000000010000000000000001000000000000000000000001000000010000000100000000000000000000000100000000000
000010000000100000000000000000000000100000000000000000000000000000001000000010000000100000000000000000000
000100000001000000000000000000000000000000010000000000000001000000010000000000000001000000010000000100000
000000000010000000000000000000000010000000000000001000000010000000000000001000000010000000000000000000000
01000000000000000000000000000000010000000000...

• We then convert the string of characters into a
binary sequence:

*

* This is slightly fictitious -- the integers would actually appear quite differently if printed as text.

• We then concatenate all the markers:

Aberdeen, Scotland00570009N00020009W

Monday, August 1, 2011

Google Earth data:
One huge binary sequence

• We concatenate the satellite imagery and markers into
one huge binary sequence (serialization).

• The serialized data can then be easily:

• Loaded into memory.

• Written to disk/DVD.

• Transmitted over a network.

111111100111001110000101111100001111101010010101010
011100110000011000001111100101101110110000011110001
101000101110010111111101101110000111111101000110111
1110100010110111101010001110001011001000...

Satellite image

Markers

Monday, August 1, 2011

Google Earth data:
One huge binary sequence

• After serializing the Google Earth data, we
can send it to Some Other Company.

• But...

...011010001011...

Send data

Google Some Other Company

Monday, August 1, 2011

Some other company:
How do I parse the 0’s and 1’s?

• How will Some Other Company know how to
decode the data?

• In order for the binary sequence to be of any
value, we must know how the data are
structured.

• What is stored where in the binary
sequence?

Monday, August 1, 2011

Some other company:
How do I parse the 0’s and 1’s?
• Where does satellite imagery end, and each

marker start?
...
111111100111001110000101111100001111101010010101010
011100110000011000001111100101101110110000011110001
101000101110010111111101101110000111111101000110111
1110100010110111101010001110001011001000...

• It is necessary to give Some Other Company
information on how to separate the individual
data fields.

Satellite
image

Marker 1 Marker 2

Monday, August 1, 2011

Extracting satellite image data

• How can we let Some Other Company
know how long the satellite image data
subsequence is?

Monday, August 1, 2011

Extracting satellite image data
• How can we let Some Other Company

know how long the satellite image data
subsequence is?

• Encode M and N as integers just before
the image data?

• Encode M and N as integers just after the
image data?

• Encode 3*M*N*8 as one integer just
before the image data?

Monday, August 1, 2011

Extracting satellite image data

• Encode M and N as integers just before
the image data?

• M*N pixels, 3 colors each, 8 bits for each
color channel and pixel = 3*M*N*8

•
<start>
0000000101000000000000011001000111111100111001
1100001011111000011111010100101010100111001100
0001100000111110010110111011000001111000110100
0101...
<end>

M (320) N (200)

Satellite image
(3*M*N*8 bits)

Monday, August 1, 2011

Extracting satellite image data

• Encode M and N as integers just after
the image data?

<start>
...
1111111001110011100001011111000011111010100101
0101001110011000001100000111110010110111011000
0011110001101000101000000010100000000000001100
1000
<end>

M (320) N (200)

Satellite image
(3*M*N*8 bits)

Monday, August 1, 2011

Extracting satellite image data

• Encode M and N as integers just after
the image data?

<start>
...
1111111001110011100001011111000011111010100101
0101001110011000001100000111110010110111011000
0011110001101000101000000010100000000000001100
1000
<end>

M (320) N (200)

Satellite image
(3*M*N*8 bits)

??

?

Monday, August 1, 2011

Extracting satellite image data

• Encode 3*M*N*8 as one integer just
before the image data?

<start>
...
0000000000010111011100000000000011111110011100
1110000101111100001111101010010101010011100110
0000110000011111001011011101100000111100011010
00101
<end>

3*M*N*8 Satellite image
(3*M*N*8 bits)

Monday, August 1, 2011

Extracting marker data

• <start>
...
11111110011100111000010111110000111110101001010
10100111001100000110000011111001011011101100000
11110001101000101110010111111101101110000111111
10100011011111101000101101111010100011100010110
01000...
<end>

• Assume:

• 1st marker starts immediately after satellite data.

• 2nd marker starts immediately after 1st, etc.

• But how do we know the length (in bits) of each
marker?

Satellite
image

Marker 1

Marker 2

Monday, August 1, 2011

Extracting marker data

• One possible solution:

• At beginning of binary sequence for
marker each, we encode its length.

• <start>
...
1111111001110011100001011111000011111010100101010
1001110011000001100000111110010110111011000001111
0001101000101010000001100101111111011011100001111
1110100011011111101000101101111010100011100010110
01000...
<end>

Marker 1 length Marker 1

Monday, August 1, 2011

Extracting marker data
• Once we have extracted each marker, we

must then extract the name and location of
each marker.

• We can use a similar scheme as above --
encode the length of each field.

• Finally, we must encode the number of
markers.

• Put this integer in the bit stream just
before the first marker.

Monday, August 1, 2011

Extracting Google
Earth data

• We can now extract both the satellite
image data and the markers.

• How might this look in Java code...?

Monday, August 1, 2011

Data structures and
object-orientation.

Monday, August 1, 2011

Google Earth data
extraction in Java

• We can use the Image class for the satellite image.

• Let’s assume there’s some nice Location class to
represent latitude+longitude.

• Let’s create a Marker class:

class Marker {
 private String _name;
 private Location _location;
}

Monday, August 1, 2011

Google Earth data
extraction in Java

• To extract satellite image and markers from the bit
sequence, let’s define 2 “pseudo-Java” methods:

• // Should be called at beginning of entire Google
// Earth bit sequence.
public Image extractSatelliteImage (bit[] sequence)
{ ... }

• // Should be called on the bit sequence just after
// the satellite data.
public Marker[] extractMarkers (bit[] sequence)
{ ... }

*

* Type “bit” doesn’t actually exist in Java.

Monday, August 1, 2011

// Assume that integers such as “width” and “height”
// are encoded as 16-bit integers.
public Image extractSatelliteImage (bit[] sequence) {
 int width = ... // read first 16 bits
 int height = ... // read next 16 bits
 Image image = ... // create width-by-height image

 for (int i = 0; i < height; i++) {
 for (int j = 0; j < width; j++) {
 int r = ... // read red channel
 int g = ... // read green channel
 int b = ... // read blue channel
 image[i][j] = // set (i,j)th pixel to (r,g,b)
 }
 }

 return image;
}

Monday, August 1, 2011

public Marker[] extractMarkers (bit[] sequence) {
 int numMarkers = ... // read 16 bits
 for (int i = 0; i < numMarkers; i++) {
 Marker marker =
 new Marker(/* read from bit sequence */);
 // Add marker to array markers.
 }

 return markers;
}

Monday, August 1, 2011

Google Earth data
extraction in Java

• Danger 1...

• Danger 2...

Monday, August 1, 2011

Google Earth data
extraction in Java

• Danger 1 -- wrong bits: the caller calls a
method on the wrong part of the Google Earth
data bit sequence.

• Danger 2 -- mismatched image/markers:
if there are multiple planets (Google Earth,
Google Mars, etc.), then the caller might
mismatch the set of markers with the wrong
planet. (This happens to me all the time!)

Monday, August 1, 2011

In come the objects...

• One of the purposes of objects in Java is to
prevent these problems from occurring.

• Objects encapsulate related pieces of data.

• Example: define a class GooglePlanet.

Monday, August 1, 2011

class GoogleEarth
• class GooglePlanet {

 Image _satelliteImage;
 Marker[] _markers;

 // Should start at the beginning of entire
 // Google Planet bit sequence.
 GooglePlanet (bit[] sequence) { ... }
}

• Now, the constructor of GooglePlanet
handles the initialization.

• Fewer opportunities for caller to mess up --
only one bit sequence to pass in.

Monday, August 1, 2011

class GoogleEarth

• class GooglePlanet {
 Image _satelliteImage;
 Marker[] _markers;

 // Should start at the beginning of entire
 // Google Planet bit sequence.
 GooglePlanet (bit[] sequence) { ... }
}

• Also, the satellite image and markers are
eternally coupled (how romantic) -- there is no
danger of mismatching markers and images.

Monday, August 1, 2011

Object-orientation and
data structures

• These are two benefits of data
encapsulation. (There are others.)

• Data encapsulation is a benefit of object-
orientation.

• Other benefits include:

• Polymorphism

•Abstraction

• (More on these later in the course...)
Monday, August 1, 2011

Time complexity and
space complexity.

Monday, August 1, 2011

What do we use class
GoogleEarthData for?

• How is the Google Earth data used in
practice? Common use case:

• User is navigating somewhere on Earth,
and wants to fetch a list of markers
nearby (e.g., country-western bars).

Monday, August 1, 2011

Finding local markers

• To implement this “query” functionality, let’s add a
method to class Marker:

• (For simplicity, a marker is either “close to” the
user’s location, or “not close to” her/him.)

class Marker {
 ...
 public boolean isCloseTo (Location location) {
 ...
 }
}

Monday, August 1, 2011

Finding local markers
• We also add a method to GooglePlanet:

class GooglePlanet {
 Image _satelliteImage;
 Marker[] _markers;

 public Marker[] findLocalMarkers
 (Location location) {
 ...
 }
}

• How is this method implemented?

Monday, August 1, 2011

Finding local markers

• Algorithm:

• Create empty list localMarkers.

• For each Marker i in _markers:

• If _markers[i].isCloseTo(location):

• Add _markers[i] to localMarkers.

• Return localMarkers.

Monday, August 1, 2011

Time cost

• If there are 10,000,000 markers in
_markers, how many times will the loop
iterate?

• What if location is not close to any of the
markers in _markers?

• Problem -- we have to call isCloseTo()
on markers that are very far away from
location.

Monday, August 1, 2011

Time cost

• Implementing _markers as a simple array
causes findLocalMarkers to run fairly
slowly (“linear time” in this case).

• The running time of findLocalMarkers
can be estimated from the time
complexity of that method.

• The time complexity of an algorithm
depends on the data structures it uses.

Monday, August 1, 2011

Finding local markers
more quickly

• How can we speed up the search for local markers?

• Simple approach: divide the markers into regions.

• When looking for local markers, we search only
within our local region.

1 2 3 4

5 6 7 8

9 10 11 12

My location

My local region

Monday, August 1, 2011

Finding local markers
more quickly

class GooglePlanet {
 Image _satelliteImage;
 Marker[] _region1, _region2, ..., _region12;
 ...
}

Monday, August 1, 2011

Finding local markers more quickly

• New algorithm for finding local markers:

• Create empty list localMarkers.

• Determine which localRegion contains location.

• For each Marker i in localRegion:

• If localRegion[i].isCloseTo(location):

• Add localRegion[i] to localMarkers.

• Return localMarkers.

Monday, August 1, 2011

Finding local markers
more quickly

• If there are 12 regions, then this algorithm
will run about 12x faster than our first one.

• Time cost has been reduced.

• BUT -- there is a penalty.

• Instead of just one Marker[]:
Marker[] _markers;

we now have 12 Marker[]’s:
Marker[] _region1, _region2, ..., _region12;

Monday, August 1, 2011

Array overhead
• Each array of type Marker[] incurs some overhead.

• In Java, the length of an array is stored in its
length field. This takes up space!

• So...we have decreased the time cost at the
expense of increasing space cost.

• There is an inherent tension between
minimizing time cost and minimizing
space cost.

• The space cost of a data structure can be estimated
from its space complexity.

Monday, August 1, 2011

Finding local markers
more quickly

• Our “grid” of local regions is still not great
in terms of time cost.

• A tree data structure could yield much
better performance (more later in the
course...).

Monday, August 1, 2011

“Code complexity”

• Sometimes, it may be reasonable to
sacrifice some time/space costs to make
the code simpler.

• Especially on small amounts of data, an
“easy to implement” data structure may
often be the best solution.

Monday, August 1, 2011

Choosing the right data
structure.

Monday, August 1, 2011

Choosing the right data
structure

• When writing a program, very often you will
be solving the same kinds of problems over
and over again:

• How do I store a collection of addresses?

• How do I sort these numbers?

• How can I find the largest object quickly?

• How can I fetch a person’s profile picture
from a dataset quickly given just her name?

Monday, August 1, 2011

Choosing the right data structure
• Rather than having to rediscover the solution every

time, you should learn how the fundamental
data structures of computer science work.

• Data structures covered in this course:

• List

• Stack

• Queue

• Heap

• Tree

• Hash table

• Graph
Monday, August 1, 2011

The rest of this course.

Monday, August 1, 2011

CSE 12

• In this course you will study the
properties of and practice
implementing the data structures listed
above (list, stack, queue, heap, tree, hash
table, graph).

Monday, August 1, 2011

CSE 12

• Question: “Why should I spend time
implementing a data structure that has
been implemented literally millions of times
before, when superbly written, highly
efficient, thoroughly tested, standardized
library versions exist for free?”

Monday, August 1, 2011

CSE 12

• My answer:

• Once you thoroughly understand the
basic data structures, by all means use
library code.

• BUT: There is no better way of gaining a
thorough understanding than than having
to implement those structures yourself.

Monday, August 1, 2011

Programming Project
#1

• In your zeroth programming project you
will write a Hello Whirled program.

• In your first programming project you will
implement a doubly-linked list.

• In your second programming project you
will test your linked list implementation --
and the implementations of your
classmates.

Monday, August 1, 2011

Getting help

• If you need help on the programming project,
you can come to:

• Me during office hours or in the lab.

• The TA during discussion section, his office
hours, or in the lab.

• The tutors in the lab.

• The web forum (csemoodle).

• Each programming project will be
allocated its own thread.

Monday, August 1, 2011

Getting help

• You may also get help from:

• Your peers.

• This is natural.

• This is beneficial.

• This is slightly dangerous...

Monday, August 1, 2011

Obtaining help from peers
• It is ok to talk to your peers about CSE 12

programming assignments without writing any notes
on paper or on the computer.

• Equivalent to having a phone call.

• It is ok to discuss a programming assignment
while using paper and pencil as a visual aid.

• BUT: you must destroy these notes before
returning to your computer.

• You may not look at someone else’s code on any
computer screen.

Monday, August 1, 2011

Obtaining help from
the Internet

• Feel free to consult general texts on data
structures on the Internet:

• Online textbooks

• Wikipedia

• You are not permitted to download
anyone’s source code to complete an
assignment.

Monday, August 1, 2011

Enforcement

• We will be using automatic code
comparison programs to identify copied
code.

• In a previous course I taught, I caught one
student cheating; he failed the course and
his graduation was delayed by 1 year :-(.

Monday, August 1, 2011

Participation in class
• Please ask questions during class if you are

curious about or do not understand something.

• It is not a bother to answer questions.

• Answering questions is my job.

• Answering “stupid” questions is my job.

• Every student (and instructor) sometimes makes
mistakes.

• Please show respect to classmates (and me) at
all times.

Monday, August 1, 2011

