CSE 12: Basic data structures and object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Some slides adapted from Paul Kube.

Lecture Ten
17 Aug 2011
Linear data structures: a brief review.
Linear data structures

- So far in this course we have learned the basic linear data structures:
 - Array list
 - Linked list
 - Stack
 - Queue

- These structures are *linear* because each element contained within them is *adjacent* to at most 2 other elements.
Linear data structures

• Linked lists and array lists provide a form of “permanent” storage of arbitrary data.

• Stacks and queues provide (typically) “temporary” storage to data that we expect to remove at some later point in time.

 • LIFO for stack, FIFO for queue.

• All these data structures provide convenient containers for storing unrelated data.

 • There needn’t be any relationship among the individual data.
Linear data structures

• With Java generics, we gained the ability to restrict membership to an ADT to a particular class.

• E.g., allow only `String` objects to be added to a `List` container).

• But beyond the class of the objects, we didn’t “care” about any relationships between the data.

• In particular, we didn’t care whether the ADT stored the individual data in some “natural order”:

 • E.g., alphabetical order for `Strings`, integer order for `Integers`.
Linear data structures

- Ignoring any relationships between data elements allowed for an ADT that was:
 - Simple to implement -- no need to consider order relations.
 - Flexible to use -- no need to define an order relation.
- However, this simplicity/flexibility comes at the cost that data retrieval is often slower than it needs to be.
- By considering the natural order relations between objects, we can create data structures with superior asymptotic time costs for storage/retrieval operations.
Linear data structures: asymptotic time costs

• Let’s review the “score card” of the ADTs we’ve covered so far.

• Let’s consider three fundamental operations:
 • void add (T o);
 • void remove (T o);
 • T find (T o);
 Search for an element in the container that
 equals o and returns it; if no such object exists, then returns null.
Array-list and linked-list scorecard

<table>
<thead>
<tr>
<th>Operation</th>
<th>Array-list</th>
<th>Linked-list</th>
</tr>
</thead>
<tbody>
<tr>
<td>add(o)</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>find(o)</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>remove(o)</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

Adding is fast.
Finding is slow.
Removing is slow.
Array-list and linked-list
scorecard

• There are many occasions where the user will \textit{add} new data relatively \textit{rarely}, but want to \textit{find} data already in the data structure relatively \textit{frequently}.

• In order to improve the asymptotic time cost of the \texttt{find()} and \texttt{remove()} operations, we will make use of order relationships between data elements.

• Once we’ve \textit{found} an element within a data structure, it is typically easy for the data structure to \textit{remove} it.
Why find something?

• It may strike some as odd that an ADT would support the method `T find (T o)`, e.g.:

```java
final Student student = ... 
final Student student2 = _list.find(student);
```

• After all, if the user knows the object `o` he/she is looking for, then why call `find` at all?

• *Answer*: sometimes the user knows *part* of the information about an object `o`, but does not have the whole record.

• This illustrates the difference between a record’s *key* and its *value*.
Keys and values

- The part of the `Student` object that the user always knows is called the key (e.g., student ID number at Student Health).
- The rest of the `Student` record is called the value.

```java
class Student {
    String _studentID;          // Key
    String _firstName, _lastName;  // Value
    String _address;

    Student (String studentID) {
        _studentID = studentID;
    }

    Student (String studentID, String firstName, String lastName,
             String address) {
        _studentID = studentID;
        _firstName = firstName;
        _lastName = lastName;
        _address = address;
    }
}
```
The user may store many `Student` objects inside a `List12` container, e.g.:

```java
list.add(new Student("A123", "Bill", "Carter", "123 Main St"));
list.add(new Student("A213", "Jimmy", "Clinton", "124 Main St"));
...
list.add(new Student("B092", "Hillary", "Nixon", "125 Main St"));
```

Later, the user may wish to find a particular `Student` object using just the key, e.g., the student ID:

```java
final Student cse12Student = list.find(new Student("A123"));
```

Student containing both the key and value.
Student initialized with just the key.
Overriding equals (o)

- In order for the find(o) method to work properly, the Student object must also override the equals(o) method so that a Student initialized with just a key will “equal” a Student initialized with both key and value:

```java
class Student {
    ...
    Downcast!
    boolean equals (Object o) {
        final Student other = (Student) o;
        return _studentID.equals(other._studentID);
    }
}
```

Accessible even though _studentID may be private.
Overriding \texttt{equals(o)}

- The implementation of the \texttt{find(o)} method will then implicitly call this method.

- E.g., consider the \texttt{find(o)} method in an ArrayList:

```java
T find (T o) {
    for (int i = 0; i < _numElements; i++) {
        if (_underlyingStorage[i].equals(o)) {
            return _underlyingStorage[i];
        }
    }
    return null;
}
```

Will call \texttt{Student.equals(o)}.
Overriding `equals(o)`

- Note that `Student.equals(o)` will be called even if `find(o)` is implemented in terms of `Object`s. (This assumes of course that `Student` objects were actually added to the list.)

- This is due to Java’s *dynamic binding* of methods -- the *runtime* type of `o` is used to determine which `equals(o)` method to call.

```java
Object find (Object o) {
    for (int i = 0; i < _numElements; i++) {
        if (_underlyingStorage[i].equals(o)) {
            return _underlyingStorage[i];
        }
    }
    return null;
}
```

Will still call `Student.equals(o)` instead of `Object.equals(o)`.
Keys and values

• Some data structures explicitly separate the key from the value when the user adds the element to the container.

• Example:

 • A “hash map/table” (covered later in this course) allows $O(1)$-time retrieval of any value given its key.

 • To add a new entry to the table, the user calls put(key, value), e.g.:

 hashMap.put("A123", new Student("A123", "Bill", "Carter", "123 Main St");
Finding a particular key

- Given a request to find a particular key, and given that keys often have an \textit{order relation} defined between them, it seems silly to search through the container \textit{as if the keys were all unrelated}.

- \textit{Example}: Suppose we are searching for the student ID “c237”. Do we really need to start at the very beginning?

<table>
<thead>
<tr>
<th>Search</th>
<th>A101</th>
<th>B972</th>
<th>D192</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A102</td>
<td>C092</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A125</td>
<td>C100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A192</td>
<td>C200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A204</td>
<td>C203</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B135</td>
<td>C237</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B193</td>
<td>C292</td>
<td></td>
</tr>
</tbody>
</table>
Finding a particular key

• Given a request to find a particular key, and given that keys often have an order relation defined between them, it seems silly to search through the container as if the keys were all unrelated.

• Example: Suppose we are searching for the student ID “C237”. Do we really need to start at the very beginning?

```
A101    B972    D192
A102    C092
A125    C100
A192    C200
A204    C203
B135    C237
B193    C292
```

No -- the natural order among keys imposes structure on the “search problem” that lets us find a particular key much more quickly.
compareTo(o)

• In Java, a binary ordering relation between two objects can be expressed using the `compareTo` method:
  ```java
  int compareTo(T o);
  ```

• `o1.compareTo(o2)` is:
 • `< 0` if `o1` is “less than” `o2`
 • `== 0` if `o1` is “equal to” `o2`
 • `> 0` if `o1` is “greater than” `o2`

• Classes that implement the `compareTo(o)` method can implement the `Comparable<T>` interface.
Comparable<T>

• Example:

```java
class Student implements Comparable<Student> {
    ...
    int compareTo (T other) {
        // Compare this._studentID to
        // other._studentID -- return -1, 0, or 1
        // if this._studentID is “less than”,
        // “equal to”, or “greater than”
        // other._studentID, respectively.
        ...
    }
}
```

Each Student might be “comparable to” objects of a different class, e.g., UCSDMember (since faculty and staff also have ID numbers).
Comparable<T>

• Example:

class Student implements Comparable<Student> {
 ...
 int compareTo (T other) {
 return _studentID.compareTo(other._studentID);
 }
}

In this particular case, we can just delegate to the String.compareTo(o) method, since String implements Comparable<String>.
Searching a sorted list

• How will defining this “ordering relation” using Comparable<T> help us to find a key more quickly?

• Let’s consider a simpler example in which we wish to find an integer within a sorted list of numbers.

• We will implement a method

```java
int search (int[] numbers, int targetNum,
           int startIdx, int endIdx);
```

which will search through an array of numbers, starting at the startIdx and ending at the endIdx, looking for the targetNum.
Searching a sorted list

• Consider the following example:

```java
search(numbers, targetNum, startIdx, endIdx):
```

where

```java
int targetNum = 79;
int startIdx = 0;
int endIdx = 15;

int[] numbers = {
    16, 26, 31, 40, 43, 45, 51, 55, 58, 67, 69, 73, 79, 87, 88
};
```

• What is the optimal search strategy given that numbers is already sorted?
Binary search

• The optimal search strategy (minimum time cost) for a list of sorted elements is *binary search*.

• The search is *binary* because we repeatedly divide the list into 2 *pieces*.

• Search algorithm:

 Pick a guessIdx = (startIdx + endIdx) / 2;
 if (numbers[guessIdx] == targetNum) {
 return guessIdx;
 } else if (numbers[guessIdx] < targetNum) {
 Search the “right half” of the list for targetNum.
 } else {
 Search the “left half” of the list for targetNum.
 }
Binary search

- Let’s look for targetNum=79.

- Search algorithm:

  ```
  Pick a guessIdx = (startIdx + endIdx) / 2;
  if (numbers[guessIdx] == targetNum) {
      return guessIdx;
  } else if (numbers[guessIdx] < targetNum) {
    Search the “right half” of the list for targetNum.
  } else {
    Search the “left half” of the list for targetNum.
  }
  ```

16, 26, 31, 40, 43, 45, 51, 55, 58, 67, 69, 73, 79, 87, 88
Binary search

• Let’s look for targetNum=79.

• Search algorithm:

 Pick a guessIdx = (startIdx + endIdx) / 2;
 if (numbers[guessIdx] == targetNum) {
 return guessIdx;
 } else if (numbers[guessIdx] < targetNum) {
 Search the “right half” of the list for targetNum.
 } else {
 Search the “left half” of the list for targetNum.
 }

16, 26, 31, 40, 43, 45, 51, 55, 58, 67, 69, 73, 79, 87, 88
Binary search

- Let's look for targetNum=79.

- Search algorithm:

 Pick a guessIdx = (startIdx + endIdx) / 2;
 if (numbers[guessIdx] == targetNum) {
 return guessIdx;
 } else if (numbers[guessIdx] < targetNum) {
 Search the “right half” of the list for targetNum.
 } else {
 Search the “left half” of the list for targetNum.
 }

16, 26, 31, 40, 43, 45, 51, 55, 58, 67, 69, 73, 79, 87, 88
Binary search

• Let’s look for targetNum=79.

• Search algorithm:
 Pick a guessIdx = (startIdx + endIdx) / 2;
 if (numbers[guessIdx] == targetNum) {
 return guessIdx;
 } else if (numbers[guessIdx] < targetNum) {
 Search the “right half” of the list for targetNum.
 } else {
 Search the “left half” of the list for targetNum.
 }
Binary search

• Let’s look for targetNum=79.

• Search algorithm:

 Pick a guessIdx = (startIdx + endIdx) / 2;
 if (numbers[guessIdx] == targetNum) {
 return guessIdx;
 } else if (numbers[guessIdx] < targetNum) {
 Search the “right half” of the list for targetNum.
 } else {
 Search the “left half” of the list for targetNum.
 }
Binary search

• Let’s look for targetNum=79.

• Search algorithm:
 Pick a guessIdx = (startIdx + endIdx) / 2;
 if (numbers[guessIdx] == targetNum) {
 return guessIdx;
 } else if (numbers[guessIdx] < targetNum) {
 Search the “right half” of the list for targetNum.
 } else {
 Search the “left half” of the list for targetNum.
 }
Binary search

- Let’s look for targetNum=79.

- Search algorithm:
  ```c
  Pick a guessIdx = (startIdx + endIdx) / 2;
  if (numbers[guessIdx] == targetNum) {
    return guessIdx;
  } else if (numbers[guessIdx] < targetNum) {
    Search the “right half” of the list for targetNum.
  } else {
    Search the “left half” of the list for targetNum.
  }
  ```

Done in 4 guesses!
Binary search and recursion

- Binary search is a classic example of a recursive algorithm:
 - The algorithm makes repeated calls to itself to get its work done, e.g.:
 “Search algorithm:
 ...
 Search the “right half” of the list for targetNum.
 ”
 - Each recursive call operates on a smaller problem than the original (e.g., it searches only half the list).
 - Eventually, the algorithm operates on a trivial input size (e.g., a list of 1 element) and terminates.
Sorting and recursion

• Recall, however, that binary search requires the list to have been *already* sorted.

• How was this accomplished?

• It turns out that the fastest sorting algorithms are implemented using *recursion*:

• For instance, the MergeSort algorithm (next week) successively divides a list of ordered elements into two halves, sorts them separately, and then combines the results.
Data structures and recursion

• Even though a sorted list of data is useful, what happens if we want to add more data into the list? How do we keep the data in sorted order?

• Using a list in these cases will be inefficient.

• More efficient is a tree-based data structure.

 • Trees (tomorrow, next week) are non-linear data structures because each element may be adjacent to more than 2 other elements.

 • Trees are recursive data structures -- each “branch” of a tree forms a “tree” in itself.
Even computer programs themselves are recursive data structures -- a Java class, for example, may contain multiple methods, instance variables, and *inner classes*.

- Each inner class may contain multiple methods, instance variables, and *inner classes*.
 - Each inner class of an inner class may contain multiple methods, instance variables, and *inner classes*.
 - Each inner class of an inner class of an inner class may contain multiple methods, instance variables, and *inner classes*.
 - ...
Compilers and recursion

• In order to convert your source code into machine language, the Java compiler compiles this recursive data structure (your program) using recursive algorithms for:

 • **Lexing** -- combining the individual ASCII symbols of code into tokens (or lexemes).

 • **Parsing** -- inferring the structure among tokens that lead to meaningful statements of code.
Recursion
Recursion

• A recursive function is a function that calls itself.

• A recursive definition is a definition that defines a concept in terms of itself.

• **Important**: The recursion has to stop at some point.
 • Otherwise you have a function that never returns, or you have a completely circular definition.

• Recursion has applications in:
 • Defining mathematical concepts
 • Specifying programming language elements
 • Defining data structures
 • Designing algorithms
Fibonacci sequence

• One of the classic examples of recursion in mathematics is the Fibonacci sequence.

• The Fibonacci sequence is one of the simplest sequences of numbers one can define recursively.

• Fibonacci sequence definition:

 (a) The 1st and 2nd Fibonacci numbers are both 1.

 (b) The \(n \)th Fibonacci number is the sum of the \(n-1 \)th Fibonacci number plus the \(n-2 \)th Fibonacci number.
Fibonacci sequence

- Fibonacci sequence:
 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

- Fibonacci sequence definition:

 (a) The 1st and 2nd Fibonacci numbers are both 1.

 (b) The \(n \)th Fibonacci number is the sum of the \(n-1 \)th Fibonacci number plus the \(n-2 \)th Fibonacci number.
Fibonacci sequence

Part (a) is called the base case -- it defines the simplest possible Fibonacci number, and it prevents the sequence definition from being circular.

Part (b) is the recursive part -- it defines the nth Fibonacci number in terms of other, smaller Fibonacci numbers.

• Fibonacci sequence definition:

 (a) The 1st and 2nd Fibonacci numbers are both 1.
 (b) The nth Fibonacci number is the sum of the n-1th Fibonacci number plus the n-2th Fibonacci number.
Fibonacci sequence

• Note that the recursive part must somehow bring the definition “closer” to the base case.

• It would be useless to have the base case if the recursive part defined the nth number in terms of the $n+1$th and $n+2$th number.

Fibonacci sequence definition:

(a) The 1st and 2nd Fibonacci numbers are both 1.

(b) The nth Fibonacci number is the sum of the $n-1$th Fibonacci number plus the $n-2$th Fibonacci number.
From definition to computation

• Given this recursive definition of Fibonacci numbers, it is straightforward to compute any given Fibonacci number -- a recursive definition often lends itself readily to being translated into code.

Fibonacci sequence definition:

(a) The 1st and 2nd Fibonacci numbers are both 1.

(b) The nth Fibonacci number is the sum of the $n-1$th Fibonacci number plus the $n-2$th Fibonacci number.
From definition to computation

// Fibonacci numbers are defined only for n >= 1
int fibonacci (int n) {
 if (n == 1 || n == 2) {
 return 1;
 } else {
 return fibonacci(n-1) + fibonacci(n-2);
 }
}

• Fibonacci sequence definition:
 (a) The 1st and 2nd Fibonacci numbers are both 1.
 (b) The nth Fibonacci number is the sum of the n-1th Fibonacci number plus the n-2th Fibonacci number.
Factorial

- Another classic recursive mathematical definition is *factorial*.

- Factorial of \(n \) (written \(n! \)):

 (a) If \(n = 0 \), then \(n! \) is 1.

 (b) If \(n > 0 \), then \(n! = n \times (n-1)! \).
Factorial

- Translated into code, this definition becomes:
  ```c
  // Factorial is defined only for n >= 0.
  int factorial (int n) {
    if (n == 0) {
      return 1;
    } else {
      return n * factorial(n-1);
    }
  }
  ```

- Factorial of \(n\) (written \(n!\)):
 (a) If \(n = 0\), then \(n!\) is 1.
 (b) If \(n > 0\), then \(n! = n \times (n-1)!\).
Factorial

• Note that, informally, one sometimes defines factorial of n as “take every number between 1 and n and multiply them together.”

• This is closer to an iterative definition of factorial:

```c
// Factorial is defined only for n >= 0.
int factorial (int n) {
    int product = 1;
    for (int i = 1; i <= n; i++) {
        product *= i;
    }
    return product;
}
```
Iteration versus recursion

• It turns out that, in computer programming, every function that can be computed recursively can also be computed iteratively.

• However, some algorithms and structures can be more easily conceptualized using recursion than iteration.

• Moreover, it is often simpler to write code from a recursive definition than from an iterative definition.

• Translation of recursive definitions to code can be fully automated in some cases.

• The most prominent example is compilers.
Recursive binary search

• Let’s return to our example of searching through an array numbers of sorted integers for a particular targetNum.

• Search algorithm:

```c
// Assume targetNum is always somewhere inside numbers
int search (int[] numbers, int targetNum, int startIdx, int endIdx) {
    int guessIdx = (startIdx + endIdx) / 2;
    if (numbers[guessIdx] == targetNum) {
        return guessIdx; Base case
    } else if (numbers[guessIdx] < targetNum) {
        Search the “right half” of the list for targetNum.
    } else {
        Search the “left half” of the list for targetNum. Recursive part
    }
}
```
Recursive binary search

- Let’s return to our example of searching through an array `numbers` of sorted integers for a particular `targetNum`.

Search algorithm:

```java
// Assume targetNum is always somewhere inside numbers
int search (int[] numbers, int targetNum, int startIdx, int endIdx) {
    int guessIdx = (startIdx + endIdx) / 2;
    if (numbers[guessIdx] == targetNum) { // Base case
        return guessIdx;
    } else if (numbers[guessIdx] < targetNum) {
        return search(numbers, targetNum, guessIdx+1, endIdx);
    } else {
        return search(numbers, targetNum, startIdx, guessIdx-1); // Recursive part
    }
}
```
Recursive binary search

- This recursive algorithm operates by dividing the list in half many times in succession.

- Eventually, the algorithm will either “get lucky” and the “middle element” it picks will equal targetNum, or the sub-list it is searching is of size 1, and the targetNum must be contained in that list.

- The worst-case time-cost of the binary search algorithm is computed based on the maximum number of times the search method would be called recursively.

- Since each search operates on only half the list of its “parent call”, then the worst-case asymptotic time cost on an array of \(n\) elements is \(\log_2(n)\).

 - I.e., the number of times \(n\) can be divided by 2 before the result is \(\leq 1\).
Recursive structures.
Source code as a “recursive structure”

• The source code of a computer program is one of the most commonly used *recursive structures* in computer science.

• Let’s look at examples of recursion that arise when a compiler examines some source code...
Recursion in compilation

• The source code of a compiler is usually generated automatically from a set of recursive definitions.

• Recursive lexical definitions are used to write the portion of the compiler’s source code that can separate a stream of symbols (ASCII characters) into meaningful tokens:

 • Example: \texttt{int x = 14;}
 \begin{itemize}
 \item \texttt{int} is a primitive type.
 \item \texttt{x} is an identifier (variable name).
 \item \texttt{=} is an assignment.
 \item \texttt{14} is a constant
 \item \texttt{;} is a separator
 \end{itemize}
Recursion in compilation

• The source code of a compiler is usually generated automatically from a set of recursive definitions.

• Recursive lexical definitions are used to write the portion of the compiler’s source code that can separate a stream of symbols (ASCII characters) into meaningful tokens:

 • Example: `int x = 14;`
 `int` is a primitive type.
 `x` is an identifier (variable name).
 `=` is an assignment.
 `14` is a constant
 `;` is a separator

When reading each symbol 1-by-1, how does the compiler "know" that 14 is a “constant” and not, say, another variable?
Integer constants: recursive definition

• An integer constant in a Java program can be defined iteratively as “a sequence of 1 or more digits (0-9).”

• However, it can also be defined recursively:
 • Integer constant definition:
 (a) A digit (0-9)
 (b) An integer constant followed by a digit (0-9).
Recursive definitions for programming language compilation are often written in a formal language called Backus-Naur Form (BNF).

Definitions written by BNF can then be analyzed by “compiler compilers” to generate automatically the source code of a compiler.

The compiler source code is then compiled, yielding the compiler itself.

The compiler can then analyze your source code and recognize, for example, a sequence of symbols as an integer constant.
Written in BNF, the recursive definition of a Java integer constant might be:

\[
\begin{align*}
\langle \text{IntConst} \rangle & \ := \ \langle \text{digit} \rangle \ | \ \langle \text{digit} \rangle \langle \text{IntConst} \rangle \\
\langle \text{digit} \rangle & \ := \ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
\end{align*}
\]

IntConst and digit are both non-terminal symbols in BNF.

Non-terminals are defined recursively.

0, 1, 2, ..., 9 are terminal symbols.

Terminals represent the base cases of recursive definitions.

The | symbol means “or” -- e.g., an integer constant is either a single digit or a digit followed by an integer constant.
BNF Derivations

• The character-sequences “82”, “162354”, and “3” are all integer constants according to the definition above.

• “235x1”, “x1”, and “1–2” are not integer constants.

• This is obvious just from visual inspection, but how does the compiler know this based off just the recursive definition?
BNF Derivations

• A string of terminal symbols S satisfies a BNF definition of a non-terminal symbol if you can derive the string from the rules listed in the BNF definition.

• To derive a given string:
 • Start with the non-terminal symbol (e.g., IntConst).
 • At each step, try to replace one non-terminal symbol in the string you have so far with one of its definitions (e.g., $<\text{IntConst}> := <\text{digit}>$, or $<\text{IntConst}> := <\text{digit}> <\text{IntConst}>$).
 • If, by applying these rules, you arrive at the string S, then S satisfies the BNF definition.
BNF Derivation

Let’s apply this algorithm and try to derive the string “163” from the definition of the IntConst non-terminal symbol:

\[
\begin{align*}
<\text{IntConst}> & \implies <\text{digit}> <\text{IntConst}> \implies <\text{digit}> <\text{digit}> <\text{IntConst}> \implies <\text{digit}> <\text{digit}> <\text{digit}> \implies 163 \\
<\text{digit}> & \implies 0|1|2|3|4|5|6|7|8|9
\end{align*}
\]
Checking for IntConst in code

Let’s translate this recursive definition of IntConst into Java code:

```java
boolean isIntConstant (String s) {
    // Is it a single digit?
    if (s.length()==1 && Character.isDigit(s.charAt(0))) {
        return true;
    }
    // Is it a digit followed by an integer literal constant?
    else if (s.length() > 1 && Character.isDigit(s.charAt(0)) &&
            isIntConstant(s.substring(1))) {
        return true;
    }
    // Otherwise, it doesn’t fit the definition!
    else {
        return false;
    }
}
```

“Compiler compilers” create this code automatically from the BNF rules.
Balanced parantheses

- A more interesting example of BNF-in-action is to test whether a string S contains *balanced parentheses*:

- We can define a non-terminal symbol BalancedParen as:

 $$<\text{BalancedParen}> := (<\text{BalancedParen}>) \mid <\text{IntConst}>$$

- Using this BNF definition, we can derive the strings $12, (53), ((1236))$ and $(((2)))$, but we cannot derive the strings $(112$ or $((3))$.

- I.e., there exists *no successive application* of “rules” that starts at BalancedParen and yields $(112$ or $((3))$.
Recursive data structures

- Let’s bring this “recursive machinery” back to the world of data structures.

- The “prototypical” example of a recursive data structures is a tree, but in fact we can define a simple list recursively too:

- A list is either empty, or it is a node, or it is a node followed by another list.
Recursive data structures

- BNF definition of linked list (without dummy nodes):
 - `<LinkedList>` := nothing | `<Node>` | `<Node>` `<LinkedList>`

- By applying the rules of “what it means to be a linked list” many times in succession, we can derive a list of any length ≥ 0.
“Recursive” linked lists

- Derivation of linked list with 4 nodes:
 - `<LinkedList> ==>`
 `<Node> <LinkedList> ==>`
 `<Node> <Node> <LinkedList> ==>`
 `<Node> <Node> <Node> <LinkedList> ==>`
 `<Node> <Node> <Node> <Node>`

Done!
Next lecture

- Next lecture we will look at naturally recursive data structures -- trees and heaps. (A heap is a special kind of tree.)

- Tree:

 - a tree is either a node; or
 - a tree is a node with *children*, where each *child* is a *tree*.

Base case

Recursive part