
CSE 12:
Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Eleven
18 Aug 2011

Thursday, August 18, 2011

Main points from last
lecture.

Thursday, August 18, 2011

Exploiting relations over data
• Simple data structures such as lists store data

without regard to order relations between
elements.

• Lists offer O(1) add, but O(n) find and remove
operations.

• In many applications, the user will want to find more
often than add.

• Even though a user may have “partial
knowledge” (key) of an object, it may need the
find(o) method to obtain the “whole
record” (value).

Thursday, August 18, 2011

Exploiting relations over data
• In Java, binary order relations can be defined between

pairs of elements using the Comparable<T> interface,
which includes the int compareTo (T o) method.

• Exploiting order relations enables us to achieve superior
asymptotic time costs for find/removal operations.

• One prominent example of “accelerating search” is the
binary search algorithm:

• Assumes input array is already sorted.

• Achieves log2(n) worst-case time cost by recursively
dividing the list into two halves and searching only the
relevant half.

Thursday, August 18, 2011

Recursion

• Recursion is a tool for defining mathematical structures
and constructing algorithms.

• Every recursive algorithm/definition contains:

• A self-referential recursive part; and

• A base case to prevent circularity.

• Recursive definitions can be specified in formal
languages like Backus-Naur Form (BNF) to facilitate
automatic generation of code (e.g., “compiler compilers”).

Thursday, August 18, 2011

Recursion
• Recursion is ubiquitous in computer science:

• Binary search executes recursively.

• The input array to binary search is typically sorted using
(recursive) MergeSort or QuickSort.

• Data structures such as trees, and even linked lists, can be
formulated recursively.

• E.g., “a linked list is either a node, or a node followed by
a linked list.”

• Source code itself is a recursive structure.

• Compilers “lex” and “parse” the individual symbols/tokens
of source code using algorithms generated automatically
from recursive definitions of source code structure.

Thursday, August 18, 2011

Binary search
• Binary search is a recursive algorithm for finding a

target value in a sorted array of data in log2(n)
(worst-case) time.

• Binary search requires a binary order relation to
be defined on all the elements.

• For primitive numeric types like int, double, etc.,
we can use > or >= to compare data.

• For objects, we can use the int compareTo(T o)
method of the Comparable<T> interface.

Thursday, August 18, 2011

Recursive data structures
• Despite the log2(n) efficiency of binary search, its utility

on lists is limited:

• Binary search would be very efficient on a linked list
because of the lack of ability to “jump” to an
arbitrary node.

• Binary search on array-based lists is efficient;
however, the array must be maintained in sorted order.

• If the user adds a new element, the “correct spot”
must be located and all subsequent elements
“shifted over”.

Thursday, August 18, 2011

Recursive data structures

• It would be desirable to create data structure that
offer efficient implementations of both add(o) and
find(o)/remove(o).

• Over the next few lectures we will cover two such
structures -- heaps and binary search trees.

• Both these ADTs are based on binary trees, which
are non-linear recursive data structures.

Thursday, August 18, 2011

Binary Trees

Thursday, August 18, 2011

Trees
• A tree is an interconnected set of nodes that are organized

in a hierarchy.

• There is one node labeled the root of the tree.

• Every node except the root has exactly 1 parent node.

• Each node may have 0 or more child nodes (“children”).

• Cycles are prohibited -- only one path may exist
between any pair of nodes.

• Parents and children are connected by edges.
Root node Empty tree

Example trees
Thursday, August 18, 2011

Trees

• A node with no children is called a leaf.

• A node with at least one child is called an internal node.

Internal nodes

Leaf nodes

Thursday, August 18, 2011

Depth, height, and level
• Depth (iterative definition):

• The depth of a node N is the number
of edges between N and the root.

• The root has depth 0.

• Depth (recursive definition):

• The depth of a node n is 0 for the
root; or

• 1 + the depth of n parent node.

Base case

Recursive part

Depth

0

1

2

Thursday, August 18, 2011

Depth, height, and level

• The height of a tree T is the
maximum depth of any
node in the tree.

• Equivalent to length of
longest path from the
root to any leaf.

• A level of the tree consists
of all the nodes at a
particular depth.

Depth

0

1

2
Height

= 2

Level 1

Thursday, August 18, 2011

Sub-trees
• Each node in a tree is the root of its own sub-tree.

• The gray boxes below show all possible sub-
trees.

Thursday, August 18, 2011

Binary trees

• A binary tree is a tree in which every node
has at most 2 children.

Examples of binary trees Not a binary tree

Thursday, August 18, 2011

Binary tree properties

• A binary tree of height h is full if every node at depth
d < h has 2 children.

Examples of full binary trees Not a full binary tree

Thursday, August 18, 2011

Binary tree properties

• A full binary tree with height h has 2h leaf nodes and
2h+1 -1 nodes in total.

• Conversely, a full binary tree with n nodes total has
height log2(n+1)-1.

Thursday, August 18, 2011

Binary tree properties
• More generally, a binary tree T (not necessarily full)

with n nodes has:

• Minimum height log2(n+1) -1 (when T is full).

• Maximum height n-1 (when T is just a “chain” of
nodes in which no node has more than 1 child).

• Why important?

• The time cost of important tree operations such as
find(o) depend on the average/maximum height of
an arbitrary node in the tree.

Thursday, August 18, 2011

Tree nodes

• Like nodes in a linked list, nodes in a tree
contain a data element (otherwise, trees
would be useless for ADTs).

• However, nodes in a tree contain more
than 2 “links” (edges) to other nodes.

• One link to parent node.

• One link to each child node.

Thursday, August 18, 2011

Node class for general trees
• From this description, we can create a Node

class for use in general trees:

class Node<T> {
 Node<T> _parent; // link to parent node
 Node<T>[] _children; // links to children
 int _numChildren;
 T _data; // data element the node stores
}

• Alternatively, we can used a linked list to manage
the child Nodes:

class Node<T> {
 Node<T> _parent; // link to parent node
 LinkedList<T> _children; // links to children
 T _data; // data element the node stores
}

Thursday, August 18, 2011

Node class for binary trees
• From binary trees, we can define a Node more simply:

class Node<T> {
 Node<T> _parent;
 Node<T> _leftChild, _rightChild;
 T _data;
}

• We can then begin creating Nodes and assembling a tree:

final Node<String> root = new Node<String>();
root._leftChild = new Node<String>();
root._rightChild = new Node<String>();
root._rightChild._leftChild = new Node<String>();

Defined to be null if child does not exist.

Thursday, August 18, 2011

Node class for binary trees
• From binary trees, we can define a Node more simply:

class Node<T> {
 Node<T> _parent;
 Node<T> _leftChild, _rightChild;
 T _data;
}

• We can then begin creating Nodes and assembling a tree:

final Node<String> root = new Node<String>();
root._leftChild = new Node<String>();
root._rightChild = new Node<String>();
root._rightChild._leftChild = new Node<String>();

Thursday, August 18, 2011

Node class for binary trees
• From binary trees, we can define a Node more simply:

class Node<T> {
 Node<T> _parent;
 Node<T> _leftChild, _rightChild;
 T _data;
}

• We can then begin creating Nodes and assembling a tree:

final Node<String> root = new Node<String>();
root._leftChild = new Node<String>();
root._rightChild = new Node<String>();
root._rightChild._leftChild = new Node<String>();

Thursday, August 18, 2011

Node class for binary trees
• From binary trees, we can define a Node more simply:

class Node<T> {
 Node<T> _parent;
 Node<T> _leftChild, _rightChild;
 T _data;
}

• We can then begin creating Nodes and assembling a tree:

final Node<String> root = new Node<String>();
root._leftChild = new Node<String>();
root._rightChild = new Node<String>();
root._rightChild._leftChild = new Node<String>();

Thursday, August 18, 2011

Node class for binary trees
• From binary trees, we can define a Node more simply:

class Node<T> {
 Node<T> _parent;
 Node<T> _leftChild, _rightChild;
 T _data;
}

• We can then begin creating Nodes and assembling a tree:

final Node<String> root = new Node<String>();
root._leftChild = new Node<String>();
root._rightChild = new Node<String>();
root._rightChild._leftChild = new Node<String>();

Thursday, August 18, 2011

Tree operations
• We will consider three fundamental operations:

• add (o, parent, leftOrRight) -- add a new node
(containing the object o) as the leftOrRight child of the
specified parent.

• find (o) -- find and return the node containing data o.

• remove (o) -- remove the node containing the specified data.

• Note that these operations will be used internally by ADTs we
develop based on trees.

• This is why we find and return the node instead of the data
contained inside the node.

• They will not be exposed to the user of, say, the Heap ADT,
which is built using a binary tree.

Thursday, August 18, 2011

Adding a node

• Given the parent node, it is straightforward
to add a new node that is either the left or
right child of the parent:

void add (T o, Node<T> parent,
 ChildType leftOrRight) {
 final Node<T> node = new Node<T>();
 node._data = o;
 if (leftOrRight == ChildType.LEFT_CHILD) {
 parent._leftChild = node;
 } else {
 parent._rightChild = node;
 }
}

Thursday, August 18, 2011

Adding a node

• Given the parent node, it is straightforward
to add a new node that is either the left or
right child of the parent:

void add (T o, Node<T> parent,
 ChildType leftOrRight) {
 final Node<T> node = new Node<T>();
 node._data = o;
 if (leftOrRight == ChildType.LEFT_CHILD) {
 parent._leftChild = node;
 } else {
 parent._rightChild = node;
 }
}

A Java enumeration type.

Thursday, August 18, 2011

Java enumerations
• Enumerations are types that contain only a few

possible values.

• Each value in the enumeration can be given a
meaningful name,.

• If we define an enumeration type called ChildType:
enum ChildType {
 LEFT_CHILD, RIGHT_CHILD
}

• ...then we can declare and use a variable of that
type:
ChildType leftOrRight = ChildType.RIGHT_CHILD;

Thursday, August 18, 2011

Java enumerations
• Instead of defining an enumeration type, one could

instead just use an integer and “assign” meaning to
these values, e.g.:
int leftOrRight;
leftOrRight = 1; // 1 indicates left child
leftOrRight = 2; // 2 indicates right child
...
if (leftOrRight == 2) {
 // Do something with the right child
}

• But what if leftOrRight was somehow set to an
invalid value?

• With enumerations, the Java compiler prevents this
possibility from ever happening.
ChildType leftOrRight = 3; // Won’t compile

Thursday, August 18, 2011

Finding a node
• Finding a node in a binary tree is best implemented

using recursion. We’ll let node represent the root of
the sub-tree we are currently searching.
Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (_leftChild != null &&
 (node = find(_leftChild, o)) != null) {
 return node;
 } else if (_rightChild != null &&
 (node = find(_rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

Combined assignment to
node and comparison to null.
This is compact notation, but
it sometimes can also yield
more readable code.

Thursday, August 18, 2011

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (_leftChild != null &&
 (node = find(_leftChild, o)) != null) {
 return node;
 } else if (_rightChild != null &&
 (node = find(_rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

a

b c

e

f

root: a

No

Thursday, August 18, 2011

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (_leftChild != null &&
 (node = find(_leftChild, o)) != null) {
 return node;
 } else if (_rightChild != null &&
 (node = find(_rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: a
a

b c

e

f

Thursday, August 18, 2011

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (_leftChild != null &&
 (node = find(_leftChild, o)) != null) {
 return node;
 } else if (_rightChild != null &&
 (node = find(_rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: b

No

a

b c

e

f

Thursday, August 18, 2011

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (_leftChild != null &&
 (node = find(_leftChild, o)) != null) {
 return node;
 } else if (_rightChild != null &&
 (node = find(_rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: b
a

b c

e

f
No

Thursday, August 18, 2011

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (_leftChild != null &&
 (node = find(_leftChild, o)) != null) {
 return node;
 } else if (_rightChild != null &&
 (node = find(_rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: b
a

b c

e

f

No

Thursday, August 18, 2011

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (_leftChild != null &&
 (node = find(_leftChild, o)) != null) {
 return node;
 } else if (_rightChild != null &&
 (node = find(_rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: b
a

b c

e

f

Thursday, August 18, 2011

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (_leftChild != null &&
 (node = find(_leftChild, o)) != null) {
 return node;
 } else if (_rightChild != null &&
 (node = find(_rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: a
a

b c

e

f

Thursday, August 18, 2011

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (_leftChild != null &&
 (node = find(_leftChild, o)) != null) {
 return node;
 } else if (_rightChild != null &&
 (node = find(_rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: c
a

b c

e

f

No

Thursday, August 18, 2011

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (_leftChild != null &&
 (node = find(_leftChild, o)) != null) {
 return node;
 } else if (_rightChild != null &&
 (node = find(_rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: c
a

b c

e

f

Thursday, August 18, 2011

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (_leftChild != null &&
 (node = find(_leftChild, o)) != null) {
 return node;
 } else if (_rightChild != null &&
 (node = find(_rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: e
a

b c

e

f

YES!!!!!!!!!!!!!!!!!!!!!!!!!!!

Thursday, August 18, 2011

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (_leftChild != null &&
 (node = find(_leftChild, o)) != null) {
 return node;
 } else if (_rightChild != null &&
 (node = find(_rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: e
a

b c

e

f

The returned node will “propagate
back up” the recursive calls.

Thursday, August 18, 2011

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (_leftChild != null &&
 (node = find(_leftChild, o)) != null) {
 return node;
 } else if (_rightChild != null &&
 (node = find(_rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: c
a

b c

e

f

Thursday, August 18, 2011

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (_leftChild != null &&
 (node = find(_leftChild, o)) != null) {
 return node;
 } else if (_rightChild != null &&
 (node = find(_rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: a
a

b c

e

f

Thursday, August 18, 2011

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (_leftChild != null &&
 (node = find(_leftChild, o)) != null) {
 return node;
 } else if (_rightChild != null &&
 (node = find(_rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

a

b c

e

f

Done!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!

Thursday, August 18, 2011

Removing a node
• How to implement the remove(o) operation

depends on whether the node containing o is
a leaf node or an internal node.

• We can use the find method to locate the
correct node.

• If the node is a leaf, then we just “snip” it off
from its parent, e.g.:
node._parent._rightChild = null;

node

Thursday, August 18, 2011

Removing a node
• How to implement the remove(o) operation

depends on whether the node containing o is
a leaf node or an internal node.

• We can use the find method to locate the
correct node.

• If the node is a leaf, then we just “snip” it off
from its parent, e.g.:
node._parent._rightChild = null;

Thursday, August 18, 2011

Removing a node
• If, however, the node is an internal node, then

“snipping” it off would remove the whole
sub-tree.

• To just remove the node but not its
children, we need to replace the internal
node with some other node.

• Instead of actually removing and replacing n,
we can instead just replace the data it stores
with the data of another leaf node (e.g., l).

• We can then remove the “old” l.

n

l

Thursday, August 18, 2011

Removing a node
• If, however, the node is an internal node, then

“snipping” it off would remove the whole
sub-tree.

• To just remove the node but not its
children, we need to replace the internal
node with some other node.

• Instead of actually removing and replacing n,
we can instead just replace the data it stores
with the data of another leaf node (e.g., l).

• We can then remove the “old” l.

l

Thursday, August 18, 2011

Array-based binary
trees.

Thursday, August 18, 2011

Array-based binary trees
• Just as lists can be implemented

by either a linked chain of
Nodes or an array, a binary tree
can be implemented as a tree
of Nodes or an array as well.

• Each “node” in the tree will be
assigned a unique index at
which its data should be
stored.

• Given the index of a particular
“node”, the index of its parent,
and the indices of its children,
can be easily computed.

a b c d e f g

0 1 2 3 4 5 6

a

b c

d e f g

Idx 0

Idx 1 Idx 2

Idx 3 Idx 4 Idx 5 Idx 6

Thursday, August 18, 2011

Array-based binary trees
• The index(n) of a node n with

parent p is:

• 0 if n is the root node.

• 2*index(p)+1 if n is left child of p.

• 2*index(p)+2 if n is right child.

• The parentIndex(idx) of a node
stored at idx is (idx-1)/2.

• Examples:
index(c) = 2*index(a)+2 = 2*0+2 =1
parentIndex(4) = (4-1)/2 = 1.5 = 1.

a b c d e f g

0 1 2 3 4 5 6

a

b c

d e f g

Idx 0

Idx 1 Idx 2

Idx 3 Idx 4 Idx 5 Idx 6

Thursday, August 18, 2011

Array-based binary trees

• Note that this array-based representation applies
only to complete binary trees.

• A binary tree is complete if every level of the tree
is completely filled except possibly the last and the
last level is (partially) filled from left to right.

OK OK Not OK

Thursday, August 18, 2011

Array-based binary trees

• Even though the data are
being stored in a regular
Java array, their locations in
the array still encode a tree
structure among them.

• This means that binary
tree-based algorithms we
develop can still offer
time-cost advantages
over linear lists.

a b c d e f g

0 1 2 3 4 5 6

a

b c

d e f g

Idx 0

Idx 1 Idx 2

Idx 3 Idx 4 Idx 5 Idx 6

Thursday, August 18, 2011

Adding a node

a b c d

0 1 2 3 4 5 6

a

b c

d

Idx 0

Idx 1 Idx 2

Idx 3

_numNodes: 4

• Given that the binary tree must
be complete, it is only valid to add
a node n to be the next child on
the last level of the tree.

• The index into the array of where
this “next child” should be stored
is always just _numNodes, where
_numNodes is the current number
of nodes in the tree.

Thursday, August 18, 2011

Adding a node

a b c d e

0 1 2 3 4 5 6

a

b c

d e

Idx 0

Idx 1 Idx 2

Idx 3 Idx 4

_numNodes: 5

• Given that the binary tree must
be complete, it is only valid to add
a node n to be the next child on
the last level of the tree.

• The index into the array of where
this “next child” should be stored
is always just _numNodes, where
_numNodes is the current number
of nodes in the tree.

Thursday, August 18, 2011

Removing a node

• Similarly, it is only valid to
remove the right-most child
of the last level of the tree.

• All we must do is
decrement _numNodes to
indicate that the “slot” in
the array of the removed
node is no longer valid.

a b c d e

0 1 2 3 4 5 6

a

b c

d e

Idx 0

Idx 1 Idx 2

Idx 3 Idx 4

_numNodes: 5

Thursday, August 18, 2011

Removing a node

• Similarly, it is only valid to
remove the right-most child
of the last level of the tree.

• All we must do is
decrement _numNodes to
indicate that the “slot” in
the array of the removed
node is no longer valid.

a b c d

0 1 2 3 4 5 6

a

b c

d

Idx 0

Idx 1 Idx 2

Idx 3

_numNodes: 4

Thursday, August 18, 2011

Finding a node
• To find the index of a node n whose data element

equals o:
int find (int rootIdx, T o) {
 if (_nodeArray[rootIdx].equals(o)) {
 return rootIdx;
 }

 int idx;
 if (leftChild(rootIdx) < _numNodes &&
 (idx = find(leftChild(rootIdx), o)) >= 0) {
 return idx;
 } else if (rightChild(rootIdx) < _numNodes &&
 (idx = find(rightChild(rootIdx), o)) >= 0) {
 return idx;
 } else {
 return -1;
 }
}

Make sure each child exists before recursing!

Helper methods to determine
index of left and right child nodes.

Thursday, August 18, 2011

Binary trees to
accelerate search.

Thursday, August 18, 2011

Binary trees to
accelerate search

• We have now constructed considerable
“infrastructure” for building binary trees, using
either “linked nodes” or a Java array for the tree’s
underlying storage.

• Trees are useful in their own right for representing
hierarchical structures, e.g., genealogical data.

• However, for the moment we are interested in how
they can store and accelerate search of data on which
an ordering relation is defined.

Thursday, August 18, 2011

Binary trees to
accelerate search

• Heaps and binary search trees are two ADTs based
on binary trees that accelerate search.

• A heap offers fast access to the largest element in a
collection of related objects.

• O(1) worst-case time cost for findLargest.

• O(log n) worst-case time cost for removeLargest.

• O(log n) worst-case time cost for add.

• O(n) worst-case time-cost for find and remove.

Thursday, August 18, 2011

Binary trees to
accelerate search

• A binary search tree (BST) offers:

• O(log n) average-case time cost for add, find,
remove, and findLargest.

• O(n) worst-case time cost for add, find, remove, and
findLargest.

• AVL trees and red-black trees are more complicated,
but they offer:

• O(log n) worst-case time cost for add, find, remove,
and findLargest.

Thursday, August 18, 2011

Why findLargest?
• Why would we want to find the

largest data element stored in a
container?

• The findLargest method is
required by priority queues.

• A priority queue is a queue in
which elements are dequeued
not in FIFO order, but instead
in order of highest-to-lowest
priority.

• A priority queue is typically
implemented using a heap.

Highest
priority person

Taken from Paul Kube’s slides.

Thursday, August 18, 2011

Heaps.

Thursday, August 18, 2011

Heaps
• A max-heap is an ADT for storing data so that the largest

element (according to some binary order relation) can
always be found and removed quickly.

• A min-heap is defined analogously for the smallest element.

• Internally, a heap is a complete binary tree which satisfies the
heap condition:

• The root of every sub-tree is no smaller than any node in
the sub-tree. (For max-heap).

• The root of every sub-tree is no larger than any node in
the sub-tree. (For min-heap).

• This ensures that, to implement findLargest/findSmallest,
we can always just return the root node of the tree.

Thursday, August 18, 2011

Heaps
• A max-heap has the following interface:

// All operations must preserve the heap condition.
interface MaxHeap {
 // Adds o to the heap.
 void add (T o);
 // Removes the node whose data element equals o.
 void remove (T o);
 // Removes and returns the largest node in the heap.
 T removeLargest ();
 // Returns the largest node in the heap.
 T findLargest ();
 // Finds and returns the node whose data element
 // equals o.
 T find (T o);
 // Returns the number of data stored in the heap.
 int size ();
}

Thursday, August 18, 2011

Implementing heaps

• Since heaps are anyway a complete binary
tree, it is convenient and efficient to
implement them using an array.

• However, they could also be implemented
using linked nodes.

• The challenge when implementing a heap is
to preserve the heap property upon every
mutation to the heap (add/remove).

Thursday, August 18, 2011

Adding a node to a heap
• In order to add a new element o to a max-heap while

preserving the heap condition, we execute the following
procedure:

• Add a new node n containing o to the last level of the
tree (ensure completeness of the tree).

• This may violate the tree’s heap condition because o may
be larger than one of its parents.

• We then “fix” the heap by “swapping” node n with its
parent p.

• We repeat this process -- known as bubbling up -- as
many times as necessary until the tree is a heap again.

Thursday, August 18, 2011

Adding a node to a heap
• Consider the heap to the

right. (Notice that it satisfies
the heap condition). 5

4 2

3 1

Thursday, August 18, 2011

Adding a node to a heap
• Consider the heap to the

right. (Notice that it satisfies
the heap condition).

• Suppose we add value 8 to the
bottom-level of the heap.

• The tree no longer satisfies
the heap condition.

5

4 2

3 1 8

2 is smaller than one of the
nodes in its sub-tree!

Thursday, August 18, 2011

Adding a node to a heap
• Consider the heap to the

right. (Notice that it satisfies
the heap condition).

• Suppose we add value 8 to the
bottom-level of the heap.

• The tree no longer satisfies
the heap condition.

• We have to “bubble up” the
8 we just added to restore
the heap condition.

5

4 2

3 1 8

Thursday, August 18, 2011

Adding a node to a heap
• Consider the heap to the

right. (Notice that it satisfies
the heap condition).

• Suppose we add value 8 to the
bottom-level of the heap.

• The tree no longer satisfies
the heap condition.

• We have to “bubble up” the
8 we just added to restore
the heap condition.

5

4

3 1 2

8

Not done yet -- 5 is still
smaller than 8.

Thursday, August 18, 2011

Adding a node to a heap
• Consider the heap to the

right. (Notice that it satisfies
the heap condition).

• Suppose we add value 8 to the
bottom-level of the heap.

• The tree no longer satisfies
the heap condition.

• We have to “bubble up” the
8 we just added to restore
the heap condition.

8

4

3 1 2

5

Now it is a heap again!

Thursday, August 18, 2011

Adding a node to a heap
• Consider the heap to the

right. (Notice that it satisfies
the heap condition).

• Suppose we add value 8 to the
bottom-level of the heap.

• The tree no longer satisfies
the heap condition.

• We have to “bubble up” the
8 we just added to restore
the heap condition.

• Done!

8

4

3 1 2

5

Thursday, August 18, 2011

Adding a node to a heap

• We can implement the add(o) method as:
void add (T o) {
 _nodeArray[_numNodes] = o;
 _numNodes++;
 bubbleUp(_numNodes - 1);
}

• We must then also implement bubbleUp(idx):
void bubbleUp (int idx) {
 If node at idx is “larger” than its parent:
 Swap data in the node and its parent;
 Recursively bubbleUp(parentIdx(idx));
}

Thursday, August 18, 2011

Adding a node to a heap

• Alternatively, we can write an iterative version of
bubbleUp(idx):

void bubbleUp (int idx) {
 While node at idx is “larger” than its parent:
 Swap data in the node and its parent;
 Set idx to be parentIdx(idx);
}

Thursday, August 18, 2011

Next lecture

• Finding and removing elements.

• “Trickling down” a node.

Thursday, August 18, 2011

