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Exploiting relations over data
• Simple data structures such as lists store data 

without regard to order relations between 
elements.

• Lists offer O(1) add, but O(n) find and remove 
operations.

• In many applications, the user will want to find more 
often than add.

• Even though a user may have “partial 
knowledge” (key) of an object, it may need the 
find(o) method to obtain the “whole 
record” (value).
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Exploiting relations over data
• In Java, binary order relations can be defined between 

pairs of elements using the Comparable<T> interface, 
which includes the int compareTo (T o) method.

• Exploiting order relations enables us to achieve superior 
asymptotic time costs for find/removal operations.

• One prominent example of “accelerating search” is the 
binary search algorithm:

• Assumes input array is already sorted.

• Achieves log2(n) worst-case time cost by recursively 
dividing the list into two halves and searching only the 
relevant half.
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Recursion

• Recursion is a tool for defining mathematical structures 
and constructing algorithms.

• Every recursive algorithm/definition contains:

• A self-referential recursive part; and 

• A base case to prevent circularity.

• Recursive definitions can be specified in formal 
languages like Backus-Naur Form (BNF) to facilitate 
automatic generation of code (e.g., “compiler compilers”).
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Recursion
• Recursion is ubiquitous in computer science:

• Binary search executes recursively.

• The input array to binary search is typically sorted using 
(recursive) MergeSort or QuickSort.

• Data structures such as trees, and even linked lists, can be 
formulated recursively.

• E.g., “a linked list is either a node, or a node followed by 
a linked list.”

• Source code itself is a recursive structure.

• Compilers “lex” and “parse” the individual symbols/tokens 
of source code using algorithms generated automatically 
from recursive definitions of source code structure. 
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Binary search
• Binary search is a recursive algorithm for finding a 

target value in a sorted array of data in log2(n) 
(worst-case) time.

• Binary search requires a binary order relation to 
be defined on all the elements.

• For primitive numeric types like int, double, etc., 
we can use > or >= to compare data.

• For objects, we can use the int compareTo(T o) 
method of the Comparable<T> interface.
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Recursive data structures
• Despite the log2(n) efficiency of binary search, its utility 

on lists is limited:

• Binary search would be very efficient on a linked list 
because of the lack of ability to “jump” to an 
arbitrary node.

• Binary search on array-based lists is efficient; 
however, the array must be maintained in sorted order.

• If the user adds a new element, the “correct spot” 
must be located and all subsequent elements 
“shifted over”.
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Recursive data structures

• It would be desirable to create data structure that 
offer efficient implementations of both add(o) and 
find(o)/remove(o).

• Over the next few lectures we will cover two such 
structures -- heaps and binary search trees.

• Both these ADTs are based on binary trees, which 
are non-linear recursive data structures.
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Binary Trees
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Trees
• A tree is an interconnected set of nodes that are organized 

in a hierarchy.

• There is one node labeled the root of the tree.

• Every node except the root has exactly 1 parent node.

• Each node may have 0 or more child nodes (“children”).

• Cycles are prohibited -- only one path may exist 
between any pair of nodes.

• Parents and children are connected by edges.
Root node Empty tree

Example trees
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Trees

• A node with no children is called a leaf.

• A node with at least one child is called an internal node.

Internal nodes

Leaf nodes
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Depth, height, and level
• Depth (iterative definition):

• The depth of a node N is the number 
of edges between N and the root.

• The root has depth 0.

• Depth (recursive definition):

• The depth of a node n is 0 for the 
root; or

• 1 + the depth of n parent node.

Base case

Recursive part

Depth

0

1

2
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Depth, height, and level

• The height of a tree T is the 
maximum depth of any 
node in the tree.

• Equivalent to length of 
longest path from the 
root to any leaf.

• A level of the tree consists 
of all the nodes at a 
particular depth.

Depth

0

1

2
Height 

= 2

Level 1
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Sub-trees
• Each node in a tree is the root of its own sub-tree.

• The gray boxes below show all possible sub-
trees.
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Binary trees

• A binary tree is a tree in which every node 
has at most 2 children.

Examples of binary trees Not a binary tree
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Binary tree properties

• A binary tree of height h is full if every node at depth 
d < h has 2 children.

Examples of full binary trees Not a full binary tree
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Binary tree properties

• A full binary tree with height h has 2h leaf nodes and 
2h+1 -1 nodes in total.

• Conversely, a full binary tree with n nodes total has 
height log2(n+1)-1.
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Binary tree properties
• More generally, a binary tree T (not necessarily full) 

with n nodes has:

• Minimum height log2(n+1) -1 (when T is full).

• Maximum height n-1 (when T is just a “chain” of 
nodes in which no node has more than 1 child).

• Why important?

• The time cost of important tree operations such as 
find(o) depend on the average/maximum height of 
an arbitrary node in the tree.
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Tree nodes

• Like nodes in a linked list, nodes in a tree 
contain a data element (otherwise, trees 
would be useless for ADTs).

• However, nodes in a tree contain more 
than 2 “links” (edges) to other nodes.

• One link to parent node.

• One link to each child node.
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Node class for general trees
• From this description, we can create a Node 

class for use in general trees:

class Node<T> {
  Node<T> _parent;  // link to parent node
  Node<T>[] _children;  // links to children
  int _numChildren;
  T _data;  // data element the node stores
}

• Alternatively, we can used a linked list to manage 
the child Nodes:

class Node<T> {
  Node<T> _parent;  // link to parent node
  LinkedList<T> _children;  // links to children
  T _data;  // data element the node stores
}
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Node class for binary trees
• From binary trees, we can define a Node more simply:

class Node<T> {
  Node<T> _parent;
  Node<T> _leftChild, _rightChild;
  T _data;
}

• We can then begin creating Nodes and assembling a tree:

final Node<String> root = new Node<String>();
root._leftChild = new Node<String>();
root._rightChild = new Node<String>();
root._rightChild._leftChild = new Node<String>();

Defined to be null if child does not exist.
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Node class for binary trees
• From binary trees, we can define a Node more simply:

class Node<T> {
  Node<T> _parent;
  Node<T> _leftChild, _rightChild;
  T _data;
}

• We can then begin creating Nodes and assembling a tree:

final Node<String> root = new Node<String>();
root._leftChild = new Node<String>();
root._rightChild = new Node<String>();
root._rightChild._leftChild = new Node<String>();
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Node class for binary trees
• From binary trees, we can define a Node more simply:

class Node<T> {
  Node<T> _parent;
  Node<T> _leftChild, _rightChild;
  T _data;
}

• We can then begin creating Nodes and assembling a tree:

final Node<String> root = new Node<String>();
root._leftChild = new Node<String>();
root._rightChild = new Node<String>();
root._rightChild._leftChild = new Node<String>();
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Node class for binary trees
• From binary trees, we can define a Node more simply:

class Node<T> {
  Node<T> _parent;
  Node<T> _leftChild, _rightChild;
  T _data;
}

• We can then begin creating Nodes and assembling a tree:

final Node<String> root = new Node<String>();
root._leftChild = new Node<String>();
root._rightChild = new Node<String>();
root._rightChild._leftChild = new Node<String>();
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Node class for binary trees
• From binary trees, we can define a Node more simply:

class Node<T> {
  Node<T> _parent;
  Node<T> _leftChild, _rightChild;
  T _data;
}

• We can then begin creating Nodes and assembling a tree:

final Node<String> root = new Node<String>();
root._leftChild = new Node<String>();
root._rightChild = new Node<String>();
root._rightChild._leftChild = new Node<String>();
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Tree operations
• We will consider three fundamental operations:

• add (o, parent, leftOrRight) -- add a new node 
(containing the object o) as the leftOrRight child of the 
specified parent.

• find (o) -- find and return the node containing data o.

• remove (o) -- remove the node containing the specified data.

• Note that these operations will be used internally by ADTs we 
develop based on trees.

• This is why we find and return the node instead of the data 
contained inside the node.

• They will not be exposed to the user of, say, the Heap ADT, 
which is built using a binary tree.
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Adding a node

• Given the parent node, it is straightforward 
to add a new node that is either the left or 
right child of the parent:

void add (T o, Node<T> parent,
          ChildType leftOrRight) {
  final Node<T> node = new Node<T>();
  node._data = o;
  if (leftOrRight == ChildType.LEFT_CHILD) {
    parent._leftChild = node;
  } else {
    parent._rightChild = node;
  }
}
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Adding a node

• Given the parent node, it is straightforward 
to add a new node that is either the left or 
right child of the parent:

void add (T o, Node<T> parent,
          ChildType leftOrRight) {
  final Node<T> node = new Node<T>();
  node._data = o;
  if (leftOrRight == ChildType.LEFT_CHILD) {
    parent._leftChild = node;
  } else {
    parent._rightChild = node;
  }
}

A Java enumeration type.
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Java enumerations
• Enumerations are types that contain only a few 

possible values.

• Each value in the enumeration can be given a 
meaningful name,.

• If we define an enumeration type called ChildType:
enum ChildType {
  LEFT_CHILD, RIGHT_CHILD
}

• ...then we can declare and use a variable of that 
type:
ChildType leftOrRight = ChildType.RIGHT_CHILD;
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Java enumerations
• Instead of defining an enumeration type, one could 

instead just use an integer and “assign” meaning to 
these values, e.g.:
int leftOrRight;
leftOrRight = 1;  // 1 indicates left child
leftOrRight = 2;  // 2 indicates right child
...
if (leftOrRight == 2) {
  // Do something with the right child
}

• But what if leftOrRight was somehow set to an 
invalid value?

• With enumerations, the Java compiler prevents this 
possibility from ever happening.
ChildType leftOrRight = 3;  // Won’t compile
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Finding a node
• Finding a node in a binary tree is best implemented 

using recursion. We’ll let node represent the root of 
the sub-tree we are currently searching.
Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (_leftChild != null &&
      (node = find(_leftChild, o)) != null) {
    return node;
  } else if (_rightChild != null &&
      (node = find(_rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

Combined assignment to 
node and comparison to null. 
This is compact notation, but 
it sometimes can also yield 
more readable code.
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (_leftChild != null &&
      (node = find(_leftChild, o)) != null) {
    return node;
  } else if (_rightChild != null &&
      (node = find(_rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

a

b c

e

f

root: a

No
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (_leftChild != null &&
      (node = find(_leftChild, o)) != null) {
    return node;
  } else if (_rightChild != null &&
      (node = find(_rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: a
a

b c

e

f
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (_leftChild != null &&
      (node = find(_leftChild, o)) != null) {
    return node;
  } else if (_rightChild != null &&
      (node = find(_rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: b

No

a

b c

e

f
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (_leftChild != null &&
      (node = find(_leftChild, o)) != null) {
    return node;
  } else if (_rightChild != null &&
      (node = find(_rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: b
a

b c

e

f
No
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (_leftChild != null &&
      (node = find(_leftChild, o)) != null) {
    return node;
  } else if (_rightChild != null &&
      (node = find(_rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: b
a

b c

e

f

No
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (_leftChild != null &&
      (node = find(_leftChild, o)) != null) {
    return node;
  } else if (_rightChild != null &&
      (node = find(_rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: b
a

b c

e

f
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (_leftChild != null &&
      (node = find(_leftChild, o)) != null) {
    return node;
  } else if (_rightChild != null &&
      (node = find(_rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: a
a

b c

e

f
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (_leftChild != null &&
      (node = find(_leftChild, o)) != null) {
    return node;
  } else if (_rightChild != null &&
      (node = find(_rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: c
a

b c

e

f

No
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (_leftChild != null &&
      (node = find(_leftChild, o)) != null) {
    return node;
  } else if (_rightChild != null &&
      (node = find(_rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: c
a

b c

e

f
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (_leftChild != null &&
      (node = find(_leftChild, o)) != null) {
    return node;
  } else if (_rightChild != null &&
      (node = find(_rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: e
a

b c

e

f

YES!!!!!!!!!!!!!!!!!!!!!!!!!!!
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (_leftChild != null &&
      (node = find(_leftChild, o)) != null) {
    return node;
  } else if (_rightChild != null &&
      (node = find(_rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: e
a

b c

e

f

The returned node will “propagate 
back up” the recursive calls.

Thursday, August 18, 2011



Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (_leftChild != null &&
      (node = find(_leftChild, o)) != null) {
    return node;
  } else if (_rightChild != null &&
      (node = find(_rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: c
a

b c

e

f
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (_leftChild != null &&
      (node = find(_leftChild, o)) != null) {
    return node;
  } else if (_rightChild != null &&
      (node = find(_rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: a
a

b c

e

f
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (_leftChild != null &&
      (node = find(_leftChild, o)) != null) {
    return node;
  } else if (_rightChild != null &&
      (node = find(_rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

a

b c

e

f

Done!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
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Removing a node
• How to implement the remove(o) operation 

depends on whether the node containing o is 
a leaf node or an internal node.

• We can use the find method to locate the 
correct node.

• If the node is a leaf, then we just “snip” it off 
from its parent, e.g.:
node._parent._rightChild = null;

node
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Removing a node
• How to implement the remove(o) operation 

depends on whether the node containing o is 
a leaf node or an internal node.

• We can use the find method to locate the 
correct node.

• If the node is a leaf, then we just “snip” it off 
from its parent, e.g.:
node._parent._rightChild = null;
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Removing a node
• If, however, the node is an internal node, then 

“snipping” it off would remove the whole 
sub-tree.

• To just remove the node but not its 
children, we need to replace the internal 
node with some other node.

• Instead of actually removing and replacing n, 
we can instead just replace the data it stores 
with the data of another leaf node (e.g., l).

• We can then remove the “old” l.

n

l
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Removing a node
• If, however, the node is an internal node, then 

“snipping” it off would remove the whole 
sub-tree.

• To just remove the node but not its 
children, we need to replace the internal 
node with some other node.

• Instead of actually removing and replacing n, 
we can instead just replace the data it stores 
with the data of another leaf node (e.g., l).

• We can then remove the “old” l.

l
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Array-based binary 
trees.
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Array-based binary trees
• Just as lists can be implemented 

by either a linked chain of 
Nodes or an array, a binary tree 
can be implemented as a tree 
of Nodes or an array as well.

• Each “node” in the tree will be 
assigned a unique index at 
which its data should be 
stored.

• Given the index of a particular 
“node”, the index of its parent, 
and the indices of its children, 
can be easily computed.

a b c d e f g

0 1 2 3 4 5 6

a

b c

d e f g

Idx 0

Idx 1 Idx 2

Idx 3 Idx 4 Idx 5 Idx 6
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Array-based binary trees
• The index(n) of a node n with 

parent p is:

• 0 if n is the root node.

• 2*index(p)+1 if n is left child of p.

• 2*index(p)+2 if n is right child.

• The parentIndex(idx) of a node 
stored at idx is (idx-1)/2.

• Examples:
index(c) = 2*index(a)+2 = 2*0+2 =1
parentIndex(4) = (4-1)/2 = 1.5 = 1.

a b c d e f g

0 1 2 3 4 5 6

a

b c

d e f g

Idx 0

Idx 1 Idx 2

Idx 3 Idx 4 Idx 5 Idx 6
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Array-based binary trees

• Note that this array-based representation applies 
only to complete binary trees.

• A binary tree is complete if every level of the tree 
is completely filled except possibly the last and the 
last level is (partially) filled from left to right.

OK OK Not OK
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Array-based binary trees

• Even though the data are 
being stored in a regular 
Java array, their locations in 
the array still encode a tree 
structure among them.

• This means that binary 
tree-based algorithms we 
develop can still offer 
time-cost advantages 
over linear lists.

a b c d e f g

0 1 2 3 4 5 6

a

b c

d e f g

Idx 0

Idx 1 Idx 2

Idx 3 Idx 4 Idx 5 Idx 6

Thursday, August 18, 2011



Adding a node

a b c d

0 1 2 3 4 5 6

a

b c

d

Idx 0

Idx 1 Idx 2

Idx 3

_numNodes: 4

• Given that the binary tree must 
be complete, it is only valid to add 
a node n to be the next child on 
the last level of the tree.

• The index into the array of where 
this “next child” should be stored 
is always just _numNodes, where 
_numNodes is the current number 
of nodes in the tree.
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Adding a node

a b c d e

0 1 2 3 4 5 6

a

b c

d e

Idx 0

Idx 1 Idx 2

Idx 3 Idx 4

_numNodes: 5

• Given that the binary tree must 
be complete, it is only valid to add 
a node n to be the next child on 
the last level of the tree.

• The index into the array of where 
this “next child” should be stored 
is always just _numNodes, where 
_numNodes is the current number 
of nodes in the tree.
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Removing a node

• Similarly, it is only valid to 
remove the right-most child 
of the last level of the tree.

• All we must do is 
decrement _numNodes to 
indicate that the “slot” in 
the array of the removed 
node is no longer valid.

a b c d e

0 1 2 3 4 5 6

a

b c

d e

Idx 0

Idx 1 Idx 2

Idx 3 Idx 4

_numNodes: 5
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Removing a node

• Similarly, it is only valid to 
remove the right-most child 
of the last level of the tree.

• All we must do is 
decrement _numNodes to 
indicate that the “slot” in 
the array of the removed 
node is no longer valid.

a b c d

0 1 2 3 4 5 6

a

b c

d

Idx 0

Idx 1 Idx 2

Idx 3

_numNodes: 4
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Finding a node
• To find the index of a node n whose data element 

equals o:
int find (int rootIdx, T o) {
  if (_nodeArray[rootIdx].equals(o)) {
    return rootIdx;
  }

  int idx;
  if (leftChild(rootIdx) < _numNodes &&
      (idx = find(leftChild(rootIdx), o)) >= 0) {
    return idx;
  } else if (rightChild(rootIdx) < _numNodes &&
      (idx = find(rightChild(rootIdx), o)) >= 0) {
    return idx;
  } else {
    return -1;
  }
}

Make sure each child exists before recursing!

Helper methods to determine 
index of left and right child nodes.
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Binary trees to 
accelerate search.
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Binary trees to 
accelerate search

• We have now constructed considerable 
“infrastructure” for building binary trees, using 
either “linked nodes” or a Java array for the tree’s 
underlying storage.

• Trees are useful in their own right for representing 
hierarchical structures, e.g., genealogical data.

• However, for the moment we are interested in how 
they can store and accelerate search of data on which 
an ordering relation is defined. 
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Binary trees to 
accelerate search

• Heaps and binary search trees are two ADTs based 
on binary trees that accelerate search.

• A heap offers fast access to the largest element in a 
collection of related objects.

• O(1) worst-case time cost for findLargest.

• O(log n) worst-case time cost for removeLargest.

• O(log n) worst-case time cost for add.

• O(n) worst-case time-cost for find and remove.
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Binary trees to 
accelerate search

• A binary search tree (BST) offers:

• O(log n) average-case time cost for add, find, 
remove, and findLargest.

• O(n) worst-case time cost for add, find, remove, and 
findLargest.

• AVL trees and red-black trees are more complicated, 
but they offer:

• O(log n) worst-case time cost for add, find, remove, 
and findLargest.
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Why findLargest?
• Why would we want to find the 

largest data element stored in a 
container?

• The findLargest method is 
required by priority queues.

• A priority queue is a queue in 
which elements are dequeued 
not in FIFO order, but instead 
in order of highest-to-lowest 
priority.

• A priority queue is typically 
implemented using a heap.

Highest 
priority person

Taken from Paul Kube’s slides.
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Heaps.
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Heaps
• A max-heap is an ADT for storing data so that the largest 

element (according to some binary order relation) can 
always be found and removed quickly.

• A min-heap is defined analogously for the smallest element.

• Internally, a heap is a complete binary tree which satisfies the 
heap condition:

• The root of every sub-tree is no smaller than any node in 
the sub-tree. (For max-heap).

• The root of every sub-tree is no larger than any node in 
the sub-tree. (For min-heap).

• This ensures that, to implement findLargest/findSmallest,
we can always just return the root node of the tree.
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Heaps
• A max-heap has the following interface:

// All operations must preserve the heap condition.
interface MaxHeap {
  // Adds o to the heap.
  void add (T o);
  // Removes the node whose data element equals o.
  void remove (T o);
  // Removes and returns the largest node in the heap.
  T removeLargest ();
  // Returns the largest node in the heap.
  T findLargest ();
  // Finds and returns the node whose data element
  // equals o.
  T find (T o);
  // Returns the number of data stored in the heap.
  int size ();
}
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Implementing heaps

• Since heaps are anyway a complete binary 
tree, it is convenient and efficient to 
implement them using an array.

• However, they could also be implemented 
using linked nodes.

• The challenge when implementing a heap is 
to preserve the heap property upon every 
mutation to the heap (add/remove).
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Adding a node to a heap
• In order to add a new element o to a max-heap while 

preserving the heap condition, we execute the following 
procedure:

• Add a new node n containing o to the last level of the 
tree (ensure completeness of the tree).

• This may violate the tree’s heap condition because o may 
be larger than one of its parents.

• We then “fix” the heap by “swapping” node n with its 
parent p.

• We repeat this process -- known as bubbling up -- as 
many times as necessary until the tree is a heap again.
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Adding a node to a heap
• Consider the heap to the 

right. (Notice that it satisfies 
the heap condition). 5

4 2

3 1
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Adding a node to a heap
• Consider the heap to the 

right. (Notice that it satisfies 
the heap condition).

• Suppose we add value 8 to the 
bottom-level of the heap.

• The tree no longer satisfies 
the heap condition.

5

4 2

3 1 8

2 is smaller than one of the 
nodes in its sub-tree!
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Adding a node to a heap
• Consider the heap to the 

right. (Notice that it satisfies 
the heap condition).

• Suppose we add value 8 to the 
bottom-level of the heap.

• The tree no longer satisfies 
the heap condition.

• We have to “bubble up” the 
8 we just added to restore 
the heap condition.

5

4 2

3 1 8
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Adding a node to a heap
• Consider the heap to the 

right. (Notice that it satisfies 
the heap condition).

• Suppose we add value 8 to the 
bottom-level of the heap.

• The tree no longer satisfies 
the heap condition.

• We have to “bubble up” the 
8 we just added to restore 
the heap condition.

5

4

3 1 2

8

Not done yet -- 5 is still 
smaller than 8.
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Adding a node to a heap
• Consider the heap to the 

right. (Notice that it satisfies 
the heap condition).

• Suppose we add value 8 to the 
bottom-level of the heap.

• The tree no longer satisfies 
the heap condition.

• We have to “bubble up” the 
8 we just added to restore 
the heap condition.

8

4

3 1 2

5

Now it is a heap again!
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Adding a node to a heap
• Consider the heap to the 

right. (Notice that it satisfies 
the heap condition).

• Suppose we add value 8 to the 
bottom-level of the heap.

• The tree no longer satisfies 
the heap condition.

• We have to “bubble up” the 
8 we just added to restore 
the heap condition.

• Done!

8

4

3 1 2

5
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Adding a node to a heap

• We can implement the add(o) method as:
void add (T o) {
  _nodeArray[_numNodes] = o;
  _numNodes++;
  bubbleUp(_numNodes - 1);
}

• We must then also implement bubbleUp(idx):
void bubbleUp (int idx) {
  If node at idx is “larger” than its parent:
    Swap data in the node and its parent;
    Recursively bubbleUp(parentIdx(idx));
}

Thursday, August 18, 2011



Adding a node to a heap

• Alternatively, we can write an iterative version of 
bubbleUp(idx):

void bubbleUp (int idx) {
  While node at idx is “larger” than its parent:
    Swap data in the node and its parent;
    Set idx to be parentIdx(idx);
}
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Next lecture

• Finding and removing elements.

• “Trickling down” a node.
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