CSE 12: Basic data structures and object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Twelve
22 Aug 2011
Heaps, continued.
A heap is a complete binary tree whose last level of nodes is filled left-to-right and which satisfies the heap condition.

Heap condition:

- The root of every sub-tree is no smaller than any node in the sub-tree. (For max-heap).

The heap condition ensures that the largest element is always stored at the root:

- $O(1)$ time-cost for `findLargest`
- $O(\log n)$ time-cost for `removeLargest`
Adding to a heap

- To add a new object \(o \) to the heap:
 - Create a new node \(n \) containing \(o \), and add \(n \) to the last level of the tree (at the left-most position).
 - This may violate the heap condition.
 - Repeatedly “bubble up” \(n \) towards the root whenever \(n > \text{parent}(n) \).
Adding to a heap

• To add a new object o to the heap:
 • Create a new node n containing o, and add n to the last level of the tree (at the left-most position).
 • This may violate the heap condition.
 • Repeatedly “bubble up” n towards the root whenever $n > \text{parent}(n)$.
Adding to a heap

- To add a new object o to the heap:
 - Create a new node n containing o, and add n to the last level of the tree (at the left-most position).
 - This may violate the heap condition.
 - Repeatedly “bubble up” n towards the root whenever $n > \text{parent}(n)$.
Adding to a heap

• To add a new object o to the heap:
 • Create a new node n containing o, and add n to the last level of the tree (at the left-most position).
 • This may violate the heap condition.
 • Repeatedly “bubble up” n towards the root whenever n > parent(n).
Adding to a heap

- To add a new object \(o \) to the heap:
 - Create a new node \(n \) containing \(o \), and add \(n \) to the last level of the tree (at the left-most position).
 - This may violate the heap condition.
 - Repeatedly “bubble up” \(n \) towards the root whenever \(n > \text{parent}(n) \).

The tree is now a valid heap again.
Removing the *largest* element from a heap

- The largest element is always stored at the top of the heap.
 - Hence, just remove the *root*.
- We must then *replace* it with something.
 - Remove the last node n in the heap (right-most child of last level) and make it the new root of the tree.
 - This may violate the heap condition.
 - We will then have to recursively swap n with one of its children (i.e., back down the tree) until the heap condition is restored. This is called “trickling down”.

Monday, August 22, 2011
Removing the largest element from a heap

```cpp
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
        Swap node with the larger child node.
    index = largerChild(index);
}

or

void trickleDown (int index) {
    If node at index is less than one of its children:
        Swap node with the larger child node.
    trickleDown(largerChild(index));
}
```

Recursive implementation

Iterative implementation
Removing the *largest* element from a heap

```c
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
        Swap node with the larger child node.
        index = largerChild(index);
}
```

![Diagram of a heap with nodes 8, 5, 3, 3, 4, 2]
Removing the largest element from a heap

```java
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
        Swap node with the larger child node.
    index = largerChild(index);
}
```

```plaintext
2

5 3
3 4
```
Removing the largest element from a heap

```java
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
        Swap node with the larger child node.
        index = largerChild(index);
}
```

Monday, August 22, 2011
Removing the *largest* element from a heap

```c
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
        Swap node with the larger child node.
    index = largerChild(index);
}
```

```
2
  5
  3
  3
  4
```

True
Removing the \textit{largest} element from a heap

```c
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    // While node at index is less than one of its children:
    // Swap node with the larger child node.
    index = largerChild(index);
}
```

![Binary Heap Diagram]

\[\text{5} \quad \text{2} \quad \text{3} \quad \text{3} \quad \text{4}\]
Removing the *largest* element from a heap

```c
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
    Swap node with the larger child node.
    index = largerChild(index);
}
```

```
5
 / \
2   3
 /   /
3   4
```
Removing the *largest* element from a heap

```java
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
        Swap node with the larger child node.
    index = largerChild(index);
}
```

True
Removing the largest element from a heap

```c
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
        Swap node with the larger child node.
    index = largerChild(index);
}
```

It’s crucial we swap with the larger child to maintain the heap condition.
Removing the largest element from a heap

```java
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
        Swap node with the larger child node.
    index = largerChild(index);
}
```

Diagram of a heap:
```
     5
    / 
   4   3
  /   / 
 3   2   3
```
Removing the largest element from a heap

```java
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
        Swap node with the larger child node.
    index = largerChild(index);
}
```

![Binary Heap Diagram]

False
Removing the largest element from a heap

```java
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
        Swap node with the larger child node.
    index = largerChild(index);
}
```

Done.
Finding an arbitrary node

- Heaps offer fast access to the largest node in the heap.
- However, despite their binary tree representation, they offer no advantage over simple lists in terms of finding an arbitrary element.
- If the element \(o \) that the user wishes to find is not the largest, then \(o \) could be anywhere in the heap.
- This contrasts with binary search trees (more later).
- Hence, to find an object \(o \) within a heap, we must search through the entire heap.
Finding an arbitrary node

T find (T o) {
 final int index = findNode(0, o);
 if (index < 0) {
 throw new NoSuchElementException();
 }
 return _nodeArray[index];
}

int findNode (int rootIdx, T o) {
 if (_nodeArray[rootIdx].equals(o)) {
 return rootIdx;
 }
 int idx;
 if (leftChild(rootIdx) < _numNodes &&
 (idx = find(leftChild(rootIdx), o)) >= 0) {
 return idx;
 } else if (rightChild(rootIdx) < _numNodes &&
 (idx = find(rightChild(rootIdx), o)) >= 0) {
 return idx;
 } else {
 return -1;
 }
}
Finding an arbitrary node

But this is much easier (and slightly faster too).

```java
int findNode (T o) {
    for (int i = 0; i < _numNodes; i++) {
        if (_nodeArray[i].equals(o)) {
            return i;
        }
    }
}
```

- This is one of the conveniences of representing the tree as an array.
- Only possible for complete trees in which there are no “holes” in the array (i.e., missing child nodes).
Removing an arbitrary node

- Removing an arbitrary node requires that we first find the node n to be removed.
- We can use the `findNode(index, o)` method we just constructed.
- Once found, we can swap the last node in the heap (right-most child of last level) with n.
- Then we just `trickleDown` that node and we’re done, right?
Removing an arbitrary node

- Removing an arbitrary node requires that we first find the node n to be removed.
- We can use the `findNode(index, o)` method we just constructed.
- Once found, we can swap the last node in the heap (right-most child of last level) with n.
- Then we just `trickleDown` that node and we’re done, right? Wrong.
Removing an arbitrary node

• The above procedure worked for `removeLargest()` because we always started from the top (root) of the heap.

• By trickling down from the top, we guarantee that every sub-tree (starting from the very top) is a valid heap.

• When removing an arbitrary node, the `trickleDown` process will “fix” the sub-tree rooted at `n`, but *not necessarily* the whole tree.

• What’s an example heap in which this problem would arise?
Removing an arbitrary node

• Suppose we wish to remove the node containing 4.
• If we just replace it with the “last” node (6)...
Removing an arbitrary node

• ...then the `trickleDown()` method will do nothing (6 is already bigger than its children).

• Moreover, 6 is now bigger than its parent -- a violation of the heap condition.

```
  9
  / \
 5   8
 /   \
6   1 7 8
```

Invalid heap.
Removing an arbitrary node

- In a correct implementation of `remove(o)` for arbitrary `o`, we need to sometimes `bubbleUp` and sometimes `trickleDown`:

```java
void remove (T o) {
    Find the node `n` containing `o`.
    Replace `n` with the "last" node `l` in the heap.
    If `n > l`:
        `trickleDown` on `n`.
    Else:
        `bubbleUp` on `n`.
}
```
Removing an arbitrary node

- In a correct implementation of `remove(o)` for arbitrary `o`, we need to sometimes `bubbleUp` and sometimes `trickleDown`:

```java
void remove (T o) {
    Find the node n containing o.
    Replace n with the “last” node l in the heap.
    If n > l:
        trickleDown on n.
    Else:
        bubbleUp on n.
}
```

![Diagram of a heap with nodes 9, 5, 8, 4, 1, 7, 8, 3, ... 6, 1, and n labeled.](image)
Removing an arbitrary node

- In a correct implementation of `remove(o)` for arbitrary `o`, we need to sometimes `bubbleUp` and sometimes `trickleDown`:

```java
void remove (T o) {
    Find the node `n` containing `o`.
    Replace `n` with the "last" node `l` in the heap.
    If `n > l`:
        trickleDown on `n`.
    Else:
        bubbleUp on `n`.
}
```
Removing an arbitrary node

- In a correct implementation of remove(o) for arbitrary o, we need to sometimes bubbleUp and sometimes trickleDown:

```java
void remove (T o) {
    Find the node n containing o.
    Replace n with the “last” node l in the heap.
    If n > l:  // n was 4, l is 6
        trickleDown on n.
    Else:
        bubbleUp on n.
}
```
Removing an arbitrary node

- In a correct implementation of `remove(o)` for arbitrary `o`, we need to sometimes `bubbleUp` and sometimes `trickleDown`:

```java
void remove (T o) {
    Find the node `n` containing `o`.
    Replace `n` with the “last” node `l` in the heap.
    If `n > l`:  // `n` was 4, `l` is 6
        `trickleDown` on `n`.
    Else:
        `bubbleUp` on `n`.
}
```
Removing an arbitrary node

- In a correct implementation of remove(o) for arbitrary o, we need to sometimes **bubbleUp** and sometimes **trickleDown**:

```java
void remove (T o) {
    Find the node n containing o.
    Replace n with the “last” node l in the heap.
    If n > l:  // n was 4, l is 6
        trickleDown on n.
    Else:
        bubbleUp on n.
}
```

```plaintext
9
  / 
6   8
 / 
5 1 7 8
     / 
3 ...
```
Removing an arbitrary node

- In a correct implementation of `remove(o)` for arbitrary `o`, we need to sometimes `bubbleUp` and sometimes `trickleDown`:

```java
void remove (T o) {
    Find the node `n` containing `o`.
    Replace `n` with the “last” node `l` in the heap.
    If `n > l`:  // `n` was 4, `l` is 6
        trickleDown on `n`.
    Else:
        bubbleUp on `n`.
}
```

Valid heap again.
Heap operations: time costs

• The implementations for the add/find/removeLargest/remove methods depend on the methods bubbleUp and trickleDown.

• void bubbleUp (int idx) {
 While node at idx is “larger” than its parent:
 Swap data in the node and its parent;
 Set idx to be parentIdx(idx);
}

• At each loop iteration, idx moves one step closer from a leaf to the root of the heap.

• Hence, loop can execute maximum of h times (h is tree height). For heap of n nodes, h is log₂(n). Why?

• Inside loop, the time cost is about 2 operations.

• Hence, time cost is O(log n).
Heap operations: time costs

- void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the larger child node.
 index = largerChild(index);
}

- At each loop iteration, index moves one step closer from the root of the heap to a leaf.
 - Hence, number of iterations is bounded by $h = \log_2(n)$.

- Inside loop, the time cost is about 2 operations.
 - Hence, time cost is $O(\log n)$.

heap operations: time costs

• Given the time costs of bubbleUp and trickleDown, we can compute the worst-case time costs of the fundamental heap operations:

 • \(\text{add}(o): O(1) + O(\log n) = O(\log n) \)
 • Append a new node to the heap. \(O(1) \)
 • Bubble it up. \(O(\log n) \)
 • \(\text{removeLargest}(): O(1) + O(\log n) = O(\log n) \)
 • Swap last node with root. \(O(1) \)
 • Trickle root down. \(O(\log n) \)
Heap operations: time costs

- **find(o)**: $O(n)$
 - Search through all nodes. $O(n)$

- **remove()**: $O(n) + O(1) + O(\log n) = O(n)$
 - Find the node. $O(n)$
 - Swap node-to-remove with root. $O(1)$
 - *Either* trickle node down *or* bubble it up. $O(\log n)$
General heaps

• We have just described the minimal implementation of a *binary heap*.

• Binary heaps are the most common.

• In theory, however, *any* tree can be a heap as long as it satisfies the *heap condition* that the root of every sub-tree is no smaller than any node in the sub-tree.

• In particular, we can define a *d*-ary tree in which each node has *d* child nodes (instead of always 2).
d-ary heaps

3-ary (ternary) heap

4-ary (quaternary) heap

...
d-ary heaps: Why?

- *d*-ary heaps can offer a time cost savings compared to binary heaps.

- Consider:
 - The height h of a binary heap is at most $\log_2(n)$.
 - The height h of a ternary heap is at most $\log_3(n)$.
 - The height h of a d-ary heap is at most $\log_d(n)$.

- As the base of the logarithm (d) gets larger, the value of the logarithm itself grows smaller.

- Hence, for larger d, operations that depend on the height of the tree will become faster.
d-ary heaps: Why?

- On the other hand, as d increases, so does the number of children per node.

- The time cost of `trickleDown` (but not `bubbleUp`) is affected by the number of children:

  ```
  void trickleDown (int index) {
    While node at index is less than one of its children:
      ...
  }
  ```

- Each loop iteration implicitly requires a comparison to all d children.

- The loop runs for at most h iterations ($h = \log_d n$), and each iteration takes at least d operations.

- Hence, time cost for `trickleDown` is $O(hd) = O(d \log_d n)$.
bubbleUp: $O(\log_d n)$

bubbleUp is faster when d is large.
trickleDown: $O(d \log_d n)$

trickleDown is faster when d is small.
trickleDown versus bubbleUp

• When would calls to bubbleUp occur more frequently than calls to trickleDown?

• Consider the use of a heap in implementing a priority queue.

 • In priority queues, we want fast access to “highest priority” item.

• Priority queues sometimes offer increasePriority(o) and decreasePriority(o) methods.

 • These allow the user to modify data in the heap without having to remove and then add it again.

Monday, August 22, 2011
Increasing/decreasing priority

- Example:

  ```java
  heap.add(o1);  // Priority 7
  heap.add(o2);  // Priority 6
  ...
  heap.add(o7);  // Priority 5
  ```

```
9
/\  /
6 8
/ \ /\  
6 1 7 8
/ \ / \ / \  
6 5 1 7 8
```

Monday, August 22, 2011
Increasing/decreasing priority

• Example:

  ```java
  heap.add(o1);  // Priority 7
  heap.add(o2);  // Priority 6
  ...
  heap.add(o7);  // Priority 5
  ```

• Later on:

  ```java
  heap.increasePriority(o7);
  ```

Now we need to `bubbleUp o7`.
Increasing/decreasing priority

- Example:
  ```
  heap.add(o1);  // Priority 7
  heap.add(o2);  // Priority 6
  ...
  heap.add(o7);  // Priority 5
  ```

- Later on:
  ```
  heap.increasePriority(o7);
  ```

Done.
trickleDown versus bubbleUp

- **Increasing** the priority of an item requires bubbleUp to be called to maintain the heap condition.

- **Decreasing** the priority of an item requires trickleDown to be called to maintain the heap condition.

- In some applications, the user may want to **increase** the priority of items more frequently than they will **decrease** their priority.

 - In this case, bubbleUp will be called more frequently than trickleDown.

- By using a *d*-ary heap and setting *d*>2, the time cost of the priority queue may be reduced compared to a binary heap.
Binary search trees
Still something to be desired

• Heaps offer fast access to the largest element in a collection.

• This is most useful in a priority queue.

• However, finding an arbitrary element is still slow -- $O(n)$ time.

• We may want to sacrifice efficiency of access to the largest access in exchange for increased efficiency to access any arbitrary element.
Binary search trees

- A **binary search tree** (BST) is a binary-tree based data structure that offers $O(\log n)$ *average-case* time costs for:

  ```
  add(o)
  find(o)
  remove(o)
  findLargest/removeLargest(o)
  ```

- As with heaps, BSTs exploit the order relations among elements.

 - Heaps required the *root* node r of each sub-tree to be no smaller than any *descendant* node of r.

 - BSTs impose constraints on the magnitude of nodes in the *left sub-tree* compared to the magnitude of nodes in the *right sub-tree*.
Binary search trees

• More specifically, a binary search tree (BST) is a binary tree (not necessarily complete) that has the following (recursive) ordering property:

• For each node n:

 • All nodes in the left sub-tree of n are “less than” node n itself.

 • All nodes in the right sub-tree of n are “greater than” node n itself.

• Both the left and right sub-trees are themselves BSTs.

Base case? Implicit -- when there are no sub-trees.

Recursive part
Binary search trees

Left sub-tree < Node (9) < Right sub-tree
Binary search trees

Left sub-tree < Node (6) < Right sub-tree
Binary search trees

Note that this node must still be greater than 9!
Binary search trees

• In our discussion, we will assume that the keys added to the BST are unique:

• E.g., we disallow:
 bst.add(5);
bst.add(6);
bst.add(7);
bst.add(5); // Error -- the BST already contains 5

• This simplifies the exposition slightly.

• Later, we can relax this restriction.

• In addition, we disallow null elements.

• Unclear what “value” they should have compared to other elements.
Binary search trees

- Let us implement the following operations on BSTs:
 - T find (T o);
 - T findSmallest ()
 - T findLargest ()
 - add (T o);
 - remove (T o);

- To accomplish this, we will also need a few helper methods (not exposed to user):
 - Node<T> findNode (Node<T> root, T o);
 - Node<T> findSuccessor (Node<T> node);
 - Node<T> findParent (Node<T> root, T o);
Finding the largest element

- Due to the ordering property, finding the largest element of a BST is easy -- we just return the right-most node in the whole tree.

```java
T findLargest (Node<T> root) {
    while (root._rightChild != null) {
        root = root._rightChild;
    }
    return root._data;
}
```
Finding the smallest element

Due to the ordering property, finding the smallest element of a BST is easy -- we just return the left-most node in the whole tree.

```java
T findSmallest (Node<T> root) {
    while (root._leftChild != null) {
        root = root._leftChild;
    }
    return root._data;
}
```
Finding a node

• The ordering property of binary trees also enables efficient search for any particular node.

```java
// Returns the Node containing o, or else null if o is not contained in the BST.
Node<T> findNode (Node<T> root, T o) {
    if (root._data.equals(o) {
        return root;
    } else if (root._data.compareTo(o) < 0 && // Right subtree
                root._rightChild != null) {
        return findNode(root._rightChild, o);
    } else if (root._data.compareTo(o) > 0 && // Left subtree
               root._leftChild != null) {
        return findNode(root._leftChild, o);
    } else {
        return null;
    }
}
```

Due to the ordering property, there is only one place in a given BST where value o would be stored. If it’s not there, then o is not contained in the BST -- hence, we return null.
Finding a node

- The `findNode(root, o)` method would not be exposed to the user in the BinarySearchTree ADT interface.

- However, we can “wrap” this method with `T find (T o)` so that the underlying node infrastructure is hidden:

```java
T findNode (T o) {
    if (_root == null) {
        return null;
    } else {
        final Node<T> node = findNode(_root, o);
        if (node == null) {
            return null;
        } else {
            return node._data;
        }
    }
}
```
Finding a node’s successor

• It will turn out to be useful to be able to find a node’s successor in the BST.

• The successor of node \(n \) is the node with the next higher value.
Finding a node’s successor

- It will turn out to be useful to be able to find a node’s successor in the BST.

- The successor of node n is the node with the next higher value.

- Examples:
 - Successor of 3 is 4.
 - Successor of 4 is 6.
 - Successor of 12 is 13.
 - Successor of 8 is 9.
Finding a node’s successor

• It will turn out to be useful to be able to find a node’s successor in the BST.

• The successor of node n is the node with the next higher value.

• Examples:
 Successor of 3 is 4.
 Successor or 4 is 6.
 Successor of 12 is 13.
 Successor of 8 is 9.
Finding a node’s successor

• It will turn out to be useful to be able to find a node’s successor in the BST.

• The successor of node n is the node with the next higher value.

• Examples:
 Successor of 3 is 4.
 Successor of 4 is 6.
 Successor of 12 is 13.
 Successor of 8 is 9.
Finding a node’s successor

- It will turn out to be useful to be able to find a node’s successor in the BST.

- The successor of node \(n \) is the node with the next higher value.

- Examples:
 Successor of 3 is 4.
 Successor of 4 is 6.
 Successor of 12 is 13.
 Successor of 8 is 9.
Finding a node’s successor

• A successor node of \(n \) -- if it exists -- is found by either:

1. Descending into \(n \)’s right sub-tree, and then recursively selecting left-child until no left child exists.

• *Intuition*: The right sub-tree has values bigger than \(n \); we want the smallest such value (left-most node).

2. Finding the *lowest* ancestor of \(n \) whose left child is also an ancestor of \(n \).

• *Intuition*: Move “up-and-left” in the BST until we can finally “move right” again, i.e., *towards a higher valued node*.

Monday, August 22, 2011
Finding a node’s successor

• A successor node of \(n \) -- if it exists -- is found by either:

 1. Descending into \(n \)'s right sub-tree, and then recursively selecting left-child until no left child exists.

 2. Finding the lowest ancestor of \(n \) whose left child is also an ancestor of \(n \).

• Examples:
 Successor of 3 is 4.
 Successor or 4 is 6.
 Successor of 12 is 13.
 Successor of 8 is 9.
Finding a node’s successor

• A successor node of n -- if it exists -- is found by either:

1. Descending into n’s right sub-tree, and then recursively selecting left-child until no left child exists.

2. Finding the lowest ancestor of n whose left child is also an ancestor of n.

• Examples:
 Successor of 3 is 4.
 Successor or 4 is 6.
 Successor of 12 is 13.
 Successor of 8 is 9.
Finding a node’s successor

- The code for `Node<T> findSuccessorNode(Node<T> node)` will be left as an “exercise for the reader”.

Monday, August 22, 2011
Adding a new node

• To add a new node, we must distinguish two cases:

 1. The new node is the \textit{first} node in the BST.
 • In this case, we simply set this node to be the root.

 2. The new node is \textit{not} the first node in the BST.
 • Then we must find the \textit{parent} node of the node we’re about to add.
 • We then add the new node as a child of the parent.
Finding the parent of a new node

• To find the parent node of the new node \(n \) we want to add:

 • Recursive search from root down towards the leaf nodes, *as if node* \(n \) *were already inserted*.

 • Eventually, while recursing at node \(p \), the search for the node would take us to a left/right child *that does not yet exist*.

• At that point, we know \(p \) is the parent of \(n \).

• \(p \) is the “natural insertion point” for \(n \).
Finding the parent of a new node

// Searches from root for the parent node to which the specified new node should be added.
Node<T> findParentNode (Node<T> root, T o) {
 // Save comparison result
 final int comparison = root._data.compareTo(o);

 if (comparison < 0 && root._rightChild != null) {
 return findParentNode(root._rightChild, o);
 } else if (comparison > 0 && root._leftChild != null) {
 return findParentNode(root._leftChild, o);
 } else {
 // The appropriate left/child does not yet exist
 return root; // Hence, we’ve found the parent
 }
}
Adding a new node

• We can now implement the `add(o)` method:

```java
void add (T o) {
    final Node<T> node = new Node<T>();
    node._data = o;
    if (_root == null) {   // Case 1
        _root = node;
    } else {              // Case 2
        final Node<T> parent = findParent(_root, o);
        if (parent._data.compareTo(o) < 0) {
            parent._rightChild = node;
        } else {
            parent._leftChild = node;
        }
    }
}
```
Removing a node

• When removing a node \(n \) from the BST, we must ensure that:
 • The resulting tree is still \textit{connected}.
 • The resulting tree still has the \textit{ordering property}.
• Consider what might “go wrong” when removing an arbitrary node \(n \):

If we remove node 6, then we sever its left and right sub-trees from the rest of the BST.
Removing a node

• When removing a node n from the BST, we must ensure that:
 • The resulting tree is still connected.
 • The resulting tree still has the ordering property.

• Consider what might “go wrong” when removing an arbitrary node n:

If we remove node 6, then we sever its left and right sub-trees from the rest of the BST.
Removing a node

• When removing a node n from the BST, we must ensure that:
 • The resulting tree is still connected.
 • The resulting tree still has the ordering property.

• Consider what might “go wrong” when removing an arbitrary node n:

If instead we replace n with another node and “reconnect” another branch, we might violate the ordering property.
Removing a node

• When removing a node \(n \) from the BST, we must ensure that:
 • The resulting tree is still connected.
 • The resulting tree still has the ordering property.

• Consider what might “go wrong” when removing an arbitrary node \(n \):

If instead we replace \(n \) with another node and “reconnect” another branch, we might violate the ordering property.

Ordering property is now violated!
Removing a node

• To remove a node and still ensure the resulting tree is a proper BST, we must distinguish three cases:

1. \(n\) is a leaf node -- in this case, we just snip it off.

2. \(n\) is an internal node with only one child.
 • We remove \(n\) and “splice around” it.

3. \(n\) is an internal node with two child nodes.
 • We replace \(n\) with the value of its successor \(s\), and then remove \(s\).
Removing a leaf node

Example: `bst.remove(8);`

```
Example: bst.remove(8);
```

\[
\begin{array}{c}
\begin{array}{c}
9
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
6
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
12
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
3
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
7
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
10
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
18
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
4
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
8
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
13
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
9
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
6
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
12
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
3
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
7
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
10
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
18
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
4
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
13
\end{array}
\end{array}
\end{array}
\end{array}
```

Just snip it off.

Result: We still have a BST with the ordering property preserved.
Removing a node with one child node

Example: bst.remove(7);

“Splice around” node 7.

Result: We still have a BST with the ordering property preserved.
Removing a node with two child nodes

Example: `bst.remove(12);`

Result: We still have a BST with the ordering property preserved.

Replace 12 with the value of its successor; then remove the successor node.
Removing the successor

• When removing a node \( n \) with two children, we replace \( n \) with the value of its successor \( s \), and then remove \( s \) itself.

• But what if \( s \) also has two children; then we need to remove its successor, and so on.

• Will the “removal” process ever terminate?

• Yes -- if \( n \) has two children, then its successor \( s \) cannot have a left-child. Why?
Removing the successor

• When removing a node $n$ with two children, we replace $n$ with the value of its successor $s$, and then remove $s$ itself.

• But what if $s$ also has two children; then we need to remove its successor, and so on.

• Will the “removal” process ever terminate?

• Yes -- if $n$ has two children, then its successor $s$ cannot have a left-child. Why?

• If it did, then that left child would be $n$’s successor, and not $s$ itself.
Successor of node with two children

- Example:
  - Let $n$ be node 12.
  - Then $n$’s successor $s$ is 13.
    - $s$ only has one child.
Successor of node with two children

- Example:
  - Let \( n \) be node 12.
  - Then \( n \)'s successor \( s \) is 13.
    - \( s \) only has one child.
  - Suppose \( s \) had two children.
    - Then it would have a left child, \( x \).
      - Then \( x \) would have to be \( n \)'s successor.

\[\begin{array}{c}
\text{Since } x \text{ is still in } n \text{'s right sub-tree, } x > 12. \text{ And since } x \text{ is in } s \text{'s left sub-tree, } x < 13. \text{ So, } x \text{ is } n \text{'s successor.}
\end{array}\]
We conclude (by way of contradiction) that, if \( n \) has two children, then its successor \( s \) cannot have two children.

Hence, removing \( s \) amounts to either just “snipping it off” (case 1), or “slicing around it” (case 2).

Hence, the \texttt{remove} method will in fact terminate :-).
We can finally define the remove(o) method:

```java
void remove (T o) {
 final Node<T> node = findNode(_root, o);
 removeNode(node);
}

void removeNode (Node<T> node) { // Helper method
 if (node._leftChild == null &&
 node._rightChild == null) {
 // “Snip” node from its parent
 } else if (node._leftChild == null ||
 node._rightChild == null) {
 // “Splice around” node
 } else {
 final Node<T> successor = findSuccessor(_root, o);
 node._data = successor._data;
 removeNode(successor);
 }
}
```
BSTs:
Time costs of methods

• All of the fundamental operations -- add \( o \), find \( o \), remove \( o \), and findLargest/findSmallest -- take time \( O(h) \), where \( h \) is the height of the BST.

• In the average case, the height \( h \) of the BST is \( \log n \).

• What about in the worst case?
BSTs: Time costs of methods

- In the worst case, the user will call `add` and `remove` in an “unfortunate” order, resulting in a “degenerate” BST of the following variety:

- In this case, the height of the BST is \( n \) -- and hence the fundamental BST operations would also be \( O(n) \).

The “BST” is just a linked list!
Balancing BSTs

• To prevent this “worst-case” condition from occurring, we need to employ some form of “tree balancing” to keep the tree from degenerating into a linked list.

• Two prominent data structures which ensure a balanced tree include:
  • AVL trees.
  • Red-black trees.

• Next lecture...