
CSE 12:
Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Twelve
22 Aug 2011

Monday, August 22, 2011

Heaps, continued.

Monday, August 22, 2011

Review from last lecture
• A heap is a complete binary tree whose last

level of nodes is filled left-to-right and which
satisfies the heap condition.

• Heap condition:

• The root of every sub-tree is no smaller than
any node in the sub-tree. (For max-heap).

• The heap condition ensures that the largest
element is always stored at the root:

• O(1) time-cost for findLargest

• O(log n) time-cost for removeLargest
Monday, August 22, 2011

Adding to a heap

5

4 2

3 1

• To add a new object o to the heap:

• Create a new node n containing o,
and add n to the last level of the
tree (at the left-most position).

• This may violate the heap
condition.

• Repeatedly “bubble up” n towards
the root whenever n > parent(n).

Monday, August 22, 2011

Adding to a heap

5

4 2

3 1 8

• To add a new object o to the heap:

• Create a new node n containing o,
and add n to the last level of the
tree (at the left-most position).

• This may violate the heap
condition.

• Repeatedly “bubble up” n towards
the root whenever n > parent(n).

Monday, August 22, 2011

Adding to a heap

5

4 8

3 1 2

• To add a new object o to the heap:

• Create a new node n containing o,
and add n to the last level of the
tree (at the left-most position).

• This may violate the heap
condition.

• Repeatedly “bubble up” n towards
the root whenever n > parent(n).

Monday, August 22, 2011

Adding to a heap

8

4 5

3 1 2

• To add a new object o to the heap:

• Create a new node n containing o,
and add n to the last level of the
tree (at the left-most position).

• This may violate the heap
condition.

• Repeatedly “bubble up” n towards
the root whenever n > parent(n).

Monday, August 22, 2011

Adding to a heap

8

4 5

3 1 2

• To add a new object o to the heap:

• Create a new node n containing o,
and add n to the last level of the
tree (at the left-most position).

• This may violate the heap
condition.

• Repeatedly “bubble up” n towards
the root whenever n > parent(n).

The tree is now a valid
heap again.

Monday, August 22, 2011

Removing the largest
element from a heap

• The largest element is always stored at the top of the heap.

• Hence, just remove the root.

• We must then replace it with something.

• Remove the last node n in the heap (right-most child of
last level) and make it the new root of the tree.

• This may violate the heap condition.

• We will then have to recursively swap n with one of
its children (i.e., back down the tree) until the heap
condition is restored. This is called “trickling down”.

Monday, August 22, 2011

Removing the largest
element from a heap

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the larger child node.
 index = largerChild(index);
}

or
void trickleDown (int index) {
 If node at index is less than one of its children:
 Swap node with the larger child node.
 trickleDown(largerChild(index));
}

Recursive
implementation

Iterative
implementation

Monday, August 22, 2011

Removing the largest
element from a heap

5 3

3 4

8

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the larger child node.
 index = largerChild(index);
}

2

Monday, August 22, 2011

Removing the largest
element from a heap

5 3

3 4

2

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the larger child node.
 index = largerChild(index);
}

Monday, August 22, 2011

Removing the largest
element from a heap

5 3

3 4

2

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the larger child node.
 index = largerChild(index);
}

Monday, August 22, 2011

Removing the largest
element from a heap

5 3

3 4

2

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the larger child node.
 index = largerChild(index);
}

True

Monday, August 22, 2011

Removing the largest
element from a heap

2 3

3 4

5

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the larger child node.
 index = largerChild(index);
}

Monday, August 22, 2011

Removing the largest
element from a heap

2 3

3 4

5

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the larger child node.
 index = largerChild(index);
}

Monday, August 22, 2011

Removing the largest
element from a heap

2 3

3 4

5

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the larger child node.
 index = largerChild(index);
}

True

Monday, August 22, 2011

Removing the largest
element from a heap

4 3

3 2

5

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the larger child node.
 index = largerChild(index);
}

It’s crucial we swap with
the larger child to maintain

the heap condition.

Monday, August 22, 2011

Removing the largest
element from a heap

4 3

3 2

5

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the larger child node.
 index = largerChild(index);
}

Monday, August 22, 2011

Removing the largest
element from a heap

4 3

3 2

5

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the larger child node.
 index = largerChild(index);
}

False

Monday, August 22, 2011

Removing the largest
element from a heap

4 3

3 2

5

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the larger child node.
 index = largerChild(index);
}

Done.

Monday, August 22, 2011

Finding an arbitrary node

• Heaps offer fast access to the largest node in the heap.

• However, despite their binary tree representation, they
offer no advantage over simple lists in terms of finding
an arbitrary element.

• If the element o that the user wishes to find is not
the largest, then o could be anywhere in the heap.

• This contrasts with binary search trees (more later).

• Hence, to find an object o within a heap, we must
search through the entire heap.

Monday, August 22, 2011

Finding an arbitrary node
T find (T o) {
 final int index = findNode(0, o);
 if (index < 0) {
 throw new NoSuchElementException();
 }
 return _nodeArray[index];
}

int findNode (int rootIdx, T o) {
 if (_nodeArray[rootIdx].equals(o)) {
 return rootIdx;
 }

 int idx;
 if (leftChild(rootIdx) < _numNodes &&
 (idx = find(leftChild(rootIdx), o)) >= 0) {
 return idx;
 } else if (rightChild(rootIdx) < _numNodes &&
 (idx = find(rightChild(rootIdx), o)) >= 0) {
 return idx;
 } else {
 return -1;
 }
}

We could implement findNode
by recursively searching
through the entire tree.

Monday, August 22, 2011

Finding an arbitrary node

int findNode (T o) {
 for (int i = 0; i < _numNodes; i++) {
 if (_nodeArray[i].equals(o)) {
 return i;
 }
 }
}

But this is much easier (and slightly faster too).

• This is one of the conveniences of
representing the tree as an array.

• Only possible for complete trees in
which there are no “holes” in the
array (i.e., missing child nodes).

Monday, August 22, 2011

Removing an arbitrary node

• Removing an arbitrary node requires that we first
find the node n to be removed.

• We can use the findNode(index, o) method we
just constructed.

• Once found, we can swap the last node in the heap
(right-most child of last level) with n.

• Then we just trickleDown that node and we’re
done, right?

Monday, August 22, 2011

Removing an arbitrary node

Wrong.

• Removing an arbitrary node requires that we first
find the node n to be removed.

• We can use the findNode(index, o) method we
just constructed.

• Once found, we can swap the last node in the heap
(right-most child of last level) with n.

• Then we just trickleDown that node and we’re
done, right?

Monday, August 22, 2011

Removing an arbitrary node
• The above procedure worked for removeLargest()

because we always started from the top (root) of
the heap.

• By trickling down from the top, we guarantee that
every sub-tree (starting from the very top) is a
valid heap.

• When removing an arbitrary node, the trickleDown
process will “fix” the sub-tree rooted at n, but not
necessarily the whole tree.

• What’s an example heap in which this problem
would arise?

Monday, August 22, 2011

Removing an arbitrary node

5 8

4 1

9

7 8

3 6...

• Suppose we wish to remove the node containing 4.

• If we just replace it with the “last” node (6)...

Valid heap.

Monday, August 22, 2011

Removing an arbitrary node

5 8

6 1

9

7 8

3 ...

• ...then the trickleDown() method will do nothing (6
is already bigger than its children).

• Moreover, 6 is now bigger than its parent -- a violation
of the heap condition.

Invalid heap.

Monday, August 22, 2011

Removing an arbitrary node
• In a correct implementation of remove(o) for

arbitrary o, we need to sometimes bubbleUp and
sometimes trickleDown:

void remove (T o) {
 Find the node n containing o.
 Replace n with the “last” node l in the heap.
 If n > l:
 trickleDown on n.
 Else:
 bubbleUp on n.
}

Monday, August 22, 2011

Removing an arbitrary node
• In a correct implementation of remove(o) for

arbitrary o, we need to sometimes bubbleUp and
sometimes trickleDown:

void remove (T o) {
 Find the node n containing o.
 Replace n with the “last” node l in the heap.
 If n > l:
 trickleDown on n.
 Else:
 bubbleUp on n.
}

5 8

4 1

9

7 8

3 6...

Valid heap.n

l

Monday, August 22, 2011

Removing an arbitrary node
• In a correct implementation of remove(o) for

arbitrary o, we need to sometimes bubbleUp and
sometimes trickleDown:

void remove (T o) {
 Find the node n containing o.
 Replace n with the “last” node l in the heap.
 If n > l:
 trickleDown on n.
 Else:
 bubbleUp on n.
}

5 8

6 1

9

7 8

3 ...

Monday, August 22, 2011

Removing an arbitrary node
• In a correct implementation of remove(o) for

arbitrary o, we need to sometimes bubbleUp and
sometimes trickleDown:

void remove (T o) {
 Find the node n containing o.
 Replace n with the “last” node l in the heap.
 If n > l: // n was 4, l is 6
 trickleDown on n.
 Else:
 bubbleUp on n.
}

5 8

6 1

9

7 8

3 ...

Monday, August 22, 2011

Removing an arbitrary node
• In a correct implementation of remove(o) for

arbitrary o, we need to sometimes bubbleUp and
sometimes trickleDown:

void remove (T o) {
 Find the node n containing o.
 Replace n with the “last” node l in the heap.
 If n > l: // n was 4, l is 6
 trickleDown on n.
 Else:
 bubbleUp on n.
}

5 8

6 1

9

7 8

3 ...

Monday, August 22, 2011

Removing an arbitrary node
• In a correct implementation of remove(o) for

arbitrary o, we need to sometimes bubbleUp and
sometimes trickleDown:

void remove (T o) {
 Find the node n containing o.
 Replace n with the “last” node l in the heap.
 If n > l: // n was 4, l is 6
 trickleDown on n.
 Else:
 bubbleUp on n.
}

6 8

5 1

9

7 8

3 ...

Monday, August 22, 2011

Removing an arbitrary node
• In a correct implementation of remove(o) for

arbitrary o, we need to sometimes bubbleUp and
sometimes trickleDown:

void remove (T o) {
 Find the node n containing o.
 Replace n with the “last” node l in the heap.
 If n > l: // n was 4, l is 6
 trickleDown on n.
 Else:
 bubbleUp on n.
}

6 8

5 1

9

7 8

3 ...

Valid heap
again.

Monday, August 22, 2011

Heap operations: time costs
• The implementations for the add/find/removeLargest/remove

methods depend on the methods bubbleUp and trickleDown.

• void bubbleUp (int idx) {
 While node at idx is “larger” than its parent:
 Swap data in the node and its parent;
 Set idx to be parentIdx(idx);
}

• At each loop iteration, idx moves one step closer from a
leaf to the root of the heap.

• Hence, loop can execute maximum of h times (h is tree
height). For heap of n nodes, h is log2(n).

• Inside loop, the time cost is about 2 operations.

• Hence, time cost is O(log n).

Why?

Monday, August 22, 2011

Heap operations: time costs

• void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the larger child node.
 index = largerChild(index);
}

• At each loop iteration, idx moves one step closer from the
root of the heap to a leaf.

• Hence, number of iterations is bounded by h = log2(n).

• Inside loop, the time cost is about 2 operations.

• Hence, time cost is O(log n).

Monday, August 22, 2011

Heap operations: time costs
• Given the time costs of bubbleUp and

trickleDown, we can compute the worst-case time
costs of the fundamental heap operations:

• add(o): O(1)+O(log n) = O(log n)

• Append a new node to the heap. O(1)

• Bubble it up. O(log n)

• removeLargest(): O(1)+O(log n) = O(log n)

• Swap last node with root. O(1)

• Trickle root down. O(log n)

Monday, August 22, 2011

Heap operations: time costs

• find(o): O(n)

• Search through all nodes. O(n)

• remove(): O(n)+O(1)+O(log n) = O(n)

• Find the node. O(n)

• Swap node-to-remove with root. O(1)

• Either trickle node down or bubble it up. O(log n)

Monday, August 22, 2011

General heaps
• We have just described the minimal implementation

of a binary heap.

• Binary heaps are the most common.

• In theory, however, any tree can be a heap as long as
it satisfies the heap condition that the root of every
sub-tree is no smaller than any node in the sub-
tree.

• In particular, we can define a d-ary tree in which
each node has d child nodes (instead of always 2).

Monday, August 22, 2011

d-ary heaps

5 1

9

7 8

...
...

4 6

6

-2

...
...

3-ary
(ternary)

heap

4-ary
(quaternary)

heap

2 3

7

1

d-ary
heap

...

...

...

d children

d children

Monday, August 22, 2011

d-ary heaps: Why?
• d-ary heaps can offer a time cost savings compared

to binary heaps.

• Consider:

• The height h of a binary heap is at most log2(n).

• The height h of a ternary heap is at most log3(n).

• The height h of a d-ary heap is at most logd(n).

• As the base of the logarithm (d) gets larger, the value
of the logarithm itself grows smaller.

• Hence, for larger d, operations that depend on the
height of the tree will become faster.

Monday, August 22, 2011

d-ary heaps: Why?
• On the other hand, as d increases, so does the number of

children per node.

• The time cost of trickleDown (but not bubbleUp) is
affected by the number of children:
void trickleDown (int index) {
 While node at index is less than one of its children:
 ...
}

• Each loop iteration implicitly requires a comparison to all
d children.

• The loop runs for at most h iterations (h = logd n), and
each iteration takes at least d operations.

• Hence, time cost for trickleDown is O(hd) = O(d logd n).

Monday, August 22, 2011

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9

10

n

lo
g d(n

)

d=2
d=3
d=4
d=5
d=6

bubbleUp: O(logd n)

bubbleUp is faster
when d is large.

Monday, August 22, 2011

0 200 400 600 800 1000
0

5

10

15

20

25

n

d
lo

g d(n
)

d=3
d=4
d=5
d=6

trickleDown: O(d logd n)

trickleDown is faster
when d is small.

Monday, August 22, 2011

trickleDown versus
bubbleUp

• When would calls to bubbleUp occur more frequently
than calls to trickleDown?

• Consider the use of a heap in implementing a priority
queue.

• In priority queues, we want fast access to “highest
priority” item.

• Priority queues sometimes offer increasePriority(o)
and decreasePriority(o) methods.

• These allow the user to modify data in the heap without
having to remove and then add it again.

Monday, August 22, 2011

Increasing/decreasing
priority

• Example:
heap.add(o1); // Priority 7
heap.add(o2); // Priority 6
...
heap.add(o7); // Priority 5 6 8

6 1

9

7 8

o2

o4

o3

o6o1o5o7

Monday, August 22, 2011

Increasing/decreasing
priority

• Example:
heap.add(o1); // Priority 7
heap.add(o2); // Priority 6
...
heap.add(o7); // Priority 5

• Later on:
heap.increasePriority(o7);

6 8

7 1

9

7 8

o2

o4

o3

o6o1o5o7

Now we need to
bubbleUp o7.

Monday, August 22, 2011

Increasing/decreasing
priority

• Example:
heap.add(o1); // Priority 7
heap.add(o2); // Priority 6
...
heap.add(o7); // Priority 5

• Later on:
heap.increasePriority(o7);

7 8

6 1

9

7 8

o2

o4

o3

o6o1o5o7

Done.

Monday, August 22, 2011

trickleDown versus
bubbleUp

• Increasing the priority of an item requires bubbleUp to be
called to maintain the heap condition.

• Decreasing the priority of an item requires trickleDown to be
called to maintain the heap condition.

• In some applications, the user may want to increase the priority
of items more frequently than they will decrease their priority.

• In this case, bubbleUp will be called more frequently than
trickleDown.

• By using a d-ary heap and setting d>2, the time cost of the
priority queue may be reduced compared to a binary heap.

Monday, August 22, 2011

Binary search trees

Monday, August 22, 2011

Still something to be
desired

• Heaps offer fast access to the largest element
in a collection.

• This is most useful in a priority queue.

• However, finding an arbitrary element is still
slow -- O(n) time.

• We may want to sacrifice efficiency of access
to the largest access in exchange for increased
efficiency to access any arbitrary element.

Monday, August 22, 2011

Binary search trees
• A binary search tree (BST) is a binary-tree based data

structure that offers O(log n) average-case time costs for:
add(o)
find(o)
remove(o)
findLargest/removeLargest(o)

• As with heaps, BSTs exploit the order relations among
elements.

• Heaps required the root node r of each sub-tree to be no
smaller than any descendant node of r.

• BSTs impose constraints on the magnitude of nodes in the
left sub-tree compared to the magnitude of nodes in the
right sub-tree.

Monday, August 22, 2011

Binary search trees
• More specifically, a binary search tree (BST) is a

binary tree (not necessarily complete) that has the
following (recursive) ordering property:

• For each node n:

• All nodes in the left sub-tree of n are “less
than” node n itself.

• All nodes in the right sub-tree of n are “greater
than” node n itself.

• Both the left and right sub-trees are
themselves BSTs. Recursive part

Base case? Implicit -- when there are no sub-trees.

Monday, August 22, 2011

Binary search trees

9

6

3 7

84

12

10 18

13

Left sub-tree < Node (9) < Right sub-tree

Monday, August 22, 2011

Binary search trees

9

6

3 7

84

12

10 18

13

Left sub-tree < Node (6) < Right sub-tree

Monday, August 22, 2011

Binary search trees

9

6

3 7

84

12

10 18

13

Note that this node must
still be greater than 9!

Monday, August 22, 2011

Binary search trees
• In our discussion, we will assume that the keys

added to the BST are unique:

• E.g., we disallow:
bst.add(5);
bst.add(6);
bst.add(7);
bst.add(5); // Error -- the BST already contains 5

• This simplifies the exposition slightly.

• Later, we can relax this restriction.

• In addition, we disallow null elements.

• Unclear what “value” they should have compared
to other elements.

Monday, August 22, 2011

Binary search trees
• Let us implement the following operations on BSTs:

• T find (T o);

• T findSmallest ();

• T findLargest ();

• add (T o);

• remove (T o);

• To accomplish this, we will also need a few helper
methods (not exposed to user):

• Node<T> findNode (Node<T> root, T o);

• Node<T> findSuccessor (Node<T> node);

• Node<T> findParent (Node<T> root, T o);

Monday, August 22, 2011

Finding the largest
element

• Due to the ordering property, finding the
largest element of a BST is easy -- we just
return the right-most node in the whole tree.

T findLargest (Node<T> root) {
 while (root._rightChild != null) {
 root = root._rightChild;
 }
 return root._data;
}

Monday, August 22, 2011

Finding the smallest
element

• Due to the ordering property, finding the
smallest element of a BST is easy -- we just
return the left-most node in the whole tree.

T findSmallest (Node<T> root) {
 while (root._leftChild != null) {
 root = root._leftChild;
 }
 return root._data;
}

Monday, August 22, 2011

Finding a node
• The ordering property of binary trees also enables

efficient search for any particular node.
// Returns the Node containing o, or else
// null if o is not contained in the BST.
Node<T> findNode (Node<T> root, T o) {
 if (root._data.equals(o) {
 return root;
 } else if (root._data.compareTo(o) < 0 && // Right subtree
 root._rightChild != null) {
 return findNode(root._rightChild, o);
 } else if (root._data.compareTo(o) > 0 && // Left subtree
 root._leftChild != null) {
 return findNode(root._leftChild, o);
 } else {
 return null;
 }
}

Due to the ordering property, there is only one
place in a given BST where value o would be
stored. If it’s not there, then o is not contained in
the BST -- hence, we return null.

Monday, August 22, 2011

Finding a node
• The findNode(root, o) method would not be

exposed to the user in the BinarySearchTree ADT
interface.

• However, we can “wrap” this method with T find (T
o) so that the underlying node infrastructure is hidden:

T findNode (T o) {
 if (_root == null) {
 return null;
 } else {
 final Node<T> node = findNode(_root, o);
 if (node == null) {
 return null;
 } else {
 return node._data;
 }
}

Monday, August 22, 2011

Finding a node’s successor
• It will turn out to be useful

to be able to find a node’s
successor in the BST.

• The successor of node n
is the node with the next
higher value.

9

6

3 7

84

12

10 18

13

Monday, August 22, 2011

Finding a node’s successor
• It will turn out to be useful

to be able to find a node’s
successor in the BST.

• The successor of node n
is the node with the next
higher value.

• Examples:
Successor of 3 is 4.
Successor or 4 is 6.
Successor of 12 is 13.
Successor of 8 is 9.

9

6

3 7

84

12

10 18

13

Monday, August 22, 2011

Finding a node’s successor
• It will turn out to be useful

to be able to find a node’s
successor in the BST.

• The successor of node n
is the node with the next
higher value.

• Examples:
Successor of 3 is 4.
Successor or 4 is 6.
Successor of 12 is 13.
Successor of 8 is 9.

9

6

3 7

84

12

10 18

13

Monday, August 22, 2011

Finding a node’s successor
• It will turn out to be useful

to be able to find a node’s
successor in the BST.

• The successor of node n
is the node with the next
higher value.

• Examples:
Successor of 3 is 4.
Successor or 4 is 6.
Successor of 12 is 13.
Successor of 8 is 9.

9

6

3 7

84

12

10 18

13

Monday, August 22, 2011

Finding a node’s successor
• It will turn out to be useful

to be able to find a node’s
successor in the BST.

• The successor of node n
is the node with the next
higher value.

• Examples:
Successor of 3 is 4.
Successor or 4 is 6.
Successor of 12 is 13.
Successor of 8 is 9.

9

6

3 7

84

12

10 18

13

Monday, August 22, 2011

Finding a node’s successor
• A successor node of n -- if it exists -- is found by either:

1. Descending into n’s right sub-tree, and then recursively
selecting left-child until no left child exists.

• Intuition: The right sub-tree has values bigger than n;
we want the smallest such value (left-most node).

2. Finding the lowest ancestor of n whose left child is also
an ancestor of n.

• Intuition: Move “up-and-left” in the BST until we can
finally “move right” again, i.e., towards a higher valued
node.

Monday, August 22, 2011

Finding a node’s successor

9

6

3 7

84

12

10 18

13

• A successor node of n -- if it exists --
is found by either:

1. Descending into n’s right sub-tree,
and then recursively selecting left-
child until no left child exists.

2. Finding the lowest ancestor of n
whose left child is also an ancestor
of n.

• Examples:
Successor of 3 is 4.
Successor or 4 is 6.
Successor of 12 is 13.
Successor of 8 is 9.

Monday, August 22, 2011

Finding a node’s successor

9

6

3 7

84

12

10 18

13

• A successor node of n -- if it exists --
is found by either:

1. Descending into n’s right sub-tree,
and then recursively selecting left-
child until no left child exists.

2. Finding the lowest ancestor of n
whose left child is also an ancestor
of n.

• Examples:
Successor of 3 is 4.
Successor or 4 is 6.
Successor of 12 is 13.
Successor of 8 is 9.

Monday, August 22, 2011

Finding a node’s successor
• The code for Node<T> findSuccessorNode

(Node<T> node) will be left as an “exercise for the
reader”.

Monday, August 22, 2011

Adding a new node
• To add a new node, we must distinguish two

cases:

1. The new node is the first node in the BST.

• In this case, we simply set this node to be
the root.

2. The new node is not the first node in the BST.

• Then we must find the parent node of the
node we’re about to add.

• We then add the new node as a child of the
parent.

Monday, August 22, 2011

Finding the parent of a
new node

• To find the parent node of the new node n we want
to add:

• Recursive search from root down towards the leaf
nodes, as if node n were already inserted.

• Eventually, while recursing at node p, the search for
the node would take us to a left/right child that does
not yet exist.

• At that point, we know p is the parent of n.

• p is the “natural insertion point” for n.

Monday, August 22, 2011

Finding the parent of a
new node

// Searches from root for the parent node to which the
// specified new node should be added.
Node<T> findParentNode (Node<T> root, T o) {
 // Save comparison result
 final int comparison = root._data.compareTo(o);

 if (comparison < 0 && root._rightChild != null) {
 return findParentNode(root._rightChild, o);
 } else if (comparison > 0 && root._leftChild != null) {
 return findParentNode(root._leftChild, o);
 } else { // The appropriate left/child does not yet exist
 return root; // Hence, we’ve found the parent
 }
}

Monday, August 22, 2011

Adding a new node
• We can now implement the add(o) method:

void add (T o) {
 final Node<T> node = new Node<T>();
 node._data = o;
 if (_root == null) { // Case 1
 _root = node;
 } else { // Case 2
 final Node<T> parent = findParent(_root, o);
 if (parent._data.compareTo(o) < 0) {
 parent._rightChild = node;
 } else {
 parent._leftChild = node;
 }
 }
}

Monday, August 22, 2011

Removing a node
• When removing a node n from the BST, we must ensure that:

• The resulting tree is still connected.

• The resulting tree still has the ordering property.

• Consider what might “go wrong” when removing an
arbitrary node n:

9

6

3 7

84

12

10 18

13

If we remove node 6,
then we sever its left and
right sub-trees from the
rest of the BST.

Monday, August 22, 2011

Removing a node
• When removing a node n from the BST, we must ensure that:

• The resulting tree is still connected.

• The resulting tree still has the ordering property.

• Consider what might “go wrong” when removing an
arbitrary node n:

9

3 7

84

12

10 18

13

If we remove node 6,
then we sever its left and
right sub-trees from the
rest of the BST.

Severed!

Monday, August 22, 2011

Removing a node
• When removing a node n from the BST, we must ensure that:

• The resulting tree is still connected.

• The resulting tree still has the ordering property.

• Consider what might “go wrong” when removing an
arbitrary node n:

9

6

3 7

84

12

10 18

13

If instead we replace n
with another node and
“reconnect” another
branch, we might violate
the ordering property.

Monday, August 22, 2011

Removing a node
• When removing a node n from the BST, we must ensure that:

• The resulting tree is still connected.

• The resulting tree still has the ordering property.

• Consider what might “go wrong” when removing an
arbitrary node n:

9

6

3 7

84

18

10 13

If instead we replace n
with another node and
“reconnect” another
branch, we might violate
the ordering property.

Ordering property
is now violated!

Monday, August 22, 2011

Removing a node
• To remove a node and still ensure the resulting

tree is a proper BST, we must distinguish three
cases:

1. n is a leaf node -- in this case, we just snip it off.

2. n is an internal node with only one child.

• We remove n and “splice around” it.

3. n is an internal node with two child nodes.

• We replace n with the value of its successor s,
and then remove s.

Monday, August 22, 2011

Removing a leaf node

9

6

3 7

84

12

10 18

13

9

6

3 7

4

12

10 18

13

Example: bst.remove(8);

Result: We still have a BST with the
ordering property preserved.

Just snip it off.

Monday, August 22, 2011

Removing a node with
one child node
9

6

3 7

84

12

10 18

13

9

6

3 8

4

12

10 18

13

Example: bst.remove(7);

Result: We still have a BST with the
ordering property preserved.

“Splice around” node 7.

Monday, August 22, 2011

Removing a node with
two child nodes

9

6

3 7

84

12

10 18

13

9

6

3 8

4

13

10 18

Example: bst.remove(12);

Result: We still have a BST with the
ordering property preserved.

Replace 12 with the value of its
successor; then remove the

successor node.
Monday, August 22, 2011

• When removing a node n with two children,
we replace n with the value of its successor s,
and then remove s itself.

• But what if s also has two children; then we
need to remove its successor, and so on.

• Will the “removal” process ever terminate?

• Yes -- if n has two children, then its
successor s cannot have a left-child. Why?

Removing the successor

Monday, August 22, 2011

• When removing a node n with two children,
we replace n with the value of its successor s,
and then remove s itself.

• But what if s also has two children; then we
need to remove its successor, and so on.

• Will the “removal” process ever terminate?

• Yes -- if n has two children, then its
successor s cannot have a left-child. Why?

• If it did, then that left child would be n’s
successor, and not s itself.

Removing the successor

Monday, August 22, 2011

Successor of node with
two children

20

12

10 18

13

• Example:

• Let n be node 12.

• Then n’s successor s is 13.

• s only has one child.

14

n

s

Monday, August 22, 2011

Successor of node with
two children

20

12

10 18

13

• Example:

• Let n be node 12.

• Then n’s successor s is 13.

• s only has one child.

• Suppose s had two children.

• Then it would have a left
child, x.

• Then x would have to be n’s
successor.

14x

Since x is still in
n’s right sub-tree,
x>12. And since x
is in s’s left sub-
tree, x<13. So, x is
n’s successor.

n

s

Monday, August 22, 2011

Successor of node with
two children

20

12

10 18

13

• We conclude (by way of
contradiction) that, if n has two
children, then its successor s
cannot have two children.

• Hence, removing s amounts to
either just “snipping it off” (case
1), or “slicing around it” (case 2).

• Hence, the remove method will
in fact terminate :-). 14x

n

s

Monday, August 22, 2011

remove(o)
• We can finally define the remove(o) method:

void remove (T o) {
 final Node<T> node = findNode(_root, o);
 removeNode(node);
}

void removeNode (Node<T> node) { // Helper method
 if (node._leftChild == null &&
 node._rightChild == null) {
 // “Snip” node from its parent
 } else if (node._leftChild == null ||
 node._rightChild == null) {
 // “Splice around” node
 } else {
 final Node<T> successor = findSuccessor(_root, o);
 node._data = successor._data;
 removeNode(successor);
 }
}

Monday, August 22, 2011

BSTs:
Time costs of methods
• All of the fundamental operations -- add

(o), find(o), remove(o), and findLargest/
findSmallest -- take time O(h), where h is
the height of the BST.

• In the average case, the height h of the BST
is log n.

• What about in the worst case?

Monday, August 22, 2011

BSTs:
Time costs of methods
• In the worst case, the user will call add and

remove in an “unfortunate” order, resulting in
a “degenerate” BST of the following variety:

20

12

18

33

...

The “BST” is just a
linked list!

• In this case, the
height of the BST is
n -- and hence the
fundamental BST
operations would
also be O(n).

Monday, August 22, 2011

Balancing BSTs

• To prevent this “worst-case” condition from
occurring, we need to employ some form of
“tree balancing” to keep the tree from
degenerating into a linked list.

• Two prominent data structures which ensure a
balanced tree include:

• AVL trees.

• Red-black trees.

• Next lecture...

Monday, August 22, 2011

