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Heaps, continued.
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Review from last lecture
• A heap is a complete binary tree whose last 

level of nodes is filled left-to-right and which 
satisfies the heap condition.

• Heap condition:

• The root of every sub-tree is no smaller than 
any node in the sub-tree. (For max-heap).

• The heap condition ensures that the largest 
element is always stored at the root:

• O(1) time-cost for findLargest

• O(log n) time-cost for removeLargest
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Adding to a heap

5

4 2

3 1

• To add a new object o to the heap:

• Create a new node n containing o, 
and add n to the last level of the 
tree (at the left-most position).

• This may violate the heap 
condition.

• Repeatedly “bubble up” n towards 
the root whenever n > parent(n).
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• To add a new object o to the heap:

• Create a new node n containing o, 
and add n to the last level of the 
tree (at the left-most position).

• This may violate the heap 
condition.

• Repeatedly “bubble up” n towards 
the root whenever n > parent(n).
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• To add a new object o to the heap:

• Create a new node n containing o, 
and add n to the last level of the 
tree (at the left-most position).

• This may violate the heap 
condition.

• Repeatedly “bubble up” n towards 
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Adding to a heap
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• To add a new object o to the heap:

• Create a new node n containing o, 
and add n to the last level of the 
tree (at the left-most position).

• This may violate the heap 
condition.

• Repeatedly “bubble up” n towards 
the root whenever n > parent(n).
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Adding to a heap

8

4 5

3 1 2

• To add a new object o to the heap:

• Create a new node n containing o, 
and add n to the last level of the 
tree (at the left-most position).

• This may violate the heap 
condition.

• Repeatedly “bubble up” n towards 
the root whenever n > parent(n).

The tree is now a valid 
heap again.
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Removing the largest 
element from a heap

• The largest element is always stored at the top of the heap.

• Hence, just remove the root.

• We must then replace it with something.

• Remove the last node n in the heap (right-most child of 
last level) and make it the new root of the tree.

• This may violate the heap condition.

• We will then have to recursively swap n with one of 
its children (i.e., back down the tree) until the heap 
condition is restored. This is called “trickling down”.
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Removing the largest 
element from a heap

void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the larger child node.
    index = largerChild(index);
}

or
void trickleDown (int index) {
  If node at index is less than one of its children:
    Swap node with the larger child node.
    trickleDown(largerChild(index));
}

Recursive 
implementation

Iterative 
implementation
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Removing the largest 
element from a heap

5 3

3 4

8

void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the larger child node.
    index = largerChild(index);
}

2
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Removing the largest 
element from a heap
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void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the larger child node.
    index = largerChild(index);
}
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Removing the largest 
element from a heap
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void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the larger child node.
    index = largerChild(index);
}
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Removing the largest 
element from a heap
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3 4
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void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the larger child node.
    index = largerChild(index);
}

True
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Removing the largest 
element from a heap

2 3

3 4
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void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the larger child node.
    index = largerChild(index);
}
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Removing the largest 
element from a heap
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void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the larger child node.
    index = largerChild(index);
}
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Removing the largest 
element from a heap

2 3

3 4
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void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the larger child node.
    index = largerChild(index);
}

True
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Removing the largest 
element from a heap

4 3

3 2

5

void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the larger child node.
    index = largerChild(index);
}

It’s crucial we swap with 
the larger child to maintain 

the heap condition.
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Removing the largest 
element from a heap
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void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the larger child node.
    index = largerChild(index);
}
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Removing the largest 
element from a heap

4 3

3 2

5

void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the larger child node.
    index = largerChild(index);
}

False
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Removing the largest 
element from a heap

4 3

3 2

5

void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the larger child node.
    index = largerChild(index);
}

Done.
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Finding an arbitrary node

• Heaps offer fast access to the largest node in the heap.

• However, despite their binary tree representation, they 
offer no advantage over simple lists in terms of finding 
an arbitrary element.

• If the element o that the user wishes to find is not 
the largest, then o could be anywhere in the heap.

• This contrasts with binary search trees (more later).

• Hence, to find an object o within a heap, we must 
search through the entire heap.
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Finding an arbitrary node
T find (T o) {
  final int index = findNode(0, o);
  if (index < 0) {
    throw new NoSuchElementException();
  }
  return _nodeArray[index];
}

int findNode (int rootIdx, T o) {
  if (_nodeArray[rootIdx].equals(o)) {
    return rootIdx;
  }

  int idx;
  if (leftChild(rootIdx) < _numNodes &&
      (idx = find(leftChild(rootIdx), o)) >= 0) {
    return idx;
  } else if (rightChild(rootIdx) < _numNodes &&
      (idx = find(rightChild(rootIdx), o)) >= 0) {
    return idx;
  } else {
    return -1;
  }
}

We could implement findNode 
by recursively searching 
through the entire tree.
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Finding an arbitrary node

int findNode (T o) {
  for (int i = 0; i < _numNodes; i++) {
    if (_nodeArray[i].equals(o)) {
      return i;
    }
  }
}

But this is much easier (and slightly faster too).

• This is one of the conveniences of 
representing the tree as an array.

• Only possible for complete trees in 
which there are no “holes” in the 
array (i.e., missing child nodes).
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Removing an arbitrary node

• Removing an arbitrary node requires that we first 
find the node n to be removed.

• We can use the findNode(index, o) method we 
just constructed.

• Once found, we can swap the last node in the heap 
(right-most child of last level) with n.

• Then we just trickleDown that node and we’re 
done, right?
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Removing an arbitrary node

Wrong.

• Removing an arbitrary node requires that we first 
find the node n to be removed.

• We can use the findNode(index, o) method we 
just constructed.

• Once found, we can swap the last node in the heap 
(right-most child of last level) with n.

• Then we just trickleDown that node and we’re 
done, right?
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Removing an arbitrary node
• The above procedure worked for removeLargest() 

because we always started from the top (root) of 
the heap.

• By trickling down from the top, we guarantee that 
every sub-tree (starting from the very top) is a 
valid heap.

• When removing an arbitrary node, the trickleDown 
process will “fix” the sub-tree rooted at n, but not 
necessarily the whole tree.

• What’s an example heap in which this problem 
would arise?
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Removing an arbitrary node

5 8

4 1

9

7 8

3 6...

• Suppose we wish to remove the node containing 4.

• If we just replace it with the “last” node (6)...

Valid heap.
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Removing an arbitrary node

5 8

6 1

9

7 8

3 ...

• ...then the trickleDown() method will do nothing (6 
is already bigger than its children).

• Moreover, 6 is now bigger than its parent -- a violation 
of the heap condition.

Invalid heap.
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Removing an arbitrary node
• In a correct implementation of remove(o) for 

arbitrary o, we need to sometimes bubbleUp and 
sometimes trickleDown:

void remove (T o) {
  Find the node n containing o.
  Replace n with the “last” node l in the heap.
  If n > l:
    trickleDown on n.
  Else:
    bubbleUp on n.
}
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Removing an arbitrary node
• In a correct implementation of remove(o) for 

arbitrary o, we need to sometimes bubbleUp and 
sometimes trickleDown:

void remove (T o) {
  Find the node n containing o.
  Replace n with the “last” node l in the heap.
  If n > l:
    trickleDown on n.
  Else:
    bubbleUp on n.
}

5 8

4 1

9

7 8

3 6...

Valid heap.n

l
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Removing an arbitrary node
• In a correct implementation of remove(o) for 
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Removing an arbitrary node
• In a correct implementation of remove(o) for 

arbitrary o, we need to sometimes bubbleUp and 
sometimes trickleDown:

void remove (T o) {
  Find the node n containing o.
  Replace n with the “last” node l in the heap.
  If n > l:  // n was 4, l is 6
    trickleDown on n.
  Else:
    bubbleUp on n.
}
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Removing an arbitrary node
• In a correct implementation of remove(o) for 
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void remove (T o) {
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Removing an arbitrary node
• In a correct implementation of remove(o) for 

arbitrary o, we need to sometimes bubbleUp and 
sometimes trickleDown:

void remove (T o) {
  Find the node n containing o.
  Replace n with the “last” node l in the heap.
  If n > l:  // n was 4, l is 6
    trickleDown on n.
  Else:
    bubbleUp on n.
}

6 8

5 1

9

7 8

3 ...

Valid heap 
again.
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Heap operations: time costs
• The implementations for the add/find/removeLargest/remove 

methods depend on the methods bubbleUp and trickleDown.

• void bubbleUp (int idx) {
  While node at idx is “larger” than its parent:
    Swap data in the node and its parent;
    Set idx to be parentIdx(idx);
}

• At each loop iteration, idx moves one step closer from a 
leaf to the root of the heap.

• Hence, loop can execute maximum of h times (h is tree 
height). For heap of n nodes, h is log2(n).

• Inside loop, the time cost is about 2 operations.

• Hence, time cost is O(log n).

Why?
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Heap operations: time costs

• void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the larger child node.
    index = largerChild(index);
}

• At each loop iteration, idx moves one step closer from the 
root of the heap to a leaf.

• Hence, number of iterations is bounded by h = log2(n).

• Inside loop, the time cost is about 2 operations.

• Hence, time cost is O(log n).
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Heap operations: time costs
• Given the time costs of bubbleUp and 

trickleDown, we can compute the worst-case time 
costs of the fundamental heap operations:

• add(o): O(1)+O(log n) = O(log n)

• Append a new node to the heap. O(1)

• Bubble it up. O(log n)

• removeLargest(): O(1)+O(log n) = O(log n)

• Swap last node with root. O(1)

• Trickle root down. O(log n)
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Heap operations: time costs

• find(o): O(n)

• Search through all nodes. O(n)

• remove(): O(n)+O(1)+O(log n) = O(n)

• Find the node. O(n)

• Swap node-to-remove with root. O(1)

• Either trickle node down or bubble it up. O(log n)
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General heaps
• We have just described the minimal implementation 

of a binary heap.

• Binary heaps are the most common.

• In theory, however, any tree can be a heap as long as 
it satisfies the heap condition that the root of every 
sub-tree is no smaller than any node in the sub-
tree.

• In particular, we can define a d-ary tree in which 
each node has d child nodes (instead of always 2).
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d-ary heaps

5 1

9

7 8

...
...

4 6

6

-2

...
...

3-ary 
(ternary) 

heap

4-ary 
(quaternary) 

heap

2 3

7

1

d-ary 
heap

...

...

...

d children

d children
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d-ary heaps: Why?
• d-ary heaps can offer a time cost savings compared 

to binary heaps.

• Consider:

• The height h of a binary heap is at most log2(n).

• The height h of a ternary heap is at most log3(n).

• The height h of a d-ary heap is at most logd(n).

• As the base of the logarithm (d) gets larger, the value 
of the logarithm itself grows smaller.

• Hence, for larger d, operations that depend on the 
height of the tree will become faster.
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d-ary heaps: Why?
• On the other hand, as d increases, so does the number of 

children per node.

• The time cost of trickleDown (but not bubbleUp) is 
affected by the number of children:
void trickleDown (int index) {
  While node at index is less than one of its children:
    ...
}

• Each loop iteration implicitly requires a comparison to all 
d children.

• The loop runs for at most h iterations (h = logd n), and 
each iteration takes at least d operations.

• Hence, time cost for trickleDown is O(hd) = O(d logd n).
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bubbleUp: O(logd n)

bubbleUp is faster 
when d is large.
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trickleDown versus 
bubbleUp

• When would calls to bubbleUp occur more frequently 
than calls to trickleDown?

• Consider the use of a heap in implementing a priority 
queue.

• In priority queues, we want fast access to “highest 
priority” item.

• Priority queues sometimes offer increasePriority(o) 
and decreasePriority(o) methods.

• These allow the user to modify data in the heap without 
having to remove and then add it again.
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Increasing/decreasing 
priority

• Example:
heap.add(o1);  // Priority 7
heap.add(o2);  // Priority 6
...
heap.add(o7);  // Priority 5 6 8

6 1

9

7 8

o2

o4

o3

o6o1o5o7
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Increasing/decreasing 
priority

• Example:
heap.add(o1);  // Priority 7
heap.add(o2);  // Priority 6
...
heap.add(o7);  // Priority 5

• Later on:
heap.increasePriority(o7);

6 8

7 1

9

7 8

o2

o4

o3

o6o1o5o7

Now we need to 
bubbleUp o7.
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Increasing/decreasing 
priority

• Example:
heap.add(o1);  // Priority 7
heap.add(o2);  // Priority 6
...
heap.add(o7);  // Priority 5

• Later on:
heap.increasePriority(o7);

7 8

6 1

9

7 8

o2

o4

o3

o6o1o5o7

Done.

Monday, August 22, 2011



trickleDown versus 
bubbleUp

• Increasing the priority of an item requires bubbleUp to be 
called to maintain the heap condition.

• Decreasing the priority of an item requires trickleDown to be 
called to maintain the heap condition.

• In some applications, the user may want to increase the priority 
of items more frequently than they will decrease their priority.

• In this case, bubbleUp will be called more frequently than 
trickleDown.

• By using a d-ary heap and setting d>2, the time cost of the 
priority queue may be reduced compared to a binary heap.
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Binary search trees
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Still something to be 
desired

• Heaps offer fast access to the largest element 
in a collection.

• This is most useful in a priority queue.

• However, finding an arbitrary element is still 
slow -- O(n) time.

• We may want to sacrifice efficiency of access 
to the largest access in exchange for increased 
efficiency to access any arbitrary element.
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Binary search trees
• A binary search tree (BST) is a binary-tree based data 

structure that offers O(log n) average-case time costs for:
add(o)
find(o)
remove(o)
findLargest/removeLargest(o)

• As with heaps, BSTs exploit the order relations among 
elements.

• Heaps required the root node r of each sub-tree to be no 
smaller than any descendant node of r.

• BSTs impose constraints on the magnitude of nodes in the 
left sub-tree compared to the magnitude of nodes in the 
right sub-tree.
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Binary search trees
• More specifically, a binary search tree (BST) is a 

binary tree (not necessarily complete) that has the 
following (recursive) ordering property:

• For each node n:

• All nodes in the left sub-tree of n are “less 
than” node n itself.

• All nodes in the right sub-tree of n are “greater 
than” node n itself.

• Both the left and right sub-trees are 
themselves BSTs. Recursive part

Base case? Implicit -- when there are no sub-trees.
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Binary search trees

9

6

3 7

84

12

10 18

13

Left sub-tree < Node (9) < Right sub-tree

Monday, August 22, 2011



Binary search trees

9

6

3 7

84

12

10 18

13

Left sub-tree < Node (6) < Right sub-tree

Monday, August 22, 2011



Binary search trees

9

6

3 7

84

12

10 18

13

Note that this node must 
still be greater than 9!
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Binary search trees
• In our discussion, we will assume that the keys 

added to the BST are unique:

• E.g., we disallow:
bst.add(5);
bst.add(6);
bst.add(7);
bst.add(5);  // Error -- the BST already contains 5

• This simplifies the exposition slightly.

• Later, we can relax this restriction.

• In addition, we disallow null elements.

• Unclear what “value” they should have compared 
to other elements.
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Binary search trees
• Let us implement the following operations on BSTs:

• T find (T o);

• T findSmallest ();

• T findLargest ();

• add (T o);

• remove (T o);

• To accomplish this, we will also need a few helper 
methods (not exposed to user):

• Node<T> findNode (Node<T> root, T o);

• Node<T> findSuccessor (Node<T> node);

• Node<T> findParent (Node<T> root, T o);
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Finding the largest 
element

• Due to the ordering property, finding the 
largest element of a BST is easy -- we just 
return the right-most node in the whole tree.

T findLargest (Node<T> root) {
  while (root._rightChild != null) {
    root = root._rightChild;
  }
  return root._data;
}
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Finding the smallest 
element

• Due to the ordering property, finding the 
smallest element of a BST is easy -- we just 
return the left-most node in the whole tree.

T findSmallest (Node<T> root) {
  while (root._leftChild != null) {
    root = root._leftChild;
  }
  return root._data;
}
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Finding a node
• The ordering property of binary trees also enables 

efficient search for any particular node.
// Returns the Node containing o, or else
// null if o is not contained in the BST.
Node<T> findNode (Node<T> root, T o) {
  if (root._data.equals(o) {
    return root;
  } else if (root._data.compareTo(o) < 0 && // Right subtree
             root._rightChild != null) {
      return findNode(root._rightChild, o);
  } else if (root._data.compareTo(o) > 0 && // Left subtree
             root._leftChild != null) {
     return findNode(root._leftChild, o);
  } else {
    return null;
  }
}

Due to the ordering property, there is only one 
place in a given BST where value o would be 
stored. If it’s not there, then o is not contained in 
the BST -- hence, we return null.
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Finding a node
• The findNode(root, o) method would not be 

exposed to the user in the BinarySearchTree ADT 
interface.

• However, we can “wrap” this method with T find (T 
o) so that the underlying node infrastructure is hidden:

T findNode (T o) {
  if (_root == null) {
    return null;
  } else {
    final Node<T> node = findNode(_root, o);
    if (node == null) {
      return null;
    } else {
      return node._data;
  }
}
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Finding a node’s successor
• It will turn out to be useful 

to be able to find a node’s 
successor in the BST.

• The successor of node n 
is the node with the next 
higher value.

9

6

3 7

84

12

10 18

13
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Finding a node’s successor
• It will turn out to be useful 

to be able to find a node’s 
successor in the BST.

• The successor of node n 
is the node with the next 
higher value.

• Examples:
Successor of 3 is 4.
Successor or 4 is 6.
Successor of 12 is 13.
Successor of 8 is 9.
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3 7
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10 18

13
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Finding a node’s successor
• It will turn out to be useful 

to be able to find a node’s 
successor in the BST.
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Finding a node’s successor
• A successor node of n -- if it exists -- is found by either:

1. Descending into n’s right sub-tree, and then recursively 
selecting left-child until no left child exists.

• Intuition: The right sub-tree has values bigger than n; 
we want the smallest such value (left-most node).

2. Finding the lowest ancestor of n whose left child is also 
an ancestor of n.

• Intuition: Move “up-and-left” in the BST until we can 
finally “move right” again, i.e., towards a higher valued 
node.
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Finding a node’s successor
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• A successor node of n -- if it exists -- 
is found by either:

1. Descending into n’s right sub-tree, 
and then recursively selecting left-
child until no left child exists.

2. Finding the lowest ancestor of n 
whose left child is also an ancestor 
of n.

• Examples:
Successor of 3 is 4.
Successor or 4 is 6.
Successor of 12 is 13.
Successor of 8 is 9.
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• A successor node of n -- if it exists -- 
is found by either:

1. Descending into n’s right sub-tree, 
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child until no left child exists.
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Finding a node’s successor
• The code for Node<T> findSuccessorNode 

(Node<T> node) will be left as an “exercise for the 
reader”.
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Adding a new node
• To add a new node, we must distinguish two 

cases:

1. The new node is the first node in the BST.

• In this case, we simply set this node to be 
the root.

2. The new node is not the first node in the BST.

• Then we must find the parent node of the 
node we’re about to add.

• We then add the new node as a child of the 
parent.
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Finding the parent of a 
new node

• To find the parent node of the new node n we want 
to add:

• Recursive search from root down towards the leaf 
nodes, as if node n were already inserted.

• Eventually, while recursing at node p, the search for 
the node would take us to a left/right child that does 
not yet exist.

• At that point, we know p is the parent of n.

• p is the “natural insertion point” for n.
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Finding the parent of a 
new node

// Searches from root for the parent node to which the
// specified new node should be added.
Node<T> findParentNode (Node<T> root, T o) {
  // Save comparison result
  final int comparison = root._data.compareTo(o);

  if (comparison < 0 && root._rightChild != null) {
    return findParentNode(root._rightChild, o);
  } else if (comparison > 0 && root._leftChild != null) {
    return findParentNode(root._leftChild, o);
  } else {  // The appropriate left/child does not yet exist
    return root;  // Hence, we’ve found the parent
  }
}
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Adding a new node
• We can now implement the add(o) method:

void add (T o) {
  final Node<T> node = new Node<T>();
  node._data = o;
  if (_root == null) {  // Case 1
    _root = node;
  } else {              // Case 2
    final Node<T> parent = findParent(_root, o);
    if (parent._data.compareTo(o) < 0) { 
      parent._rightChild = node;
    } else {
      parent._leftChild = node;
    }
  }
}
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Removing a node
• When removing a node n from the BST, we must ensure that:

• The resulting tree is still connected.

• The resulting tree still has the ordering property.

• Consider what might “go wrong” when removing an 
arbitrary node n:
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If we remove node 6, 
then we sever its left and 
right sub-trees from the 
rest of the BST.
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Removing a node
• When removing a node n from the BST, we must ensure that:

• The resulting tree is still connected.

• The resulting tree still has the ordering property.

• Consider what might “go wrong” when removing an 
arbitrary node n:

9

3 7

84

12

10 18

13

If we remove node 6, 
then we sever its left and 
right sub-trees from the 
rest of the BST.

Severed!
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Removing a node
• When removing a node n from the BST, we must ensure that:

• The resulting tree is still connected.

• The resulting tree still has the ordering property.

• Consider what might “go wrong” when removing an 
arbitrary node n:
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If instead we replace n 
with another node and 
“reconnect” another 
branch, we might violate 
the ordering property.
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Removing a node
• When removing a node n from the BST, we must ensure that:

• The resulting tree is still connected.

• The resulting tree still has the ordering property.

• Consider what might “go wrong” when removing an 
arbitrary node n:
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If instead we replace n 
with another node and 
“reconnect” another 
branch, we might violate 
the ordering property.

Ordering property 
is now violated!
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Removing a node
• To remove a node and still ensure the resulting 

tree is a proper BST, we must distinguish three 
cases:

1. n is a leaf node -- in this case, we just snip it off.

2. n is an internal node with only one child.

• We remove n and “splice around” it.

3. n is an internal node with two child nodes.

• We replace n with the value of its successor s, 
and then remove s.
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Removing a leaf node
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Example:  bst.remove(8);

Result: We still have a BST with the 
ordering property preserved.

Just snip it off.
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Removing a node with 
one child node
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Example:  bst.remove(7);

Result: We still have a BST with the 
ordering property preserved.

“Splice around” node 7.
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Removing a node with 
two child nodes
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Example:  bst.remove(12);

Result: We still have a BST with the 
ordering property preserved.

Replace 12 with the value of its 
successor; then remove the 

successor node.
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• When removing a node n with two children, 
we replace n with the value of its successor s, 
and then remove s itself.

• But what if s also has two children; then we 
need to remove its successor, and so on.

• Will the “removal” process ever terminate?

• Yes -- if n has two children, then its 
successor s cannot have a left-child. Why?

Removing the successor
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• When removing a node n with two children, 
we replace n with the value of its successor s, 
and then remove s itself.

• But what if s also has two children; then we 
need to remove its successor, and so on.

• Will the “removal” process ever terminate?

• Yes -- if n has two children, then its 
successor s cannot have a left-child. Why?

• If it did, then that left child would be n’s 
successor, and not s itself.

Removing the successor
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Successor of node with 
two children
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• Example:

• Let n be node 12.

• Then n’s successor s is 13.

• s only has one child.

14

n

s

Monday, August 22, 2011



Successor of node with 
two children
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• Example:

• Let n be node 12.

• Then n’s successor s is 13.

• s only has one child.

• Suppose s had two children.

• Then it would have a left 
child, x.

• Then x would have to be n’s 
successor.

14x

Since x is still in 
n’s right sub-tree, 
x>12. And since x 
is in s’s left sub-
tree, x<13. So, x is 
n’s successor.

n

s
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Successor of node with 
two children
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• We conclude (by way of 
contradiction) that, if n has two 
children, then its successor s 
cannot have two children.

• Hence, removing s amounts to 
either just “snipping it off” (case 
1), or “slicing around it” (case 2).

• Hence, the remove method will 
in fact terminate :-). 14x

n

s
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remove(o)
• We can finally define the remove(o) method:

void remove (T o) {
  final Node<T> node = findNode(_root, o);
  removeNode(node);
}

void removeNode (Node<T> node) {  // Helper method
  if (node._leftChild == null &&
      node._rightChild == null) {
    // “Snip” node from its parent
  } else if (node._leftChild == null ||
      node._rightChild == null) {
    // “Splice around” node
  } else {
    final Node<T> successor = findSuccessor(_root, o);
    node._data = successor._data;
    removeNode(successor);
  }
}
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BSTs:
Time costs of methods
• All of the fundamental operations -- add

(o), find(o), remove(o), and findLargest/
findSmallest -- take time O(h), where h is 
the height of the BST.

• In the average case, the height h of the BST 
is log n.

• What about in the worst case?
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BSTs:
Time costs of methods
• In the worst case, the user will call add and 

remove in an “unfortunate” order, resulting in 
a “degenerate” BST of the following variety:

20

12

18

33

...

The “BST” is just a 
linked list!

• In this case, the 
height of the BST is 
n -- and hence the 
fundamental BST 
operations would 
also be O(n).
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Balancing BSTs

• To prevent this “worst-case” condition from 
occurring, we need to employ some form of 
“tree balancing” to keep the tree from 
degenerating into a linked list.

• Two prominent data structures which ensure a 
balanced tree include:

• AVL trees.

• Red-black trees.

• Next lecture...
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