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More on BSTs.
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Maintaining balance
• The time cost of the fundamental add/

find/remove operations in BSTs 
depends on the height of the BST.

• Given an “unfortunate” sequence of 
add/remove operations, the BST can 
“degenerate” into a long “chain” of 
nodes of height n.

• Hence, in the worst case, the time 
cost of the fundamental BST 
operations is O(n).

• It would be beneficial to prevent this 
worst case from ever occurring.
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Maintaining balance
• Fortunately, it turns out that BSTs 

can be “fixed” to store the same 
elements, but to have a smaller 
height.

• Consider the BST on the right 
(with root r) with height 3.

• It is unbalanced -- height of left 
sub-tree is 0, height of right 
sub-tree is 2. 

• We can “fix” this BST to have 
equal height on both sub-trees by 
“rotating” node n towards r.
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Maintaining balance
• Fortunately, it turns out that BSTs 

can be “fixed” to store the same 
elements, but to have a smaller 
height.

• Consider the BST on the right 
(with root r) with height 3.

• It is unbalanced -- height of left 
sub-tree is 0, height of right 
sub-tree is 2. 

• We can “fix” this BST to have 
equal height on both sub-trees by 
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Maintaining balance
• By rotating nodes to either “up-to-the-left” or “up-

to-the-right”, we can restore balance to a BST and 
thereby decrease its height.

• The rotations will take place whenever the user 
adds or removes a node from the BST.

• By rotating properly, we can ensure that the BST 
remains balanced or “almost balanced” at all times.

• This system of node rotations was first developed 
in 1962 by G.M. Adelson-Velskii and E.M. Landis; 
hence, we call this technique an AVL-tree.
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AVL trees
• An AVL tree is a BST in which two kinds of 

rotations -- left-rotations and right-rotations -- are 
applied to nodes as necessary, in order to keep 
the balance of each sub-tree within certain limits.

• The balance of a node n is the difference in height 
between n’s left sub-tree minus its right sub-tree.

• A non-existent sub-tree is defined to have 
height 0.

• Rotations are applied to nodes during the add 
and remove methods to keep every node’s 
balance within -1 and +1 (inclusive).
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Height and balance
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Height and balance

• AVL trees require that each node n 
record its balance as well as the 
height of the sub-tree rooted at n.

• We can store these as extra 
instance variables in the Node 
class:

class Node<T> {
  Node<T> _parent;
  Node<T> _leftChild, _rightChild;
  int _balance, _height;
}
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h=0, b=0

h=0, b=0
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Adding a new node

• Whenever we add a new 
node n, we set its _height 
and _balance both to 0.

• We attach n as a left/right 
child of its parent.

• We must then recursively 
update the height and 
balance of all nodes from n 
up through the root of the 
whole BST.
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Adding a new node

• Whenever we add a new 
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Adding a new node

• Whenever we add a new 
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Adding a new node

• Whenever we add a new 
node n, we set its _height 
and _balance both to 0.

• We attach n as a left/right 
child of its parent.

• We must then recursively 
update the height and 
balance of all nodes from n 
up through the root of the 
whole BST.
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Correcting imbalances
• Suppose, when recursively updating the 

height and balance data, we determine that 
the balance of a node n is either -2 or +2.

• n is considered imbalanced.

• Then we must apply an AVL rotation to 
correct the imbalance.

• Different rotations apply to different node 
configurations...
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Imbalanced node configurations

a

cb

d e

Subtrees

Balance = +2

The Left child’s Left sub-tree 
of a is 2 higher than a’s right 
sub-tree.

This case is called LL.
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Imbalanced node configurations
Balance = -2

The Right child’s Right sub-tree 
of a is 2 higher than a’s left 
sub-tree.

This case is called RR.
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Imbalanced node configurations
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d e

Balance = +2

The Left child’s Right sub-tree 
of a is 2 higher than a’s right 
sub-tree.

This case is called LR.
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Imbalanced node configurations
Balance = -2

The Right child’s Left sub-tree 
of a is 2 higher than a’s left 
sub-tree.

This case is called RL.
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c b

e d
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Fixing configuration LL

a

cb

d e

Right 
rotation

• To fix the imbalance in node a, we will perform 
a right rotation of node b towards a.

Original tree
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Fixing configuration LL

a

cb

d e

Right 
rotation

• To fix the imbalance in node a, we will perform 
a right rotation of node b towards a.
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Make a the right child of 
b, and make b the new 
root of the sub-tree.
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Original tree
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Fixing configuration LL

a

cb

d e

Right 
rotation

• To fix the imbalance in node a, we will perform 
a right rotation of node b towards a.

b

a

e c

Add e as the left child of a.

d

Original tree
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Fixing configuration LL

a

cb

d e

Right 
rotation

• To fix the imbalance in node a, we will perform 
a right rotation of node b towards a.

b

ad

e c

Original tree

Balance = 0
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Fixing configuration RR

Left 
rotation

• To fix the imbalance in node a, we will perform 
a left rotation of node b towards a.

a

c b

e d

Original tree
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Fixing configuration RR

Left 
rotation

• To fix the imbalance in node a, we will perform 
a left rotation of node b towards a.
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c b

e d

Original tree
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Fixing configuration RR

Left 
rotation

• To fix the imbalance in node a, we will perform 
a left rotation of node b towards a.

a

c b

e d

Original tree

b

d

c

Make a the right child of 
b, and make b the new 
root of the sub-tree.

a
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Fixing configuration RR

Left 
rotation

• To fix the imbalance in node a, we will perform 
a left rotation of node b towards a.
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c b

e d

Original tree

b

da

e

Add e as the left child of a.

c
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Fixing configuration RR

Left 
rotation

• To fix the imbalance in node a, we will perform 
a left rotation of node b towards a.

a

c b

e d

Original tree

b

da

ec

Balance = 0
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Imbalanced node configurations

• Note how LL and RR, as well as LR and RL, are 
symmetric to each other.

• LL is fixed by right rotating a.

• RR is fixed by Ieft rotating a.

• The other two cases -- LR and RL -- can be fixed 
by two rotations in succession.
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Fixing configuration LR
• To fix the imbalance in node a, we will first 

perform a left rotation of node e towards b.
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Original tree

Left 
rotation
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Fixing configuration LR
• To fix the imbalance in node a, we will first 

perform a left rotation of node e towards b.
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Original tree
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Fixing configuration LR

a

cb

d e

Original tree

a

c

b

d

e

Now we’re back to LL -- and 
we already know how to 
correct this (by applying a 
right rotation of e towards a).

• To fix the imbalance in node a, we will first 
perform a left rotation of node e towards b.
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Fixing configuration LR

• Now we perform a right rotation of e towards a.

a

cb

d e

Original tree

a

c

b

d

e

Right 
rotation

Now we’re back to LL -- and 
we already know how to 
correct this (by applying a 
right rotation of e towards a).
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Fixing configuration LR

• Now we perform a right rotation of e towards a.

a

cb

d e

Original tree

a

c

b

d

e Balance = 0
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Fixing configuration RL
• Fixing configuration RL is 

exactly symmetric to fixing LR:

• First apply a right rotation of 
e towards b.

• This returns the 
configuration to RR.

• Then apply a left rotation of e 
towards a.

• Left as an “exercise for the 
reader”.

Balance = -2
a

c b

e d
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Removing a new node

h=3, b=-2

h=1, b=-1

h=0, b=0

h=0, b=0
n

h=2, b=1

• When we remove a node n, we 
must distinguish the three cases as 
outlined last lecture:

• n is a leaf node.

• n has only one child.

• n has two children.

• After removing n, we must update 
the height and balance of all nodes 
between n and the root.

h=0, b=0
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Removing a new node
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h=0, b=0

h=0, b=0

h=1, b=0

• When we remove a node n, we 
must distinguish the three cases as 
outlined last lecture:

• n is a leaf node.

• n has only one child.

• n has two children.

• After removing n, we must update 
the height and balance of all nodes 
between n and the root.
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Removing a new node

h=2, b=-1

h=0, b=0

h=0, b=0

h=1, b=0

• When we remove a node n, we 
must distinguish the three cases as 
outlined last lecture:

• n is a leaf node.

• n has only one child.

• n has two children.

• After removing n, we must update 
the height and balance of all nodes 
between n and the root.

• Might require an AVL rotation.
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AVL trees
• Through storing the height and balance of each node and 

implementing AVL rotations as necessary, we can ensure 
that the BST is never “more imbalanced” than +1 or -1.

• This yields a BST for which h=O(log n) in the worst 
case, not just the average case.

• The AVL rotations themselves take O(1) time.

• Each rotation takes a constant number of “node 
switches”.

• Hence, with AVL trees, the fundamental tree 
operations add, find, and remove all operate in
O(log n) time worst-case.
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Duplicate keys
• With “regular” BSTs, the downside of storing 

multiple elements with the same key was 
primarily related to performance:

• Adding multiple elements of the same keys 
requires unnecessary node storage and slows 
down the tree operations.

• However, with AVL trees, allowing duplicates 
would cause a problem in correctness:

• Rotating nodes where duplicate keys are 
allowed can violate the BST ordering property.
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Duplicate keys
• Consider:

• To allow duplicates in a BST, we might “relax” 
the ordering condition slightly:

• Given node n, every node in n’s left sub-
tree should be less-than-or-equal-to n.

• Every node in n’s right sub-tree should be 
greater than n.

• The findNode method will rely on this 
ordering property to find a given node 
properly.
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Duplicate keys

5

c5

d e

a

b

• However, a problem arises when we start rotating 
nodes in a sub-tree:

• Suppose a and b have the same key (e.g., 5).
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Duplicate keys

5

c5

d e

Right 
rotation

5

5d

e c

a

b

• However, a problem arises when we start rotating 
nodes in a sub-tree:

• Suppose a and b have the same key (e.g., 5).

• Suppose we then right-rotate b towards a.

b

a
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Duplicate keys

5

5d

e c

• Now, suppose we want to find node a starting at 
the root (node b).

• We will descend the wrong sub-tree of b.

• We will never find a.

b

a
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Duplicate keys

• One solution is to:

• Disallow multiple nodes 
with the same key.

• Whenever we add an 
element with the same 
key, we append that new 
element to that node’s 
list of objects. 
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e

a, b, ...
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