CSE I2:

Basic data structures and object-oriented design
 Jacob Whitehill jake@mplab.ucsd.edu

Lecture Thirteen
23 Aug 2011

More on BSTs.

Maintaining balance

- The time cost of the fundamental add/ find/remove operations in BSTs depends on the height of the BST.
- Given an "unfortunate" sequence of add/remove operations, the BST can "degenerate" into a long "chain" of nodes of height n.

- It would be beneficial to prevent this worst case from ever occurring.

Maintaining balance

- Fortunately, it turns out that BSTs can be "fixed" to store the same elements, but to have a smaller height.
- Consider the BST on the right (with root r) with height 3.
- It is unbalanced -- height of left sub-tree is 0 , height of right sub-tree is 2 .
- We can "fix" this BST to have equal height on both sub-trees by "rotating" node n towards r.

Maintaining balance

- Fortunately, it turns out that BSTs can be "fixed" to store the same elements, but to have a smaller height.
- Consider the BST on the right (with root r) with height 3.

- It is unbalanced -- height of left sub-tree is 0 , height of right sub-tree is 2 .
- We can "fix" this BST to have equal height on both sub-trees by

New root is n. Height of BST is 2 .
Left and right sub-trees both have height I (the BST is balanced). "rotating" node n towards r.

Maintaining balance

- By rotating nodes to either "up-to-the-left" or "up-to-the-right", we can restore balance to a BST and thereby decrease its height.
- The rotations will take place whenever the user adds or removes a node from the BST.
- By rotating properly, we can ensure that the BST remains balanced or "almost balanced" at all times.
- This system of node rotations was first developed in I962 by G.M.Adelson-Velskii and E.M. Landis; hence, we call this technique an AVL-tree.

AVL trees

- An AVL tree is a BST in which two kinds of rotations -- left-rotations and right-rotations -- are applied to nodes as necessary, in order to keep the balance of each sub-tree within certain limits.
- The balance of a node n is the difference in height between n's left sub-tree minus its right sub-tree.
- A non-existent sub-tree is defined to have height 0 .
- Rotations are applied to nodes during the add and remove methods to keep every node's balance within $-I$ and $+I$ (inclusive).

Height and balance

Balance $=-2$
Balance $=+1$
Balance $=0$

Height and balance

- AVL trees require that each node n record its balance as well as the height of the sub-tree rooted at n.
- We can store these as extra instance variables in the Node class:


```
class Node<T> {
    Node<T> _parent;
    Node<T> _leftChild, rightChild;
    int balance, height;
}
```


Adding a new node

- Whenever we add a new node n, we set its _height and _balance both to 0 .
- We attach n as a left/right child of its parent.
- We must then recursively
 update the height and balance of all nodes from n up through the root of the whole BST.

Adding a new node

- Whenever we add a new node n, we set its _height and _balance both to 0 .
- We attach n as a left/right child of its parent.
- We must then recursively
 update the height and balance of all nodes from n up through the root of the whole BST.

Adding a new node

- Whenever we add a new node n, we set its _height and _balance both to 0 .
- We attach n as a left/right child of its parent.
- We must then recursively update the height and balance of all nodes from n
 up through the root of the whole BST.

Adding a new node

- Whenever we add a new node n, we set its _height and _balance both to 0 .
- We attach n as a left/right child of its parent.
- We must then recursively update the height and balance of all nodes from n
 up through the root of the whole BST.

Adding a new node

- Whenever we add a new node n, we set its _height and _balance both to 0 .
- We attach n as a left/right child of its parent.
- We must then recursively update the height and balance of all nodes from n
 up through the root of the whole BST.

Correcting imbalances

- Suppose, when recursively updating the height and balance data, we determine that the balance of a node n is either -2 or +2 .
- n is considered imbalanced.
- Then we must apply an AVL rotation to correct the imbalance.
- Different rotations apply to different node configurations...

Imbalanced node configurations

The Left child's Left sub-tree of a is $\mathbf{2}$ higher than a's right sub-tree.

This case is called LL.

$$
\text { Balance }=+2
$$

Imbalanced node configurations

The Right child's Right sub-tree of a is 2 higher than a's left sub-tree.

This case is called $R R$.

Imbalanced node configurations

The Left child's Right sub-tree of a is 2 higher than a's right sub-tree.

This case is called LR.

Imbalanced node configurations

The Right child's Left sub-tree of a is 2 higher than a's left sub-tree.

This case is called RL.

Balance $=-2$

Fixing configuration LL

- To fix the imbalance in node a, we will perform a right rotation of node b towards a.

Fixing configuration LL

- To fix the imbalance in node a, we will perform a right rotation of node b towards a.

Original tree

Fixing configuration LL

- To fix the imbalance in node a, we will perform a right rotation of node b towards a.

Original tree

Make a the right child of b, and make b the new root of the sub-tree.

Fixing configuration LL

- To fix the imbalance in node a, we will perform a right rotation of node b towards a.

Add e as the left child of a.

Original tree

Fixing configuration LL

- To fix the imbalance in node a, we will perform a right rotation of node b towards a.

Original tree

Fixing configuration RR

- To fix the imbalance in node a, we will perform a left rotation of node b towards a.

Fixing configuration RR

- To fix the imbalance in node a, we will perform a left rotation of node b towards a.

Original tree

Fixing configuration RR

- To fix the imbalance in node a, we will perform a left rotation of node b towards a.

Make a the right child of b, and make b the new root of the sub-tree.

Original tree

Fixing configuration RR

- To fix the imbalance in node a, we will perform a left rotation of node b towards a.

Add e as the left child of a.

Original tree

Fixing configuration RR

- To fix the imbalance in node a, we will perform a left rotation of node b towards a.

Original tree

Imbalanced node configurations

- Note how LL and RR, as well as LR and RL, are symmetric to each other.
- LL is fixed by right rotating a.
- $R R$ is fixed by left rotating a.
- The other two cases -- LR and RL -- can be fixed by two rotations in succession.

Fixing configuration LR

- To fix the imbalance in node a, we will first perform a left rotation of node e towards b.

Original tree

Fixing configuration LR

- To fix the imbalance in node a, we will first perform a left rotation of node e towards b.

Original tree

Fixing configuration LR

- To fix the imbalance in node a, we will first perform a left rotation of node e towards b.

Original tree
 correct this (by applying a right rotation of e towards a).

Fixing configuration LR

- Now we perform a right rotation of e towards a.

Original tree
 correct this (by applying a right rotation of e towards a).

Fixing configuration LR

- Now we perform a right rotation of e towards a.

Original tree

Fixing configuration RL

- Fixing configuration RL is exactly symmetric to fixing LR:
- First apply a right rotation of e towards b.
- This returns the configuration to RR.
- Then apply a left rotation of e towards a.
- Left as an "exercise for the reader".

Balance $=-2$

Removing a new node

- When we remove a node n, we must distinguish the three cases as outlined last lecture:
- n is a leaf node.
- n has only one child.
- n has two children.
- After removing n, we must update the height and balance of all nodes
 between n and the root.

Removing a new node

- When we remove a node n, we must distinguish the three cases as outlined last lecture:
- n is a leaf node.
- n has only one child.
- n has two children.
- After removing n, we must update the height and balance of all nodes
 between n and the root.

Removing a new node

- When we remove a node n, we must distinguish the three cases as outlined last lecture:
- n is a leaf node.
- n has only one child.
- n has two children.
- After removing n, we must update the height and balance of all nodes
 between n and the root.
- Might require an AVL rotation.

AVL trees

- Through storing the height and balance of each node and implementing AVL rotations as necessary, we can ensure that the BST is never "more imbalanced" than +1 or -I.
- This yields a BST for which $h=O(\log n)$ in the worst case, not just the average case.
- The AVL rotations themselves take $\mathrm{O}(\mathrm{I})$ time.
- Each rotation takes a constant number of "node switches".
- Hence, with AVL trees, the fundamental tree operations add, find, and remove all operate in $O(\log n)$ time worst-case.

Duplicate keys

- With "regular" BSTs, the downside of storing multiple elements with the same key was primarily related to performance:
- Adding multiple elements of the same keys requires unnecessary node storage and slows down the tree operations.
- However, with AVL trees, allowing duplicates would cause a problem in correctness:
- Rotating nodes where duplicate keys are allowed can violate the BST ordering property.

Duplicate keys

- Consider:
- To allow duplicates in a BST, we might "relax" the ordering condition slightly:
- Given node n, every node in n's left subtree should be less-than-or-equal-to n.
- Every node in n's right sub-tree should be greater than n.
- The findNode method will rely on this ordering property to find a given node properly.

Duplicate keys

- However, a problem arises when we start rotating nodes in a sub-tree:
- Suppose a and b have the same key (egg., 5).

Duplicate keys

- However, a problem arises when we start rotating nodes in a sub-tree:
- Suppose a and b have the same key (e.g., 5).
- Suppose we then right-rotate b towards a.

Duplicate keys

- Now, suppose we want to find node a starting at the root (node b).
- We will descend the wrong sub-tree of b.
- We will never find a.

Duplicate keys

- One solution is to:
- Disallow multiple nodes with the same key.
- Whenever we add an element with the same key, we append that new
 element to that node's list of objects.

