
CSE 12:
Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Thirteen
23 Aug 2011

Tuesday, August 23, 2011

More on BSTs.

Tuesday, August 23, 2011

Maintaining balance
• The time cost of the fundamental add/

find/remove operations in BSTs
depends on the height of the BST.

• Given an “unfortunate” sequence of
add/remove operations, the BST can
“degenerate” into a long “chain” of
nodes of height n.

• Hence, in the worst case, the time
cost of the fundamental BST
operations is O(n).

• It would be beneficial to prevent this
worst case from ever occurring.

20

12

18

33

...

“Degenerate”
BST.

Tuesday, August 23, 2011

Maintaining balance
• Fortunately, it turns out that BSTs

can be “fixed” to store the same
elements, but to have a smaller
height.

• Consider the BST on the right
(with root r) with height 3.

• It is unbalanced -- height of left
sub-tree is 0, height of right
sub-tree is 2.

• We can “fix” this BST to have
equal height on both sub-trees by
“rotating” node n towards r.

15

12

10 18

21

19

r

n
h=0

h=2

Left
rotation

Tuesday, August 23, 2011

Maintaining balance
• Fortunately, it turns out that BSTs

can be “fixed” to store the same
elements, but to have a smaller
height.

• Consider the BST on the right
(with root r) with height 3.

• It is unbalanced -- height of left
sub-tree is 0, height of right
sub-tree is 2.

• We can “fix” this BST to have
equal height on both sub-trees by
“rotating” node n towards r.

15

12

10

18

21

19

r

n
h=1

h=1
New root is n.

Height of BST is 2.
Left and right sub-trees
both have height 1 (the

BST is balanced).

Tuesday, August 23, 2011

Maintaining balance
• By rotating nodes to either “up-to-the-left” or “up-

to-the-right”, we can restore balance to a BST and
thereby decrease its height.

• The rotations will take place whenever the user
adds or removes a node from the BST.

• By rotating properly, we can ensure that the BST
remains balanced or “almost balanced” at all times.

• This system of node rotations was first developed
in 1962 by G.M. Adelson-Velskii and E.M. Landis;
hence, we call this technique an AVL-tree.

Tuesday, August 23, 2011

AVL trees
• An AVL tree is a BST in which two kinds of

rotations -- left-rotations and right-rotations -- are
applied to nodes as necessary, in order to keep
the balance of each sub-tree within certain limits.

• The balance of a node n is the difference in height
between n’s left sub-tree minus its right sub-tree.

• A non-existent sub-tree is defined to have
height 0.

• Rotations are applied to nodes during the add
and remove methods to keep every node’s
balance within -1 and +1 (inclusive).

Tuesday, August 23, 2011

Height and balance

n

h=0

h=2

n

h=0h=1

Balance = -2 Balance = +1
n

h=2

h=2

Balance = 0

Tuesday, August 23, 2011

Height and balance

• AVL trees require that each node n
record its balance as well as the
height of the sub-tree rooted at n.

• We can store these as extra
instance variables in the Node
class:

class Node<T> {
 Node<T> _parent;
 Node<T> _leftChild, _rightChild;
 int _balance, _height;
}

h=2, b=-1

h=1, b=0

h=0, b=0

h=0, b=0

Tuesday, August 23, 2011

Adding a new node

• Whenever we add a new
node n, we set its _height
and _balance both to 0.

• We attach n as a left/right
child of its parent.

• We must then recursively
update the height and
balance of all nodes from n
up through the root of the
whole BST.

h=0, b=0

h=0, b=0

h=0, b=0

n

h=1, b=0

h=2, b=-1

Tuesday, August 23, 2011

Adding a new node

• Whenever we add a new
node n, we set its _height
and _balance both to 0.

• We attach n as a left/right
child of its parent.

• We must then recursively
update the height and
balance of all nodes from n
up through the root of the
whole BST.

h=0, b=0

h=0, b=0

h=0, b=0

n

h=1, b=0

h=2, b=-1

Tuesday, August 23, 2011

Adding a new node

• Whenever we add a new
node n, we set its _height
and _balance both to 0.

• We attach n as a left/right
child of its parent.

• We must then recursively
update the height and
balance of all nodes from n
up through the root of the
whole BST.

h=1, b=+1

h=0, b=0

h=0, b=0

n

h=1, b=0

h=2, b=-1

Tuesday, August 23, 2011

Adding a new node

• Whenever we add a new
node n, we set its _height
and _balance both to 0.

• We attach n as a left/right
child of its parent.

• We must then recursively
update the height and
balance of all nodes from n
up through the root of the
whole BST.

h=1, b=+1

h=0, b=0

h=0, b=0

n

h=2, b=1

h=2, b=-1

Tuesday, August 23, 2011

Adding a new node

• Whenever we add a new
node n, we set its _height
and _balance both to 0.

• We attach n as a left/right
child of its parent.

• We must then recursively
update the height and
balance of all nodes from n
up through the root of the
whole BST.

h=3, b=-2

h=1, b=+1

h=0, b=0

h=0, b=0

n

h=2, b=1

h=0, b=0

Tuesday, August 23, 2011

Correcting imbalances
• Suppose, when recursively updating the

height and balance data, we determine that
the balance of a node n is either -2 or +2.

• n is considered imbalanced.

• Then we must apply an AVL rotation to
correct the imbalance.

• Different rotations apply to different node
configurations...

Tuesday, August 23, 2011

Imbalanced node configurations

a

cb

d e

Subtrees

Balance = +2

The Left child’s Left sub-tree
of a is 2 higher than a’s right
sub-tree.

This case is called LL.

Tuesday, August 23, 2011

Imbalanced node configurations
Balance = -2

The Right child’s Right sub-tree
of a is 2 higher than a’s left
sub-tree.

This case is called RR.

a

c b

e d

Tuesday, August 23, 2011

Imbalanced node configurations

a

cb

d e

Balance = +2

The Left child’s Right sub-tree
of a is 2 higher than a’s right
sub-tree.

This case is called LR.

Tuesday, August 23, 2011

Imbalanced node configurations
Balance = -2

The Right child’s Left sub-tree
of a is 2 higher than a’s left
sub-tree.

This case is called RL.

a

c b

e d

Tuesday, August 23, 2011

Fixing configuration LL

a

cb

d e

Right
rotation

• To fix the imbalance in node a, we will perform
a right rotation of node b towards a.

Original tree

Tuesday, August 23, 2011

Fixing configuration LL

a

cb

d e

Right
rotation

• To fix the imbalance in node a, we will perform
a right rotation of node b towards a.

Original tree

Tuesday, August 23, 2011

Fixing configuration LL

a

cb

d e

Right
rotation

• To fix the imbalance in node a, we will perform
a right rotation of node b towards a.

b

a

c

Make a the right child of
b, and make b the new
root of the sub-tree.

d

Original tree

Tuesday, August 23, 2011

Fixing configuration LL

a

cb

d e

Right
rotation

• To fix the imbalance in node a, we will perform
a right rotation of node b towards a.

b

a

e c

Add e as the left child of a.

d

Original tree

Tuesday, August 23, 2011

Fixing configuration LL

a

cb

d e

Right
rotation

• To fix the imbalance in node a, we will perform
a right rotation of node b towards a.

b

ad

e c

Original tree

Balance = 0

Tuesday, August 23, 2011

Fixing configuration RR

Left
rotation

• To fix the imbalance in node a, we will perform
a left rotation of node b towards a.

a

c b

e d

Original tree

Tuesday, August 23, 2011

Fixing configuration RR

Left
rotation

• To fix the imbalance in node a, we will perform
a left rotation of node b towards a.

a

c b

e d

Original tree

Tuesday, August 23, 2011

Fixing configuration RR

Left
rotation

• To fix the imbalance in node a, we will perform
a left rotation of node b towards a.

a

c b

e d

Original tree

b

d

c

Make a the right child of
b, and make b the new
root of the sub-tree.

a

Tuesday, August 23, 2011

Fixing configuration RR

Left
rotation

• To fix the imbalance in node a, we will perform
a left rotation of node b towards a.

a

c b

e d

Original tree

b

da

e

Add e as the left child of a.

c

Tuesday, August 23, 2011

Fixing configuration RR

Left
rotation

• To fix the imbalance in node a, we will perform
a left rotation of node b towards a.

a

c b

e d

Original tree

b

da

ec

Balance = 0

Tuesday, August 23, 2011

Imbalanced node configurations

• Note how LL and RR, as well as LR and RL, are
symmetric to each other.

• LL is fixed by right rotating a.

• RR is fixed by Ieft rotating a.

• The other two cases -- LR and RL -- can be fixed
by two rotations in succession.

Tuesday, August 23, 2011

Fixing configuration LR
• To fix the imbalance in node a, we will first

perform a left rotation of node e towards b.

a

cb

d e

Original tree

Left
rotation

Tuesday, August 23, 2011

Fixing configuration LR
• To fix the imbalance in node a, we will first

perform a left rotation of node e towards b.

a

cb

d e

Original tree

a

c

b

d

e
Left

rotation

Tuesday, August 23, 2011

Fixing configuration LR

a

cb

d e

Original tree

a

c

b

d

e

Now we’re back to LL -- and
we already know how to
correct this (by applying a
right rotation of e towards a).

• To fix the imbalance in node a, we will first
perform a left rotation of node e towards b.

Tuesday, August 23, 2011

Fixing configuration LR

• Now we perform a right rotation of e towards a.

a

cb

d e

Original tree

a

c

b

d

e

Right
rotation

Now we’re back to LL -- and
we already know how to
correct this (by applying a
right rotation of e towards a).

Tuesday, August 23, 2011

Fixing configuration LR

• Now we perform a right rotation of e towards a.

a

cb

d e

Original tree

a

c

b

d

e Balance = 0

Tuesday, August 23, 2011

Fixing configuration RL
• Fixing configuration RL is

exactly symmetric to fixing LR:

• First apply a right rotation of
e towards b.

• This returns the
configuration to RR.

• Then apply a left rotation of e
towards a.

• Left as an “exercise for the
reader”.

Balance = -2
a

c b

e d

Tuesday, August 23, 2011

Removing a new node

h=3, b=-2

h=1, b=-1

h=0, b=0

h=0, b=0
n

h=2, b=1

• When we remove a node n, we
must distinguish the three cases as
outlined last lecture:

• n is a leaf node.

• n has only one child.

• n has two children.

• After removing n, we must update
the height and balance of all nodes
between n and the root.

h=0, b=0

Tuesday, August 23, 2011

Removing a new node

h=3, b=-2

h=0, b=0

h=0, b=0

h=1, b=0

• When we remove a node n, we
must distinguish the three cases as
outlined last lecture:

• n is a leaf node.

• n has only one child.

• n has two children.

• After removing n, we must update
the height and balance of all nodes
between n and the root.

Tuesday, August 23, 2011

Removing a new node

h=2, b=-1

h=0, b=0

h=0, b=0

h=1, b=0

• When we remove a node n, we
must distinguish the three cases as
outlined last lecture:

• n is a leaf node.

• n has only one child.

• n has two children.

• After removing n, we must update
the height and balance of all nodes
between n and the root.

• Might require an AVL rotation.

Tuesday, August 23, 2011

AVL trees
• Through storing the height and balance of each node and

implementing AVL rotations as necessary, we can ensure
that the BST is never “more imbalanced” than +1 or -1.

• This yields a BST for which h=O(log n) in the worst
case, not just the average case.

• The AVL rotations themselves take O(1) time.

• Each rotation takes a constant number of “node
switches”.

• Hence, with AVL trees, the fundamental tree
operations add, find, and remove all operate in
O(log n) time worst-case.

Tuesday, August 23, 2011

Duplicate keys
• With “regular” BSTs, the downside of storing

multiple elements with the same key was
primarily related to performance:

• Adding multiple elements of the same keys
requires unnecessary node storage and slows
down the tree operations.

• However, with AVL trees, allowing duplicates
would cause a problem in correctness:

• Rotating nodes where duplicate keys are
allowed can violate the BST ordering property.

Tuesday, August 23, 2011

Duplicate keys
• Consider:

• To allow duplicates in a BST, we might “relax”
the ordering condition slightly:

• Given node n, every node in n’s left sub-
tree should be less-than-or-equal-to n.

• Every node in n’s right sub-tree should be
greater than n.

• The findNode method will rely on this
ordering property to find a given node
properly.

Tuesday, August 23, 2011

Duplicate keys

5

c5

d e

a

b

• However, a problem arises when we start rotating
nodes in a sub-tree:

• Suppose a and b have the same key (e.g., 5).

Tuesday, August 23, 2011

Duplicate keys

5

c5

d e

Right
rotation

5

5d

e c

a

b

• However, a problem arises when we start rotating
nodes in a sub-tree:

• Suppose a and b have the same key (e.g., 5).

• Suppose we then right-rotate b towards a.

b

a

Tuesday, August 23, 2011

Duplicate keys

5

5d

e c

• Now, suppose we want to find node a starting at
the root (node b).

• We will descend the wrong sub-tree of b.

• We will never find a.

b

a

Tuesday, August 23, 2011

Duplicate keys

• One solution is to:

• Disallow multiple nodes
with the same key.

• Whenever we add an
element with the same
key, we append that new
element to that node’s
list of objects.

5

cd

e

a, b, ...

Tuesday, August 23, 2011

