More on BSTs.
Maintaining balance

- The time cost of the fundamental add/find/remove operations in BSTs depends on the height of the BST.
- Given an “unfortunate” sequence of add/remove operations, the BST can “degenerate” into a long “chain” of nodes of height n.
- Hence, in the worst case, the time cost of the fundamental BST operations is $O(n)$.
- It would be beneficial to prevent this worst case from ever occurring.
Maintaining balance

• Fortunately, it turns out that BSTs can be “fixed” to store the same elements, but to have a smaller height.

• Consider the BST on the right (with root r) with height 3.
 • It is unbalanced -- height of left sub-tree is 0, height of right sub-tree is 2.
 • We can “fix” this BST to have equal height on both sub-trees by “rotating” node n towards r.
Maintaining balance

• Fortunately, it turns out that BSTs can be “fixed” to store the same elements, but to have a smaller height.

• Consider the BST on the right (with root r) with height 3.

 • It is *unbalanced* -- height of left sub-tree is 0, height of right sub-tree is 2.

 • We can “fix” this BST to have equal height on both sub-trees by “rotating” node n towards r.

New root is n. Height of BST is 2. Left and right sub-trees both have height 1 (the BST is *balanced*).
Maintaining balance

• By rotating nodes to either “up-to-the-left” or “up-to-the-right”, we can restore balance to a BST and thereby decrease its height.

• The rotations will take place whenever the user adds or removes a node from the BST.

• By rotating properly, we can ensure that the BST remains balanced or “almost balanced” at all times.

• This system of node rotations was first developed in 1962 by G.M. Adelson-Velskii and E.M. Landis; hence, we call this technique an AVL-tree.
AVL trees

• An AVL tree is a BST in which two kinds of rotations -- left-rotations and right-rotations -- are applied to nodes as necessary, in order to keep the balance of each sub-tree within certain limits.

• The balance of a node n is the difference in height between n’s left sub-tree minus its right sub-tree.

• A non-existent sub-tree is defined to have height 0.

• Rotations are applied to nodes during the add and remove methods to keep every node’s balance within -1 and +1 (inclusive).
Height and balance

Balance = -2

Balance = +1

Balance = 0
Height and balance

• AVL trees require that each node n record its balance as well as the height of the sub-tree rooted at n.

• We can store these as extra instance variables in the `Node` class:

```java
class Node<T> {
    Node<T> _parent;
    Node<T> _leftChild, _rightChild;
    int _balance, _height;
}
```

$h=2, b=-1$
$h=1, b=0$
$h=0, b=0$
$h=0, b=0$
Adding a new node

- Whenever we add a new node \(n \), we set its `_height` and `_balance` both to 0.
- We attach \(n \) as a left/right child of its parent.
- We must then recursively update the height and balance of all nodes from \(n \) up through the root of the whole BST.
Adding a new node

- Whenever we add a new node n, we set its _height and _balance both to 0.
- We attach n as a left/right child of its parent.
- We must then recursively update the height and balance of all nodes from n up through the root of the whole BST.
Adding a new node

• Whenever we add a new node \(n \), we set its _height and _balance both to 0.

• We attach \(n \) as a left/right child of its parent.

• We must then recursively update the height and balance of all nodes from \(n \) up through the root of the whole BST.
Adding a new node

- Whenever we add a new node \(n \), we set its _height and _balance both to 0.
- We attach \(n \) as a left/right child of its parent.
- We must then recursively update the height and balance of all nodes from \(n \) up through the root of the whole BST.
Adding a new node

• Whenever we add a new node n, we set its _height and _balance both to 0.

• We attach n as a left/right child of its parent.

• We must then recursively update the height and balance of all nodes from n up through the root of the whole BST.
Correcting imbalances

• Suppose, when recursively updating the height and balance data, we determine that the balance of a node \(n \) is either -2 or +2.

 • \(n \) is considered *imbalanced*.

• Then we must apply an AVL rotation to *correct the imbalance*.

• Different rotations apply to different node configurations...
Imbalanced node configurations

The **Left child’s Left sub-tree** of a is 2 higher than a’s right sub-tree.

This case is called LL.
The Right child's Right sub-tree of a is 2 higher than a's left sub-tree.

This case is called RR.
Imbalanced node configurations

The *Left child’s Right sub-tree of a* is 2 higher than *a’s right sub-tree.*

This case is called LR.
Imbalanced node configurations

The Right child’s Left sub-tree of a is 2 higher than a’s left sub-tree.

This case is called RL.
To fix the imbalance in node \(a\), we will perform a right rotation of node \(b\) towards \(a\).
To fix the imbalance in node \(a \), we will perform a right rotation of node \(b \) towards \(a \).
Fixing configuration LL

- To fix the imbalance in node a, we will perform a right rotation of node b towards a.

Original tree

- Make a the right child of b, and make b the new root of the sub-tree.
Fixing configuration LL

• To fix the imbalance in node a, we will perform a right rotation of node b towards a.

![Diagram of original tree and modified tree with right rotation and addition of node e as the left child of a.]

Add e as the left child of a.

Original tree
Fixing configuration LL

- To fix the imbalance in node a, we will perform a right rotation of node b towards a.

Original tree

Balance = 0
Fixing configuration RR

- To fix the imbalance in node a, we will perform a *left rotation* of node b towards a.

![Diagram of a binary tree with nodes labeled a, b, c, d, e, showing a left rotation from node a to node b.]

Original tree
Fixing configuration RR

• To fix the imbalance in node a, we will perform a *left rotation* of node b towards a.
Fixing configuration RR

- To fix the imbalance in node a, we will perform a left rotation of node b towards a.

Original tree

Make a the right child of b, and make b the new root of the sub-tree.

Original tree
Fixing configuration RR

- To fix the imbalance in node a, we will perform a left rotation of node b towards a.

Original tree

Add e as the left child of a.
Fixing configuration RR

- To fix the imbalance in node a, we will perform a *left rotation* of node b towards a.

Balance = 0

Original tree
Imbalanced node configurations

• Note how LL and RR, as well as LR and RL, are symmetric to each other.

• LL is fixed by right rotating a.

• RR is fixed by left rotating a.

• The other two cases -- LR and RL -- can be fixed by two rotations in succession.
Fixing configuration LR

• To fix the imbalance in node a, we will *first* perform a *left rotation* of node e towards b.
Fixing configuration LR

- To fix the imbalance in node a, we will first perform a *left rotation* of node e towards b.

Original tree
Fixing configuration LR

- To fix the imbalance in node a, we will first perform a *left rotation* of node e towards b.

Original tree

Now we’re back to LL -- and we already know how to correct this (by applying a *right rotation* of e towards a).
Fixing configuration LR

- Now we perform a right rotation of e towards a.

Original tree

Now we're back to LL -- and we already know how to correct this (by applying a right rotation of e towards a).
Fixing configuration LR

• Now we perform a right rotation of e towards a.
Fixing configuration RL

• Fixing configuration RL is exactly symmetric to fixing LR:
 • First apply a right rotation of e towards b.
 • This returns the configuration to RR.
 • Then apply a left rotation of e towards a.
 • Left as an “exercise for the reader”.

Balance = -2
Removing a new node

- When we remove a node \(n \), we must distinguish the three cases as outlined last lecture:
 - \(n \) is a leaf node.
 - \(n \) has only one child.
 - \(n \) has two children.
- After removing \(n \), we must update the height and balance of all nodes between \(n \) and the root.
Removing a new node

- When we remove a node n, we must distinguish the three cases as outlined last lecture:
 - n is a leaf node.
 - n has only one child.
 - n has two children.
- After removing n, we must update the height and balance of all nodes between n and the root.
Removing a new node

- When we remove a node \(n \), we must distinguish the three cases as outlined last lecture:
 - \(n \) is a leaf node.
 - \(n \) has only one child.
 - \(n \) has two children.
- After removing \(n \), we must update the height and balance of all nodes between \(n \) and the root.
- Might require an AVL rotation.
AVL trees

• Through storing the height and balance of each node and implementing AVL rotations as necessary, we can ensure that the BST is never “more imbalanced” than +1 or -1.

• This yields a BST for which \(h=O(\log n) \) in the worst case, not just the average case.

• The AVL rotations themselves take \(O(1) \) time.

• Each rotation takes a constant number of “node switches”.

• Hence, with AVL trees, the fundamental tree operations add, find, and remove all operate in \(O(\log n) \) time worst-case.
Duplicate keys

• With “regular” BSTs, the downside of storing multiple elements with the same key was primarily related to performance:

• Adding multiple elements of the same keys requires unnecessary node storage and slows down the tree operations.

• However, with AVL trees, allowing duplicates would cause a problem in correctness:

• Rotating nodes where duplicate keys are allowed can violate the BST ordering property.
Duplicate keys

• Consider:
 • To allow duplicates in a BST, we might “relax” the ordering condition slightly:
 • Given node n, every node in n’s left sub-tree should be less-than-or-equal-to n.
 • Every node in n’s right sub-tree should be greater than n.
 • The `findNode` method will rely on this ordering property to find a given node properly.
Duplicate keys

• However, a problem arises when we start rotating nodes in a sub-tree:

• Suppose a and b have the same key (e.g., 5).
Duplicate keys

- However, a problem arises when we start rotating nodes in a sub-tree:
 - Suppose a and b have the same key (e.g., 5).
 - Suppose we then *right-rotate* b towards a.

![Diagram](https://example.com/diagram.png)
Duplicate keys

- Now, suppose we want to find node a starting at the root (node b).
- We will descend the \textit{wrong sub-tree} of b.
- We will never find a.
Duplicate keys

- One solution is to:
 - Disallow multiple *nodes* with the same key.
 - Whenever we add an element with the *same* key, we *append* that new element to that node’s *list of objects*.