
CSE 12:
Basic data structures and 
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Fourteen
24 Aug 2011

Thursday, August 25, 2011



More on generics.

Thursday, August 25, 2011



Collections to hold 
data of type T

• Up to now we have discussed generics in its 
simplest usage -- store data of an arbitrary 
type T in a container.

• This worked fine for lists/arrays/stacks/
queues, in which we ignore any order 
relations among the elements.

• Sometimes, however, the type T cannot be 
“just any old Object” -- type T must 
sometimes satisfy some conditions.

Thursday, August 25, 2011



Constraints on T

• An example of this is the HeapImpl12 class you are 
building for P4.

• The elements must all be Comparable -- the heap 
implementation needs to be able to call compareTo
(o) on every element stored in the tree.

• If we place no restrictions on T, then the Java 
compiler cannot guarantee that an arbitrary 
element of the _nodeArray will actually be 
Comparable.

Thursday, August 25, 2011



Constraints on T

• Suppose we add three objects to a heap:

heap = new Heap12<Object>();
heap.add(“Michael”);  // OK: String is Comparable
heap.add(“Bolton”);  // OK: String is Comparable
heap.add(new Object()); // Not OK: Object not Comparable

• Internally, the HeapImpl12 class will need to call 
compareTo on all objects to implement bubbleUp and 
trickleDown, e.g.:

if (_nodeArray[idx1].compareTo(_nodeArray[idx2]) < 0) {
  ...
} But if idx1 refers to the Object we added, 

this method will fail because Object does 
not implement the Comparable interface.

Thursday, August 25, 2011



Bounds on type parameters
• What we want is a way of enforcing that the type parameter 

T allowed by the HeapImpl12 class -- as well as the Heap12 
interface itself -- be of type Comparable.

• Java generics facilitates these constraints on T by supporting 
bounds on type parameters.

• Suppose, when implementing a generic class with type 
parameter T, we want to ensure that T must be some sub-
class of a class A.

• Example: we want to implement a container for Shape 
objects -- we don’t care what particular kind of Shapes 
they are, so long as they all inherit from the Shape class.

Thursday, August 25, 2011



Bounds on type parameters
• To implement a generic class with the 

guarantee that type parameter T is a 
Shape, we can use an upper bound 
on T:

class MyContainer<T extends Shape> {
  ...
}

• Here, Shape is the upper bound on 
type parameter T.

• MyContainer can only be 
instantiated when T is Shape, or any 
sub-class of Shape.

Shape

Circle Rect Triangle

Object

Upper bound on T

Thursday, August 25, 2011



Bounds on type parameters

• Given this upper bound on T, the Java compiler will 
enforce that T be of type Shape:
MyContainer<Shape> container1 =
  new MyContainer<Shape>();  // OK

MyContainer<Circle> container2 =
  new MyContainer<Circle>();  // OK

MyContainer<Object> container4 =
  new MyContainer<Object>();  // Not OK

MyContainer<Student> container3 =
  new MyContainer<Student>();  // Not OK

  Compiler error message:
    type parameter java.lang.Object is not within its bound
    MyContainer<Object> container4 = new MyContainer<Object>();

Thursday, August 25, 2011



• We can also require that type T implement some interface.

• For example, a HeapImpl12 should only store elements 
that are all Comparable.

• Java generics gives us this power:

class HeapImpl12<T extends Comparable> implements Heap12<T> {
  ...
}

• The “extends Comparable” enforces that any T we pass in 
as the type parameter must be of type Comparable.

• Since Comparable is an interface, this means that type T 
must implement the interface Comparable (even though 
we use the word “extends”).

Bounds on type parameters

Thursday, August 25, 2011



• With this restriction on T in place, we can no longer 
instantiate a HeapImpl12 with a type parameter T that does 
not implement Comparable:
// String and Integer are both Comparable
HeapImpl12<String> heap1 = new HeapImpl12<String>();  // OK
HeapImpl12<Integer> heap2 = new HeapImpl12<Integer>(); // OK

// Next line won’t compile because Object is not Comparable
HeapImpl12<Object> heap3 = new HeapImpl12<Object>();

• The Java compiler will prevent us from instantiating a heap 
with a non-Comparable type.

• We may also wish to define the interface Heap12 to accept 
only those types T that implement Comparable:

interface Heap12<T extends Comparable> {
  ...
}

Bounds on type parameters

Thursday, August 25, 2011



• In the previous example, Comparable was the 
upper bound of T.

• The Comparable interface takes a type parameter 
of its own.

interface Comparable<U> {
  int compareTo (U o);
}

(In the previous example, we used the Comparable interface in “compatibility 
mode”, where we did not specify U).

• The type parameter U specifies what kinds of 
objects o we should be able to compare to.

Bounds on type parameters

Thursday, August 25, 2011



• By offering bounds on type parameters, Java also 
gives us the power to define what kinds of objects 
U we can compareTo, in terms of the type T we’ve 
already defined.

• Example:
class HeapImpl12<T extends Comparable<T>> ... {
  ...
}

• Here, we require that whatever type T the 
HeapImpl12 is instantiated with, it must be 
Comparable to other objects of type T.

Bounds on type parameters

Thursday, August 25, 2011



• Consider the following example:
class B { }
class A implements Comparable<B> {
  int compareTo (B o) {
    return 0;
  }
}

• Given the definitions above, an object of type A can only be 
compared to objects of type B.
final A a = new A();
final B b = new B();
final int result = a.compareTo(b);  // OK

• We cannot compare a to another object of type A!

Bounds on type parameters

Thursday, August 25, 2011



• Given our definition of HeapImpl12,

class HeapImpl12<T extends Comparable<T>> ... {
  ..
}

if we try to instantiate a HeapImpl12 with A as the type 
parameter...

HeapImpl12<A> heap = new HeapImpl12<A>();

... the compiler will complain:

  type parameter A is not within its bound
  HeapImpl12<A> h = new HeapImpl12<A>();

• This error occurs because, even though A is Comparable 
to something (B), it is not Comparable<A>.

Bounds on type parameters

Thursday, August 25, 2011



• On the other hand,

• String implements Comparable<String>

• Integer implements Comparable<Integer>

• Both String and Integer would be accepted as 
type parameters for HeapImpl12:

HeapImpl12<String> h1 = new HeapImpl12<String>();
HeapImpl12<Integer> h2 = new HeapImpl12<Integer>();

Bounds on type parameters

Both are OK

Thursday, August 25, 2011



• While useful, our current definition of HeapImpl12 is 
a bit overly restrictive.

• Consider a hierarchy of Shape classes:

class Shape implements Comparable<Shape> {
   int compareTo (Shape o) { ... }
}
class Rectangle extends Shape {
  ...
}

• The Rectangle class inherits the compareTo 
(Shape o) method from its parent Shape class.

Bounds on type parameters

Thursday, August 25, 2011



• However, Rectangle does not offer a method 
compareTo (Rectangle o) designed specifically for 
other Rectangle objects.

• Hence, the Rectangle class could not be used as the 
type parameter T when instantiating a HeapImpl12:

class HeapImpl12<T extends Comparable<T>> ...

• Reason: Even though Rectangle is Comparable 
to other Shape objects, it is not 
Comparable<Rectangle>.

• I.e., Rectangle offers no int compareTo 
(Rectangle o) method.

Bounds on type parameters

Thursday, August 25, 2011



Lower bounds on types
• What we need is a way of 

expressing that type parameter T 
may be Comparable with class T, or 
any super-class of T.

• E.g., we want to allow HeapImpl12 
to store Rectangle objects:

• Rectangles are all Comparable 
with Shape, where Shape is a 
super-class of Rectangle.

• To solve this problem, Java offers 
lower bounds on type 
parameters.

Shape

Rectangle

Lower bound on T

Object

Thursday, August 25, 2011



Lower bounds on types
• For example, we can allow the HeapImpl12 class 

to accept any type T so long as T is Comparable to 
class T, or any super-class of T.

class HeapImpl12<T extends Comparable<? super T>> ... {
  ...
}

• The wildcard type ? indicates:

• “We don’t care which type T is Comparable to, 
so long as it’s Comparable to some super-class 
of T (or T itself).”

• The keyword super indicates the lower 
bound of the type parameter.

Thursday, August 25, 2011



Lower bounds on types

• Given this revised definition of 
HeapImpl12, we can now instantiate a heap 
of Rectangle objects:

HeapImpl12<Rectangle> heap =
  new HeapImpl12<Rectangle>();  // OK

Thursday, August 25, 2011


