CSE 12: Basic data structures and object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Fifteen
25 Aug 2011
Hash tables.
Recap of BSTs

- Binary search trees (BSTs) offer $O(\log n)$ time costs for add/remove/find operations by exploiting order relationships among data.

- They are also memory efficient, in that only as many nodes are allocated as elements are contained in the BST.

- However, by utilizing more memory (greater space complexity), we can achieve even higher performance (lower time complexity).

- **Hash sets** and **hash maps** offer $O(1)$ time costs for add/remove/find operations by investing more memory in the underlying storage.
Finite “universe” of objects to store

• Suppose you were developing a database of UCSD students.

• You may wish to build a function that allows you to retrieve a student’s full record given their student ID:

```java
class Student {
    int _studentID;  // 4 bytes long
    String _firstName, _lastName;
    String _address;
    String _favoriteColor;
}
```

• In this application, the key would be the student ID, and the value associated with the key would be the whole Student record.
Finite “universe” of objects to store

- In this application (and others), there may exist only a finite universe of possible keys values.

- For instance, a 4-byte integer can only store about 4 billion different values => 4 billion unique keys.

- Sometimes this finite set of keys is small enough that we can allocate an array big enough to give every possible key its own slot.

- In this case, we can make the “search” process for a particular key trivial:

 - We simply “jump” to the unique array index assigned to that key.

 - This takes only $O(1)$ time in the worst-case.
Finite “universe” of objects to store

- For example, in a UCSD student database application, we could allocate an array 4 billion elements long.
- Whenever we wished to find a particular student, we simply jump to that student’s correct slot using the student ID as the index.
- E.g., student with ID# 0000008192 would be stored at slot 0000008192.
- Search is trivial -- $O(1)$.

<table>
<thead>
<tr>
<th>Key (student ID)</th>
<th>Value (reference to Student object)</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0000008187</td>
<td>...</td>
</tr>
<tr>
<td>0000008188</td>
<td>...</td>
</tr>
<tr>
<td>0000008189</td>
<td>...</td>
</tr>
<tr>
<td>0000008190</td>
<td>...</td>
</tr>
<tr>
<td>0000008191</td>
<td>...</td>
</tr>
<tr>
<td>0000008192</td>
<td>student</td>
</tr>
<tr>
<td>0000008193</td>
<td>...</td>
</tr>
<tr>
<td>0000008194</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Finite “universe” of objects to store

- Similarly, when adding a student, we simply insert an entry at his/her unique location in the array:

  ```java
  final Student other =
      new Student(8188, ...);
  _container.add(other);
  ```

- Since student IDs are guaranteed to be unique, there is exactly one element that will ever reside at the index of the array.

<table>
<thead>
<tr>
<th>Key (student ID)</th>
<th>Value (reference to Student object)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000008187</td>
<td></td>
</tr>
<tr>
<td>0000008188</td>
<td>other</td>
</tr>
<tr>
<td>0000008189</td>
<td></td>
</tr>
<tr>
<td>0000008190</td>
<td></td>
</tr>
<tr>
<td>0000008191</td>
<td></td>
</tr>
<tr>
<td>0000008192</td>
<td>student</td>
</tr>
<tr>
<td>0000008193</td>
<td></td>
</tr>
<tr>
<td>0000008194</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Finite “universe” of objects to store

- Using the idea sketched above, we could implement a StudentDatabase with excellent time costs.

```java
class StudentDatabase {
    Student[] _allPossibleStudents = new Student[4294967296];

    void add (Student s) { // O(1)
        final int index = s._studentID;
        _allPossibleStudents[index] = s;
    }

    // Returns null if s is not in the database
    Student get (Student s) { // O(1)
        final int index = s._studentID;
        return _allPossibleStudents[index];
    }

    void remove (Student s) { // O(1)
        final int index = s._studentID;
        _allPossibleStudents[index] = null;
    }
}
```
Finite “universe” of objects to store

- However, the **space costs** of this data structure are enormous.

```java
class StudentDatabase {
    Student[] _allPossibleStudents = new Student[4294967296];

    void add (Student s) {  // O(1)
        final int index = s._studentID;
        _allPossibleStudents[index] = s;
    }

    // Returns null if s is not in the database
    Student get (Student s) {  // O(1)
        final int index = s._studentID;
        return _allPossibleStudents[index];
    }

    void remove (Student s) {  // O(1)
        final int index = s._studentID;
        _allPossibleStudents[index] = null;
    }
}
```
Finite “universe” of objects to store

- Allocating 4 billion entries for a UCSD student database is extremely wasteful.

- The universe of keys is far larger than the number we expect to ever want to store.

- What if we decreased the size of the table from 4 billion entries to storing, say, just 100,000?

- 100,000 is still far higher than the actual number of UCSD students, so there should be plenty of space.
Finite “universe” of objects to store

- With an array of only 100,000 entries, each student ID would no longer have its own unique array index -- multiple student IDs would have to “share” an index.

- We call the “sharing” of an array index by 2 (or more) student IDs a collision.

- Whenever a collision occurs, we have to store the Student object “somewhere else” (more later).

- However, if we’re clever about how we assign array indices to student IDs, then collisions will rarely occur.

- We can still achieve $O(1)$ add/find/remove time in the average case.
Hash tables

- This idea is called a “hash table.”

- A **hash table** consists of a large array of M “slots” (or “buckets”) to store the user’s data.

- A hash table also requires:
 1. Some way of converting from an object’s key into an *index* that specifies where that object should be stored.
 - This is called a *hash function*.
 2. A method of handling *collisions*.

- In order to ensure good performance, M must be bigger than N, the number of data the user will want to store.
Hash function

- A hash function maps an object’s key into an array index, i.e., a number from 0...M-1, where M is the number of entries in the hash table.

- Simple example:
  ```c
  int hashFunction (int studentID) {
    return studentID % M;
  }
  ```

- The modulus operator % divides studentID by M, and then returns the remainder. Examples:

 \[
 \begin{align*}
 3 \% 10 &= 3 \\
 107 \% 10 &= 7 \\
 7 \% 4 &= 3 \\
 16 \% 5 &= 1
 \end{align*}
 \]
Hash function

• To be useful, a hash function must be fast.
 • Its performance should not depend on the particular key.

• A hash function must also be deterministic:
 • Given the same key, it must always return the same array index.
 • (Otherwise, how would we find something we stored earlier?)
Hash function

• A “good” hash function should also be uniform:
 • Each “slot” i in the array should be equally likely to be chosen as any other slot j.
 • We certainly don’t want to map every possible key to the same array index!
 • Uniform is important to ensure good performance.
Hash function

• For instance, if \(M \) is 100000, then \(\text{studentID} \mod 100000 \) is simply the last 5 digits of the student ID, e.g.:

 • student1 with Student ID 0000013012 would map to index 13012.

 • student2 with Student ID 1234567890 would map to index 67890.

 • These indices specify where in the array the students are stored.
Handling collisions

• Unfortunately, on occasion, there would be two (or more) student objects who are “hashed” (mapped) into the same array slot.

 studentID1 = 2200012345;
 studentID2 = 1926112345;
 hashTable.add(studentID1, student1);
 hashTable.add(studentID2, student2);

• This is called a collision -- two different student objects map into the same array index.

• How do we handle these collisions?
Handling collisions

- There are two principal ways of handling collisions:

 1. **Chaining** (aka *separate chaining*) -- at each slot in the array, instead of storing only a single element, we store a linked list of elements.

 2. **Open addressing** -- if `student5` "hashes" to array index 123, and array index 123 is already occupied, then we look for "another" index at which to store `student5`, e.g., 124.

- Different schemes for determining "another index".
- Each slot in the array contains not an object itself, but rather a pointer to the head of a linked list of objects which all map to the same index.
When looking for a particular object, we must:

1. *Hash* the key to obtain the index.
2. *Search* the list for the correct object.

This will still be *fast* as long as the linked lists are *short* (more later).
Chaining

- For example, if we wish to find stud47 with student ID 0925113012.

 1. Hash stud47’s student ID to determine the index.
 2. Jump to the head of the corresponding linked list.
 3. Traverse the linked list until we find stud47.
For example, if we wish to find \texttt{stud47} with student ID 09251\texttt{13012}.

1. Hash \texttt{stud47}'s student ID to determine the index.

2. Jump to the head of the corresponding linked list.

3. Traverse the linked list until we find \texttt{stud47}.
Chaining

- For example, if we wish to find stud47 with student ID 0925113012.

1. Hash stud47’s student ID to determine the index.

2. Jump to the head of the corresponding linked list.

3. Traverse the linked list until we find stud47.
Chaining

- For example, if we wish to find stud47 with student ID 0925113012.

1. Hash stud47's student ID to determine the index.

2. Jump to the head of the corresponding linked list.

3. Traverse the linked list until we find stud47.

Done.
• If we reach the end of the linked list and don’t find the desired student, then we know that student is not contained in the hash table.

• There is no other slot at which the Student object would be stored.
Chaining

- If we wish to remove a student (e.g., stud13), we just:

 1. Hash the student ID of the student we want to remove.
 2. Find that student in the linked list.
 3. “Splice it out”.

<table>
<thead>
<tr>
<th>Key (student ID)</th>
<th>Value (reference to Student object)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>13011</td>
<td></td>
</tr>
<tr>
<td>13012</td>
<td>stud13</td>
</tr>
<tr>
<td>13013</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>53612</td>
<td>stud92</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chaining: Performance analysis

- How fast are the add/remove/find operations for a hash table with chaining?

- To find an object in a hash table, we must:
 - Hash the key. $O(1)$
 - Jump to that array index. $O(1)$
 - Traverse through the linked list at that index. $O(?)$
Chaining: Performance analysis

• In the worst case, all N objects stored in the hash table will hash to the same array index.

• This means that the linked list at that index will be N elements long.

• To find an arbitrary element in a linked list we need $O(n)$ time.

• This is no better than just using a linked list by itself!
Chaining: Performance analysis

• However, in the average case, a hash table performs much better:

• Given M slots and N actual objects stored, the average list length for any array slot is N/M.

• Then, the average time to access any arbitrary object is $O(1 + N/M)$.

• Now, suppose that we always make sure that $M > N$.
 • Then $N/M < 1$.
 • Hence, average-case time cost is $O(1+N/M)=O(1)$.
Open addressing

- An alternative to chaining is open addressing.
- With open addressing, there are no linked lists associated with array slots.
 - Instead, if a given slot is already “full”, then the hash table “tries another one”.
 - There are different strategies for “finding another one”.
- Confusingly, open addressing is sometimes also known as closed hashing:
 - The “closed” refers to the fact that all data are stored within the array itself, not in a separate chain.
Open addressing

• There are different strategies for “finding another slot”:
 • Simplest -- **linear probing**:
 • If `hashFunction(key)` maps into an index `i` that is already occupied, then try `i+1`.
 • If that doesn’t work, try `i+2, i+3, ..., etc.`
 • If we get to `M-1`, we want to “wrap around” back to 0.
 • The index of the `j`th probe (where `j` starts at 0) is given by the expression:

\[(i+j) \% M\]
Open addressing

• Linear probing is simple to implement. However, it will tend to cause large amounts of *clustering* (more later).

• Better performance is achieved by **quadratic probing**:

 • If `hashFunction(key)` maps into an index `i`, then the index of the `j`th probe is given by the expression:

 $$(i + c_0 \times j + c_1 \times j^2) \mod M$$
Linear probing

- Suppose our hash table contains $M=100000$ entries, and we wish to add student2 to the hash table, and $\text{hashFunction}(\text{studentID2})$ returns 13011.
- This slot is occupied by student1.
- The next slot we try is $(13011+1)\%100000 = 13012$.
- Since 13012 is available, we can insert student2 at that slot.
Linear probing

• Suppose our hash table contains $M=100000$ entries, and we wish to add student2 to the hash table, and $\text{hashFunction}(\text{studentID2})$ returns 13011.

• This slot is occupied by student1.

• The next slot we try is $(13011+1) \% 100000 = 13012$.

• Since 13012 is available, we can insert student2 at that slot.
Linear probing

- Suppose our hash table contains \(M = 100000 \) entries, and we wish to add `student2` to the hash table, and `hashFunction(studentID2)` returns 13011.

- This slot is occupied by `student1`.

- The next slot we try is
 \[(13011 + 1) \% 100000 = 13012. \]

- Since 13012 is available, we can insert `student2` at that slot.
Linear probing

• Suppose our hash table contains $M=100000$ entries, and we wish to add student2 to the hash table, and $hashFunction(studentID2)$ returns 13011.

• This slot is occupied by student1.

• The next slot we try is $(13011+1) \mod 100000 = 13012$.

• Since 13012 is available, we can insert student2 at that slot.
Linear probing

- When we later wish to find student2, we:

 1. Compute its index using the hash function (i=13011).

 2. Search down the array (using linear probing) until we find the correct object, or until we find an empty slot.

- If we find an empty slot, then we know student2 is not contained in the hash table.
Linear probing

- When we later wish to find `student2`, we:

 1. Compute its index using the hash function \((i=13011)\).

 2. Search down the array (using linear probing) until we find the correct object, or until we find an empty slot.

- If we find an empty slot, then we know `student2` is not contained in the hash table.

<table>
<thead>
<tr>
<th>Key (student ID)</th>
<th>Value (reference to Student object)</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>13011</td>
<td><code>student1</code></td>
</tr>
<tr>
<td>13012</td>
<td><code>student2</code></td>
</tr>
<tr>
<td>13013</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>53612</td>
<td></td>
</tr>
</tbody>
</table>
Linear probing

• When we later wish to find \texttt{student2}, we:

 1. Compute its index using the hash function \((i=13011)\).

 2. Search down the array (using linear probing) until we find the correct object, or until we find an empty slot.

• If we find an empty slot, then we know \texttt{student2} is \textit{not} contained in the hash table.
• When we later wish to find student2, we:

1. Compute its index using the hash function ($i=13011$).

2. Search down the array (using linear probing) until we find the correct object, or until we find an empty slot.

• If we find an empty slot, then we know student2 is not contained in the hash table.
When we later wish to find student2, we:

1. Compute its index using the hash function \((i=13011)\).

2. Search down the array (using linear probing) until we find the correct object, or until we find an empty slot.

- If we find an empty slot, then we know student2 is not contained in the hash table.
Suppose we search for student9, whose hash code happens to also be 13011:

1. Compute its index using the hash function ($i=13011$).

2. Search down the array (using linear probing) until we find the correct object, or until we find an empty slot.

- If we find an empty slot, then we know student2 is not contained in the hash table.
Linear probing

- Suppose we search for student9, whose hash code happens to also be 13011:

 1. Compute its index using the hash function \((i=13011) \).

 2. Search down the array (using linear probing) until we find the correct object, or until we find an empty slot.

- If we find an empty slot, then we know student2 is not contained in the hash table.
Linear probing

- Suppose we search for **student9**, whose hash code happens to also be **13011**:

 1. Compute its index using the hash function (i=13011).
 2. Search down the array (using linear probing) until we find the correct object, or until we find an empty slot.

- If we find an empty slot, then we know **student2** is *not* contained in the hash table.
Linear probing

• Suppose we search for student9, whose hash code happens to also be 13011:

1. Compute its index using the hash function \(i = 13011 \).

2. Search down the array (using linear probing) until we find the correct object, or until we find an empty slot.

• If we find an empty slot, then we know student2 is not contained in the hash table.
Suppose we search for student9, whose hash code happens to also be 13011:

1. Compute its index using the hash function \((i=13011)\).

2. Search down the array (using linear probing) until we find the correct object, or until we find an empty slot.

- If we find an empty slot, then we know student2 is not contained in the hash table.
Linear probing

- Suppose we search for student9, whose hash code happens to also be 13011:

1. Compute its index using the hash function \(i = 13011 \).

2. Search down the array (using linear probing) until we find the correct object, or until we find an empty slot.

- If we find an empty slot, then we know student2 is not contained in the hash table.
Open addressing

- Open addressing requires less memory than chaining because there are no linked lists.

- However, they suffer from a few complications:
 1. Removing an element.
 2. Clustering.
Removing an element

- Suppose we remove student1 from the hash table.

<table>
<thead>
<tr>
<th>Key (student ID)</th>
<th>Value (reference to Student object)</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>13011</td>
<td>student1</td>
</tr>
<tr>
<td>13012</td>
<td>student2</td>
</tr>
<tr>
<td>13013</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>53612</td>
<td></td>
</tr>
</tbody>
</table>
Removing an element

• Suppose we remove student1 from the hash table.

• If we later search for student2, we will still hash to 13011, but find that it is empty.

• Does that mean student2 is not contained in the hash table?

• No -- but we have to record that somehow.
Removing an element

- One method of recording that an element was deleted is a *bridge*, a special element that indicates “empty, but keep looking.”

- If we later add another element, say student5 that hashes to 13011, then we can *replace* the bridge with a real Student object.
Removing an element

• One method of recording that an element was deleted is a bridge, a special element that indicates “empty, but keep looking.”

• If we later add another element, say student5 that hashes to 13011, then we can replace the bridge with a real Student object.
The other downside of open addressing is **clustering**.

If too many keys hash to the same index -- or to nearby indices -- then the linear probing may become expensive.

Consider the hash table to the right:

- 13011-13016 are already occupied.
- If we want to add another student `student7` who also hashes to 13011, then we have to step through 7 elements.
- The longer the cluster, the higher the time cost for add/find/remove.

<table>
<thead>
<tr>
<th>Key (student ID)</th>
<th>Value (reference to Student object)</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>student5</td>
</tr>
<tr>
<td>13011</td>
<td>student1</td>
</tr>
<tr>
<td>13012</td>
<td>student9</td>
</tr>
<tr>
<td>13013</td>
<td>student8</td>
</tr>
<tr>
<td>13014</td>
<td>student3</td>
</tr>
<tr>
<td>13015</td>
<td>student7</td>
</tr>
<tr>
<td>13016</td>
<td>student4</td>
</tr>
<tr>
<td>13017</td>
<td>...</td>
</tr>
</tbody>
</table>
The other downside of open addressing is clustering.

If too many keys hash to the same index -- or to nearby indices -- then the linear probing may become expensive.

Consider the hash table to the right:

- 13011-13016 are already occupied.
- If we want to add another student student7 who also hashes to 13011, then we have to step through 7 elements.
- The longer the cluster, the higher the time cost for add/find/remove.
Open addressing

- Like chaining, open addressing guarantees $O(1)$ time cost for the add/find/remove operations so long as $M > N$.

- Due to the bridging complication, open addressing is most useful when elements will never be deleted.

- The memory saved by not using linked lists can be used to allocate more slots \Rightarrow higher M.

- The larger M is, the fewer collisions will occur, and the better the average-case performance will be.
HashTable ADT

• As with all the other containers we’ve examined in this course (linked lists, array lists, trees, heaps), hash tables offer add, find, and remove methods.

• In contrast to the other ADTs, these methods all take $O(1)$ time in the average case.

• This excellent time cost comes at the expense of increased memory usage (since M must be much bigger than N to minimize collisions).