
CSE 12:
Basic data structures and 
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Sixteen
29 Aug 2011

Monday, August 29, 2011



More on hash tables.

Monday, August 29, 2011



Hash tables
• In the previous lecture we discussed how hash tables enable 

O(1)-time add/find/remove operations in the average case.

• The trade-off necessary to achieve O(1) time was the 
extra space needed to store a large, sparse array.

• Hash tables consist of a large array, plus a hash function to 
distribute the user’s data “evenly” across the array.

• The input to the hash function is the key, and its 
output is an index into the hash table’s array.

• Simple example:

int hashFunction (int key) {
  return key % M;  // M is size of _array
}

Monday, August 29, 2011



Keys and hash codes
• So far we have assumed that the key is always an 

integer, e.g., studentID.

• But what if wanted the student’s fullName (i.e., a 
String) to be the key?

• Java gives us additional flexibility in how keys are 
converted into array indices.

• Instead of hashing the key directly, we instead hash 
the key’s hash code.

• A hash code is a way of describing any object o using 
just a primitive int.

Monday, August 29, 2011



Hash code examples
• Suppose our key is:

• A single character c:

• We could convert c into its ASCII value, which is an 
integer (from 0-127).

• A String s of characters:

• We could convert each c in s to its ASCII value, and 
then add them together.

• An image im:

• We could add together the pixel values across all 
three (R,G,B) channels.

Note: these are just hypothetical 
examples, not necessarily how Java 
actually implements hash codes!

Monday, August 29, 2011



Keys and hash codes
• The hash code serves as an “intermediary value”  

between the object’s key and its assigned array index 
in a hash table.

• Instead of just

  _array[hashFunction(key)],

we instead write:

  _array[hashFunction(key.hashCode())];

• The Object.hashCode() method converts any Java 
object into an integer.

key would have 
to be an integer.

Now, key can 
be anything.

Monday, August 29, 2011



hashCode()

• In Java, all objects support the hashCode() method, 
defined in class Object.

• By default, hashCode() simply returns the object’s 
location (address) in memory.

• A subclass A can override the default 
implementation when a customized implementation 
would improve performance, i.e., result in fewer 
collisions, or when A overrides the equals(o) 
method (more later).

Monday, August 29, 2011



hashCode()

• In Java, the hashCode() method must uphold two 
properties:

1. Deterministic -- multiple subsequent calls to hashCode
() on the same object o must return the same value.

• Otherwise, hashFunction(key.hashCode()) 
would map into a different array index -- and the 
hash table wouldn’t be able to find o.

_array[hashFunction(o.key.hashCode())] = o;   // Add

...
return _array[hashFunction(o.key.hashCode()]; // Find

Monday, August 29, 2011



hashCode()
2. Consistent across equal instances -- if o1.equals(o2), 

then o1.hashCode() must equal o2.hashCode():

final String s1 = “hello”;
final String s2 = new String(“hello”);  // Distinct copy
int hashCode1 = s1.hashCode();
int hashCode2 = s2.hashCode();  // Must equal hashCode1

• This means that if class A overrides the equals() 
method, then it must also override hashCode().

• Calling hashCode() is sometimes faster than calling 
equals(o); hence, hashCode() offers a “fast check” 
that objects o1 and o2 might be equal:

• if o1.hashCode() != o2.hashCode(), then o1 
cannot equal o2.

Monday, August 29, 2011



hashCode()
• In addition, it is desirable for hashCode() to have:

3. Wide distribution across instances -- hashCode() should 
return different values for different instances of the same 
class as much as possible.

• If A.hashCode() returned the same hash value for 
every instance o, then all objects of type A would map 
into the same array index.

_array[hashFunction(key1.hashCode())] = o1;
_array[hashFunction(key2.hashCode())] = o2;  // Collision
_array[hashFunction(key3.hashCode())] = o3;  // Collision
_array[hashFunction(key4.hashCode())] = o4;  // Collision

• This would yield terrible (O(n)) hash performance!

hashCode() is always the same.

Monday, August 29, 2011



• The String class overrides the equals() method 
so that two distinct String objects s1 and s2 
whose character sequences are identical are 
defined to be equal, e.g.:

String s1 = “test1”;
String s2 = new String(“test1”);  // distinct copy

boolean isSameAddress = (s1 == s2);  // false
boolean isEqual = s1.equals(s2);  // true

hashCode() and equals(): 
Example 1

Monday, August 29, 2011



hashCode() and equals(): 
Example 1

• Since s1 and s2 are equal, their hash codes must be 
equal as well (according to hashCode() contract):

String s1 = “test1”;
String s2 = new String(“test1”);  // distinct copy

int hashCode1 = s1.hashCode();  // 110251487
int hashCode2 = s2.hashCode();  // 110251487
boolean isSameHashCode = (hashCode1 == hashCode2);  // true

Monday, August 29, 2011



hashCode() and equals(): 
Example 1

• The String.hashCode() method is implemented in the 
following way:

• If the length n of s is 0, then s.hashCode() is 0.

• Otherwise, s.hashCode() is:

• s[0] * 31n-1 + s[1] * 31n-2 + ... + s[n-1]

• This formula ensures that Strings with equal contents have 
the same hash code.

• It also tends to “spread” the hash codes of various Strings 
evenly over the entire range of integers (-231 to +231-1).

Monday, August 29, 2011



Hash table ADTs
• So far we’ve focused more on how a hash 

table is implemented internally and less how 
a user would use it.

• There are two different interfaces that a 
hash table ADT might offer.

• The interface varies depending on whether:

1. Key is a field inside the whole record.

2. Key is separate and stored outside the 
record.

Monday, August 29, 2011



Key inside the record
• In some previous examples we’ve conceptualized the key 

as a field within the whole object, e.g.:
class Student {
  int _studentID;
  String _firstName, _lastName;
  boolean _ownsTeddyBear;
}

• This implementation of keys then lends itself to the 
following hash table interface:
interface HashTable<T extends HasKey> {
  void add (T o);
  T get (T o);
}

where the hypothetical HasKey interface guarantees that 
T offers a method called Object getKey().

Monday, August 29, 2011



Key inside the record
• The add(o) and get(o) methods might then be 

implemented as:

void add (T o) {
  final Object key = o.getKey();
  _array[hashFunction(key.hashCode())] = o;
}

T get (T o) {
 final Object key = o.getKey();
  return _array[hashFunction(key.hashCode())];
}

Here we’re assuming that each T 
offers some method getKey() which 
returns the object’s key -- e.g., the 
_studentID field in Integer form.

Monday, August 29, 2011



Key inside the record
• Since every Java object offers a hashCode() 

method, we can get rid of defining the key at all:

void add (T o) {
  _array[hashFunction(o.hashCode())] = o;
}

T get (T o) {
  return _array[hashFunction(o.hashCode())];
}

Now we just compute the hash code 
of o directly.

Monday, August 29, 2011



Key inside the record
• We can then simplify the interface of the hash 

table:

interface HashTable<T> {
  void add (T o);
  T get (T o);
}

• This is the interface used in P5.

• Notice how the add(o) and get(o) methods are 
identical as for lists, BSTs, etc.

No longer necessary for T to 
implement some HasKey interface.

Monday, August 29, 2011



Key inside the record
• The user can then use the hash table as follows:

class Student {
  int _studentID;
  ...
  int hashCode () {
    return _studentID;
  }
}

final hashTable<Student> students =
  new HashTable<Student>();

students.add(new Student(
  12345, “Jacky”, “O’Nassis”, true
));
students.add(new Student(
  9231, “Bette”, “Midler”, false
));

...
final Student bette = students.get(new Student(9231));

She has a teddy bear.

She does not.

Monday, August 29, 2011



Key outside the record

• More commonly, however, hash tables separate the 
key from the value.

• A typical hash table interface might be:

interface HashTable<K,V> {
  void put (K key, V value);
  V get (K key);
}

Here, we are defining two different 
type parameters K (for keys) and V 
(for values).

Monday, August 29, 2011



Key outside the record
• The user would then use the hash table in the 

following way:
class Student {

  String _firstName, _lastName;
  boolean _hasTeddyBear;
}

final HashTable<Integer,Student> hashTable =
  new HashTable<Integer,Student>();
hashTable.put(12345, new Student(
  “Jacky”, “O’Nassis”, true
));

...
final Student jacky = hashTable.get(12345);

No need for explicit _studentID field.

Monday, August 29, 2011



Dictionaries

• Separating keys from values is especially useful 
when we use a hash table as a dictionary.

• A dictionary is a data structure for storing a set 
of associations between keys and values.

• Each key can be associated with at most one 
value.

Monday, August 29, 2011



Dictionaries

• Examples:

• We can create a dictionary of English words to 
their meanings:
HashTable<String,String> englishDictionary =
  new HashTable<String,String>();
englishDictionary.put(
  “eggplant”,
  “The somewhat large egg-shaped fruit of a
   tropical Old World plant, eaten as a vegetable.”
);

...

String meaning = englishDictionary.get(“eggplant”);

Monday, August 29, 2011



Caches.

Monday, August 29, 2011



Caches

• Having concluded our discussion of hash tables, we 
can now show a useful example of combining two 
data structures to build a third: in this case, a cache.

• Consider a situation in which a program needs to 
retrieve data from a container that is slow.

• The slow speed might arise due to a long distance 
over which the data must travel, or to the slow 
data rate at which a device can deliver information.

Monday, August 29, 2011



Caches
• Examples:

• A web browser downloads a webpage from an external 
server.

• A spreadsheet program loads a file from disk.

• The CPU must read the value of a variable stored in 
main memory (instead of on-chip storage).

• In each case, the program fetches data from secondary 
storage and loads it into primary storage.

• Primary storage is faster and “closer” to the user than 
secondary storage.

• What is “slow” in one context may be “fast” in another.

Server is far away.

Disk is slow.

RAM is slow.

Monday, August 29, 2011



Caches
• Examples:

• A web browser downloads a webpage from an external server.

• Primary storage: computer memory (RAM) and/or disk.

• Secondary storage: web server.

• A spreadsheet program loads a file from disk.

• Primary storage: computer memory (RAM).

• Secondary storage: disk.

• The CPU must read the value of a variable stored in main 
memory (instead of on-chip storage).

• Primary storage: CPU registers.

• Secondary storage: computer memory (RAM).

Monday, August 29, 2011



Caches
• Now, suppose that the same data X tends to be 

fetched from secondary storage repeatedly.

• In this case, we can save time by introducing an 
intermediary data container -- a cache -- that 
“remembers” the data fetched from secondary 
storage.

• A cache is a data structure that offers high-speed 
access to a small amount of data that must 
otherwise be written to/read from a slower, 
secondary storage container.

Monday, August 29, 2011



Caches: small and fast
• Caches are inherently fast and small:

• Fast because they reside in primary storage, not 
secondary storage.

• If they were slow, we’d forget the cache and 
just access secondary storage directly.

• Small because they are typically more expensive 
than secondary storage.

• If they were cheap, we’d just store everything in 
the cache and forget secondary storage.

Monday, August 29, 2011



Caches in action
• A user’s request to fetch data X from secondary 

storage is “intercepted” by the cache:

• If the cache already contains X, then the cache 
returns X to the user immediately.

• Fetching X from secondary storage is 
unnecessary.

• Otherwise (cache does not contain X), the cache 
forwards the user’s request to secondary storage.

• Both read and write caches exist; here, we deal only 
with read caches.

Monday, August 29, 2011



Caches
User Secondary 

storage
Time

Cache
Fetch X.

Monday, August 29, 2011



Caches
User Secondary 

storage
Time

Cache

Is X in cache? 
No.

Fetch X.

Monday, August 29, 2011



Caches
User Secondary 

storage
Time

Cache

Is X in cache? 
No.

Fetch X.

Fetch X.

Respond to 
request.

Monday, August 29, 2011



Caches
User Secondary 

storage
Time

Cache

Is X in cache? 
No.

Fetch X.

Fetch X.

Deliver X.

Respond to 
request.

Monday, August 29, 2011



Caches
User Secondary 

storage
Time

Cache

Is X in cache? 
No.

Fetch X.

Fetch X.

Deliver X.

Store X in 
cache.

Respond to 
request.

Monday, August 29, 2011



Caches
User Secondary 

storage
Time

Cache

Is X in cache? 
No.

Fetch X.

Fetch X.

Deliver X.

Store X in 
cache.

Deliver X.

Respond to 
request.

Monday, August 29, 2011



Caches
User Secondary 

storage
Time

Cache

Is X in cache? 
No.

Fetch X.

Fetch X.

Deliver X.

Store X in 
cache.

Deliver X.

Fetch X.

Respond to 
request.

Monday, August 29, 2011



Caches
User Secondary 

storage
Time

Cache

Is X in cache? 
No.

Fetch X.

Fetch X.

Deliver X.

Store X in 
cache.

Deliver X.

Is X in cache? 
Yes.

Fetch X.

Respond to 
request.

Monday, August 29, 2011



Caches
User Secondary 

storage
Time

Cache

Is X in cache? 
No.

Fetch X.

Fetch X.

Deliver X.

Store X in 
cache.

Deliver X.

Is X in cache? 
Yes.

Fetch X.

Deliver X.

Respond to 
request.

Monday, August 29, 2011



Caches: definitions
• If the user requests item X from the cache, and X is 

contained in the cache, then we have a cache hit.

• Otherwise, if X is not in the cache, then we have a 
cache miss.

• X must then be fetched from secondary storage.

• The size of the cache is always finite.

• For every cache miss: if the cache is full, the cache must 
decide which element to “forget”, i.e., evict.

• The choice of which data to evict can affect the cache 
miss rate (fraction of cache accesses that miss) and 
thereby the performance of the computer system.

Monday, August 29, 2011



Eviction policies
• The algorithm that decides which object to evict is 

called an eviction policy.

• The choice of eviction policy can make a large impact 
on system performance.

• An optimal eviction policy determines which element 
o in the cache will not be used again for the longest 
period of time, and then evicts o.

• This minimizes the expected cache miss rate.

• Unfortunately, this optimal policy is rarely achievable 
because it’s difficult to predict which items will be 
needed in the future.

Monday, August 29, 2011



Least-recently-used caches
• One of the most commonly implemented eviction 

policies is least-recently-used (LRU).

• Whenever we must evict an element from the 
cache, we pick the least-recently-used element.

• Justification: It seems reasonable that an item that 
has not been used in a long time will continue 
not to be requested for a while longer.

• Empirically, LRU has shown to perform “similarly” 
to the optimal eviction policy in many practical 
applications.

Monday, August 29, 2011



LRU in action

• How would an LRU 
cache handle the 
following sequence of 
requests?

• A B A C A B B C

Cache 
contentsTime

Monday, August 29, 2011



LRU in action

• How would an LRU 
cache handle the 
following sequence of 
requests?

• A B A C A B B C

A

Cache 
contentsTime

Cache miss

Monday, August 29, 2011



LRU in action

• How would an LRU 
cache handle the 
following sequence of 
requests?

• A B A C A B B C

A
A B

Cache 
contentsTime

Cache miss

Monday, August 29, 2011



LRU in action

• How would an LRU 
cache handle the 
following sequence of 
requests?

• A B A C A B B C

A
A B
A B

Cache 
contentsTime

Monday, August 29, 2011



LRU in action

• How would an LRU 
cache handle the 
following sequence of 
requests?

• A B A C A B B C

A
A B
A B
A C

Cache 
contentsTime

B was LRU.Cache miss

Monday, August 29, 2011



LRU in action

• How would an LRU 
cache handle the 
following sequence of 
requests?

• A B A C A B B C

A
A B
A B
A C
A C

Cache 
contentsTime

Monday, August 29, 2011



LRU in action

• How would an LRU 
cache handle the 
following sequence of 
requests?

• A B A C A B B C

A
A B
A B
A C
A C
A B

Cache 
contentsTime

C was LRU.Cache miss

Monday, August 29, 2011



LRU in action

• How would an LRU 
cache handle the 
following sequence of 
requests?

• A B A C A B B C

A
A B
A B
A C
A C
A B
A B

Cache 
contentsTime

Monday, August 29, 2011



LRU in action

• How would an LRU 
cache handle the 
following sequence of 
requests?

• A B A C A B B C

A
A B
A B
A C
A C
A B
A B
C B

Cache 
contentsTime

A was LRU.Cache miss

There were 5 cache misses 
out of 8 accesses; hence, 
cache miss rate is 0.625.

Monday, August 29, 2011



LRU Cache
• We wish to construct a Cache ADT that uses the 

LRU eviction policy.

• The cache will mediate access to some other, 
arbitrary secondary storage container.

• The user will request data by calling
Cache.get(key) and expect the associated value to 
be returned.

• If key is not stored in the cache, then the cache 
should forward the request to the secondary 
storage.

Monday, August 29, 2011



LRU Cache interface
• Before designing a Java interface for the LRU 

cache, let’s first conceptualize how the user might 
access the secondary storage without the cache.

• Suppose the secondary storage has the following 
interface:
interface Storage<K,V> {
  // Fetches and returns the data specified by key
  V get (K key);
}

• Here, the key might be the URL of a web page 
we’re fetching, and the value might be the web page 
itself.

Monday, August 29, 2011



LRU Cache interface

• Now, let’s define a Java interface for an LRU cache:
// Least-recently-used (LRU) cache.
// The get(key) method should take O(1) time
// for an n-element cache.
// 
// Implementing classes should offer a
// constructor with one parameter of type
// Storage that specifies the cache’s
// secondary storage.
interface LRUCache<K,V> {
  V get (K key);
}

Monday, August 29, 2011



• The LRUCache interface imposes the constraint that 
get(key) must operate in O(1) time for an n-element 
cache.

• Each call to get(key) must potentially:

1. Determine whether the desired object (specified by 
key) is stored in the cache in O(1) time.

2. If key is in cache, then:

(a) Make key the MRU item in O(1) time.

(b)Return the key’s associated value in O(1) time.

LRU Cache implementation

Monday, August 29, 2011



3. Else (key is not in cache):

(a) Call value = _secondaryStorage.get(key).

• This is no problem because it is still O(1) 
regardless of the size of the cache n.

(b) Find the least-recently-used (LRU) item in O(1) time.

(c) Replace the LRU item with (key,value), which is 
now the most-recently-used (MRU) item in the cache, 
in O(1) time.

LRU Cache implementation

Monday, August 29, 2011



LRU Cache implementation
• Hence, an implementation of LRUCache might look 

something like:
class LRUCacheImpl<K,V> implements LRUCache<K,V>{
  final Storage<K,V> _secondaryStorage;
  ...

  LRUCacheImpl (Storage<K,V> secondaryStorage) {
    _secondaryStorage = secondaryStorage;
  }

  V get (K key) {
    // If key in cache
    //    Fetch value from cache
    // Else
    //    value = _secondaryStorage.get(key);
    // ...
    // Return value;
  }
}

But what will be the 
“underlying storage” for the 
cache entries themselves?

Monday, August 29, 2011



• Our “underlying storage” will consist of 2 components:

1. A queue of Nodes to hold the relative order in which data 
are accessed.

• For n-element cache, max length of queue is n.

• LRU at the front, MRU at the back of the queue.

• Each Node will contain both a key (e.g., URL) and 
corresponding value (e.g., webpage).

LRU Cache implementation

  _key: W
_value: ...

Node
  _key: X
_value: ...

Node
  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node

_front _back

W is LRU item. Z is MRU item.

n = 4

Monday, August 29, 2011



• All the important cache data is stored in the queue.

• Whenever data X is requested, we move its Node to 
the back of the queue because it’s now the MRU item.

• Whenever data V (not in the cache) is requested, we 
fetch it from secondary storage, and then store it in 
the cache.

• We must evict the LRU item to make room.

LRU Cache implementation

  _key: W
_value: ...

Node
  _key: X
_value: ...

Node
  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node

_front _back

W is LRU item. Z is MRU item.

n = 4

Monday, August 29, 2011



• All the important cache data is stored in the queue.

• Whenever data X is requested, we move its Node to 
the back of the queue because it’s now the MRU item.

• Whenever data V (not in the cache) is requested, we 
fetch it from secondary storage, and then store it in 
the cache.

• We must evict the LRU item to make room.

LRU Cache implementation

  _key: W
_value: ...

Node
  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node
  _key: X
_value: ...

Node

_front _back

W is LRU item. Z is MRU item.

n = 4

Monday, August 29, 2011



• All the important cache data is stored in the queue.

• Whenever data X is requested, we move its Node to 
the back of the queue because it’s now the MRU item.

• Whenever data V (not in the cache) is requested, we 
fetch it from secondary storage, and then store it in 
the cache.

• We must evict the LRU item to make room.

LRU Cache implementation

  _key: W
_value: ...

Node
  _key: X
_value: ...

Node
  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node

_front _back

W is LRU item. Z is MRU item.

n = 4

  _key: V
_value: ...

Monday, August 29, 2011



• All the important cache data is stored in the queue.

• Whenever data X is requested, we move its Node to 
the back of the queue because it’s now the MRU item.

• Whenever data V (not in the cache) is requested, we 
fetch it from secondary storage, and then store it in 
the cache.

• We must evict the LRU item to make room.

LRU Cache implementation

  _key: X
_value: ...

Node
  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node
  _key: V
_value: ...

Node

_front _back

W was LRU item and was evicted. V is now MRU item.

n = 4

Monday, August 29, 2011



Reality check
• Suppose the cache stores n = 3 elements, and suppose 

the user requests the following webpages in the 
following order:

cnn.com
google.com
gmail.com
yahoo.com
npr.org
wikipedia.org
cnn.com
gmail.com
npr.org
cnn.com
imdb.com

• Show the queue at each step.

Monday, August 29, 2011



• Unfortunately, a queue by itself will not suffice to 
implement the LRUCache interface.

• When we want to update a Node‘s position in the 
queue to MRU, we have to find the node (O(n)).

• However, we can use an additional 
HashTable<K,Node> to “jump” to the desired Node in 
O(1) time.

LRU Cache implementation

  _key: W
_value: ...

Node
  _key: X
_value: ...

Node
  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node

_front _backn = 4

Monday, August 29, 2011



LRU Cache implementation

  _key: W
_value: ...

Node
  _key: X
_value: ...

Node
  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node

_front _back

Key Node
X
Y

... ...

_keysToNodesTable

The hash table affords O(1) 
access to any cache item, 

given its key.

The queue affords O(1) 
access to the LRU item 
(_front) in the cache.

• Every key stored in 
the queue will also 
have an entry in a 
hash table.

n = 4

Monday, August 29, 2011



LRU Cache implementation

  _key: W
_value: ...

Node
  _key: X
_value: ...

Node
  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node

_front _back

Key Node
X
Y

... ...

_keysToNodesTable
Whenever the user calls 
cache.get(X), item X 
becomes the MRU item. 

Using the hash table, X’s Node 
in the queue can be found in 
O(1) time.

Its Node is then moved to the 
back of the queue in O(1) 
time.

n = 4

Monday, August 29, 2011



LRU Cache implementation

  _key: W
_value: ...

Node
  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node
  _key: X
_value: ...

Node

_front _back

Key Node
X
Y

... ...

_keysToNodesTable

n = 4

Whenever the user calls 
cache.get(X), item X 
becomes the MRU item. 

Using the hash table, X’s Node 
in the queue can be found in 
O(1) time.

Its Node is then moved to the 
back of the queue in O(1) 
time.

Monday, August 29, 2011



LRU Cache implementation

  _key: W
_value: ...

Node
  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node
  _key: X
_value: ...

Node

_front _back

Key Node
X
Y

... ...

_keysToNodesTable
If the user calls 
cache.get(A) and 
triggers an eviction, then 
the LRU node is removed 
from the queue and the 
hash table.

n = 4

Monday, August 29, 2011



• In summary:

• An LRU cache is an example of combining data 
structures to harness their individual strengths.

• To implement an LRU cache with O(1) time for
V get (K key), we need fast access both to the 
LRU item, and to an arbitrary item specified by key.

• A queue gives us O(1) access to the LRU item 
(front of queue).

• A hash table gives us O(1) access to an arbitrary 
Node in the queue.

LRU Cache implementation

Monday, August 29, 2011



Graphs.

Monday, August 29, 2011



Graphs
• The last fundamental data structure we will cover in 

this course is a graph.

• Mathematically, a graph consists of a set N of 
nodes (aka vertices) connected by a set E of 
edges.

6

2

3

4

5
1

Monday, August 29, 2011



Graphs
• In computer science, graphs are useful for 

describing relationships (edges) among things (nodes).

• E.g., each node might represent a Facebook user, 
and each edge might represent whether two 
Facebook users are friends.

6

2

3

4

5
1

Monday, August 29, 2011



Graphs

• E.g., each node might represent a computer server, 
and each edge represents whether two nodes are 
linked by Ethernet.

6

2

3

4

5
1

Monday, August 29, 2011



Graphs
• Like trees, graphs consist of nodes and edges.

• Unlike trees, graph can contain cycles.

• Graphs can be either undirected (as below)...

6

2

3

4

5
1

Monday, August 29, 2011



Graphs
• ...or directed (as below).

• Directed graphs are useful for describing 
asymmetric relationships, e.g., “I know who Rick 
Santorum is, but he doesn’t know who I am.”

Me

Rick Santorum

6

2

3

4

5
1

Monday, August 29, 2011



Graphs
• In the graph below, N = { 1, 2, 3, 4, 5, 6 }.

• An edge in a directed graph from node m to node n can 
be described as an ordered pair (m, n).

• In the graph below, E = { (2, 3), (3, 1), (1, 2), (4, 1), (5, 6) }.

6

2

3

4

5
1

Monday, August 29, 2011



Graphs
• If a graph is undirected, then for every edge (m, n) ∈ E, 

we also have (n, m) ∈ E.

• For the graph below, E = { (2, 3), (3, 2), (1, 3), (3, 1), (1, 2), 
(2, 1), (1, 4), (4, 1), (5, 6), (6, 5) }.

6

2

3

4

5
1

Monday, August 29, 2011



Graphs

• Whenever (m, n) ∈ E, we say that node m is adjacent 
(or connected) to node n.

6

2

3

4

5
1

Monday, August 29, 2011



Graphs
• In some graphs, edges have weights associated with 

them to represent distance, cost, etc.

• In this case, an edge can be represented as an ordered 
triplet (m, n, wmn) where wmn is the weight from m to n.

6

2

3

4

5
1

15

8

1

4

-3

Monday, August 29, 2011



Graphs
• An example of a weighted graph is an airline map that 

shows cities connected by flights, and the weight of 
each edge is the distance (km) between those cities.

Cape Town

Zurich
Vancouver

Panama City

Wichita

Dakar

6597

4352

8039

8133

2426

6022

Monday, August 29, 2011



Representing graphs
• To use graphs as a data structure, we must devise a 

way of representing a graph in memory.

• Let N be the set of nodes and E be the set of edges.

• The number of nodes is |N|, and the number of 
edges is |E|.

• To represent the set of nodes in memory, we can 
use an |N|-element array, where each node is 
assigned a unique index.

• This is both time- and space-efficient.

Monday, August 29, 2011



Representing graphs

• To represent the set of edges, we can use two 
alternative representations:

• An adjacency matrix A for the whole graph.

• An adjacency list for every node m ∈ N.

Monday, August 29, 2011



Adjacency matrices
• An adjacency matrix A is an |N| x |N| matrix, 

where |N| is the number of nodes in the graph.

• For an unweighted graph, the (mn)th entry of A 
contains a 1 or a 0 depending on whether edge 
(m, n) ∈ E.

• For a weighted graph, the (mn)th entry of A 
contains the weight of edge (m, n) ∈ E.

• If (m, n) ∉ E, then we can store either 0, 
infinity, or null (depending on what’s most 
useful).

Monday, August 29, 2011



Adjacency matrices

1 2 3 4 5
1 1
2 1
3 1
4 1
5 12

3

4

5
1

m

n
Example for directed graph:

Monday, August 29, 2011



Adjacency matrices

1 2 3 4 5
1 1 1 1
2 1 1
3 1 1
4 1 1
5 12

3

4

5
1

m

n
Example for undirected graph:

In an undirected graph, the 
adjacency matrix A equals its 
own transpose (i.e., A = AT).

Monday, August 29, 2011



Adjacency matrices

• Adjacency matrices offer fast access to the 
presence/absence of any edge in the graph.

• However, for graphs in which edges are sparse, 
they are space-inefficient (O(|N|2)).

• A space-saving (but slower) alternative is adjacency 
lists...

Monday, August 29, 2011



Adjacency lists

• With adjacency lists, every node maintains a list of 
other nodes to which it is connected.

2

3

4

5
1

Node 1: { 2 }
Node 2: { 3 }
Node 3: { 1 }
Node 4: { 1 }
Node 5: { 4, 1 }

Monday, August 29, 2011



Adjacency lists
• Adjacency lists require only O(|E|) space to store 

all the edges.

• However, they require O(|E|) time to find a 
particular edge.

2

3

4

5
1

Node 1: { 2 }
Node 2: { 3 }
Node 3: { 1 }
Node 4: { 1 }
Node 5: { 4, 1 }

Monday, August 29, 2011



Graphs in computer science
• Graphs find many uses in computer science in 

almost every sub-discipline:

• Computability/complexity theory.

• Networking.

• Machine learning.

• Social networks.

• Compilers

• ...

Monday, August 29, 2011



Graphs in computer science

• Here, we will give a very superficial (but hopefully 
better than no) treatment of graphs.

• One of the fundamental algorithms associated with 
graphs is finding the shortest path between any two 
nodes m, n.

• This has applications in many real-world problems, 
such as...

Monday, August 29, 2011



Kevin Bacon and Erdős numbers

• ...

Monday, August 29, 2011


