CSE 12:
Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Eighteen
31 Aug 2011
More on sorting.
Insertion sort.
Insertion sort

• Like selection sort, **insertion sort** maintains a “sorted part” S and “unsorted part” U of the input array.

• With insertion sort, S is to the *left* of U.

 Sorted part Unsorted part

• Insertion sort operates by repeatedly removing the *leftmost* element of U and *inserting* it into its “proper place” in S.
Insertion sort

- Example:

<table>
<thead>
<tr>
<th>Sorted part</th>
<th>Unsorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1 4 3 8 7 2 5</td>
</tr>
</tbody>
</table>

Wednesday, August 31, 2011
Insertion sort

• Example:

Sorted part

Unsorted part

6 1 4 3 8 7 2 5

6 1 4 3 8 7 2 5
Insertion sort

- Example:

<table>
<thead>
<tr>
<th>Sorted part</th>
<th>Unsorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1 4 3 8 7 2 5</td>
</tr>
<tr>
<td>6 1</td>
<td>4 3 8 7 2 5</td>
</tr>
<tr>
<td>6 1 4</td>
<td>3 8 7 2 5</td>
</tr>
</tbody>
</table>
Insertion sort

• Example:

Sorted part

Unsorted part

6 1 4 3 8 7 2 5
1 4 3 8 7 2 5
4 3 8 7 2 5
Insertion sort

• Example:

Sorted part

Unsorted part

6 1 4 3 8 7 2 5

6 1 4 3 8 7 2 5

4 3 8 7 2 5
Insertion sort

- **Example:**

<table>
<thead>
<tr>
<th>Sorted part</th>
<th>Unsorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 1 4 3 8 7 2 5</td>
<td>6 1 4 3 8 7 2 5</td>
</tr>
<tr>
<td>1 6</td>
<td>1 4 3 8 7 2 5</td>
</tr>
<tr>
<td>1 4 6</td>
<td>4 3 8 7 2 5</td>
</tr>
<tr>
<td></td>
<td>3 8 7 2 5</td>
</tr>
</tbody>
</table>
Insertion sort

- Example:

<table>
<thead>
<tr>
<th>Sorted part</th>
<th>Unsorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1 4 3 8 7 2 5</td>
</tr>
<tr>
<td>1 6</td>
<td>4 3 8 7 2 5</td>
</tr>
<tr>
<td>1 4 6</td>
<td>3 8 7 2 5</td>
</tr>
</tbody>
</table>

Wednesday, August 31, 2011
Insertion sort

- Example:

Sorted part

6
1 6
1 4 6
1 3 4 6

Unsorted part

6 1 4 3 8 7 2 5
1 4 3 8 7 2 5
4 3 8 7 2 5
3 8 7 2 5
8 7 2 5
Insertion sort

- **Example:**

 Sorted part

 6 1 4 3 8 7 2 5

 Unsorted part

 6 1 4 3 8 7 2 5
 1 4 3 8 7 2 5
 4 3 8 7 2 5
 3 8 7 2 5
 8 7 2 5
Insertion sort

- Example:

```
<table>
<thead>
<tr>
<th>Sorted part</th>
<th>Unsorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1 4 3 8 7 2 5</td>
</tr>
<tr>
<td>1 6</td>
<td>4 3 8 7 2 5</td>
</tr>
<tr>
<td>1 4 6</td>
<td>3 8 7 2 5</td>
</tr>
<tr>
<td>1 3 4 6</td>
<td>8 7 2 5</td>
</tr>
<tr>
<td>1 3 4 6 8</td>
<td>7 2 5</td>
</tr>
</tbody>
</table>
```
Insertion sort

• Example:

Sorted part

Unsorted part

1 2 3 4 5 6 7 8
Done.
Insertion sort

• With insertion sort, most of the “effort” is in inserting the element into its proper slot.

• In contrast, with selection sort, most of the effort is in finding the largest element to insert.

• Like selection sort, insertion sort too can operate in-place:

 • When we remove the leftmost element x from U, we save it in a temporary variable.

 • To find x’s proper “slot”: we “slide down” each element y of S to the right as long as $y > x$.

 • We finally insert x, and repeat until U is empty.
Insertion sort

- Example:

 Sorted part Unsorted part

 6 1 4 3 8 7 2 5 x: 6
Insertion sort

- Example:

<table>
<thead>
<tr>
<th>Sorted part</th>
<th>Unsorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 1 4 3 8 7 2 5</td>
<td></td>
</tr>
</tbody>
</table>
Insertion sort

• Example:

<table>
<thead>
<tr>
<th>Sorted part</th>
<th>Unsorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 1 4 3 8 7 2 5</td>
<td>x:</td>
</tr>
</tbody>
</table>
Insertion sort

• Example:

<table>
<thead>
<tr>
<th>Sorted part</th>
<th>Unsorted part</th>
<th>x:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4 3 8 7 2 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Move \(y=6 \) to the right because \(y>x \).
Insertion sort

• Example:

<table>
<thead>
<tr>
<th>Sorted part</th>
<th>Unsorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 4 3 8 7 2 5</td>
<td>x: 1</td>
</tr>
</tbody>
</table>
Insertion sort

• Example:

Sorted part Unsorted part

1 6 4 3 8 7 2 5
Insertion sort

- Example:

<table>
<thead>
<tr>
<th>Sorted part</th>
<th>Unsorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 6 4 3 8 7 2 5</td>
<td>x: 4</td>
</tr>
</tbody>
</table>
Insertion sort

• Example:

Sorted part Unsorted part

1 6 3 8 7 2 5 x: 4

Move \(y=6 \) to the right because \(y>x \).
Insertion sort

- Example:

<table>
<thead>
<tr>
<th>Sorted part</th>
<th>Unsorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 6 3 8 7 2 5</td>
<td>x: 4</td>
</tr>
</tbody>
</table>

Wednesday, August 31, 2011
Insertion sort

- Example:

<table>
<thead>
<tr>
<th>Sorted part</th>
<th>Unsorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4 6 3 8 7 2 5</td>
<td></td>
</tr>
</tbody>
</table>
Insertion sort

- Example:

Sorted part Unsorted part
1 4 6 3 8 7 2 5 x: 3
Insertion sort

- Example:

Sorted part Unsorted part
1 4 6 8 7 2 5

x: 3

Move $y=6$ to the right because $y>x$.
Insertion sort

- Example:

 Sorted part Unsorted part

 1 4 6 8 7 2 5 x: 3
Insertion sort

• Example:

<table>
<thead>
<tr>
<th>Sorted part</th>
<th>Unsorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4 6</td>
<td>8 7 2 5</td>
</tr>
</tbody>
</table>

x: 3

Move y=4 to the right because y>x.
Insertion sort

- **Example:**

<table>
<thead>
<tr>
<th>Sorted part</th>
<th>Unsorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4 6 8 7 2 5</td>
<td>x: 3</td>
</tr>
</tbody>
</table>
Insertion sort

• Example:

Sorted part
1 3 4 6

Unsorted part
8 7 2 5
Insertion sort

• Example:

<table>
<thead>
<tr>
<th>Sorted part</th>
<th>Unsorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 4 6 8</td>
<td>7 2 5</td>
</tr>
</tbody>
</table>
Insertion sort

- Example:

<table>
<thead>
<tr>
<th>Sorted part</th>
<th>Unsorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 4 6 7 8</td>
<td>2 5</td>
</tr>
</tbody>
</table>
Insertion sort

• Example:

Sorted part Unsorted part

1 2 3 4 6 7 8 5
Insertion sort

• Example:

Sorted part Unsorted part

1 2 3 4 5 6 7 8
Insertion sort

- Pseudocode:

 While U is not empty:
 Save leftmost element x of U into temporary variable.
 Remove x from U.
 Loop from right to left on element y of S:
 If y > x:
 Slide y to the right by one slot.
 Let y be the next-rightmost element of S.
 Else (y ≤ x):
 Insert x to the right of y.

 The reason we need this variable is that “sliding” y to the right may overwrite the leftmost element of U.

 Since the algorithm requires only O(1) additional memory (to store x), it is still considered to operate “in-place”.

Wednesday, August 31, 2011
Stability

- Insertion sort is \textit{stable} as long as we “shift over” an element y in S if $y > x$.

\begin{tabular}{ll}
Sorted part & Unsorted part \\
\hline
1 2 3_3_7 8 & \\
1 2 3_3_7 8 & \\
1 2 3_3_7 8 & \\
1 2 3_3_7 8 & \\
1 2 3_7 8 & \\
1 2 \textbf{3_7 8} & \\
\end{tabular}

We don’t move $y=3_1$ to the right because y \textit{not} $> x$.

\textit{Wednesday, August 31, 2011}
Stability

- Insertion sort is *stable* as long as we “shift over” an element \(y \) in \(S \) if \(y > x \).

<table>
<thead>
<tr>
<th>Sorted part</th>
<th>Unsorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3_1 3_2 7 8</td>
<td></td>
</tr>
<tr>
<td>1 2 3_1 3_2 7 8</td>
<td></td>
</tr>
<tr>
<td>1 2 3_1 3_2 7 8</td>
<td></td>
</tr>
<tr>
<td>1 2 3_1 3_2 7 8</td>
<td></td>
</tr>
<tr>
<td>1 2 3_1 3_2 7 8</td>
<td></td>
</tr>
<tr>
<td>1 2 3_1 3_2 7 8</td>
<td></td>
</tr>
<tr>
<td>1 2 3_1 3_2 7 8</td>
<td></td>
</tr>
<tr>
<td>1 2 3_1 3_2 7 8</td>
<td></td>
</tr>
</tbody>
</table>
Stability

• Insertion sort is *stable* as long as we “shift over” an element y in S if $y > x$.

\[
1 \ 2 \ 3 \ 3_1 \ 3_2 \ 7 \ 8 \\
1 \ 2 \ 3_1 \ 3_2 \ 7 \ 8 \\
1 \ 2 \ 3_1 \ 3_2 \ 7 \ 8 \\
1 \ 2 \ 3_1 \ 3_2 \ 7 \ 8 \\
1 \ 2 \ 3_1 \ 3_2 \ 7 \ 8 \\
1 \ 2 \ 3_1 \ 3_2 \ 7 \ 8 \\
1 \ 2 \ 3_1 \ 3_2 \ 7 \ 8 \\
1 \ 2 \ 3_1 \ 3_2 \ 7 \ 8 \\
\text{Stable.}
\]
Stability

- If instead we “shift over” y whenever $y \geq x$, then insertion sort is not stable.

<table>
<thead>
<tr>
<th>Sorted part</th>
<th>Unsorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 3 7 8</td>
<td></td>
</tr>
<tr>
<td>1 2 3 3 2 7 8</td>
<td></td>
</tr>
<tr>
<td>1 2 3 3 2 7 8</td>
<td></td>
</tr>
<tr>
<td>1 2 3 3 2 7 8</td>
<td></td>
</tr>
<tr>
<td>1 2 3 7 8 8</td>
<td></td>
</tr>
</tbody>
</table>

We move $y=3_1$ to the right because $y \geq x$.

Wednesday, August 31, 2011
Stability

• If instead we “shift over” \(y \) whenever \(y \geq x \), then insertion sort is \textit{not} stable.

<table>
<thead>
<tr>
<th>Sorted part</th>
<th>Unsorted part</th>
</tr>
</thead>
</table>
| 1 2 3 \(_1 \) 3 \(_2 \) 7 8 | \n| 1 2 3 \(_1 \) 3 \(_2 \) 7 8 | \n| 1 2 3 \(_1 \) 3 \(_2 \) 7 8 | \n| 1 2 3 \(_1 \) 3 \(_2 \) 7 8 | \n| 1 2 3 \(_1 \) 3 \(_2 \) 7 8 | \n| 1 2 \(_1 \) 7 8 | \(x: 3 \(_2 \) \)
Stability

- If instead we “shift over” y whenever $y \geq x$, then insertion sort is not stable.

<table>
<thead>
<tr>
<th>Sorted part</th>
<th>Unsorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 3 7 8</td>
<td>3 8</td>
</tr>
<tr>
<td>1 2 3 3 7 8</td>
<td>3 8</td>
</tr>
<tr>
<td>1 2 3 3 7 8</td>
<td>3 8</td>
</tr>
<tr>
<td>1 2 3 3 7 8</td>
<td>3 8</td>
</tr>
<tr>
<td>1 2 3 3 7 8</td>
<td>3 8</td>
</tr>
<tr>
<td>1 2 3 3 7 8</td>
<td>3 8</td>
</tr>
</tbody>
</table>
Stability

- If instead we “shift over” y whenever $y \geq x$, then insertion sort is not stable.

<table>
<thead>
<tr>
<th>Sorted part</th>
<th>Unsorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 32 7 8</td>
<td></td>
</tr>
<tr>
<td>1 2 3 32 7 8</td>
<td></td>
</tr>
<tr>
<td>1 2 3 32 7 8</td>
<td></td>
</tr>
<tr>
<td>1 2 3 32 7 8</td>
<td></td>
</tr>
<tr>
<td>1 2 3 32 7 8</td>
<td></td>
</tr>
<tr>
<td>1 2 3 32 7 8</td>
<td></td>
</tr>
<tr>
<td>1 2 3 32 7 8</td>
<td>Not stable.</td>
</tr>
</tbody>
</table>
Time cost analysis

- **Worst case:**
 - Outer loop executes n times.
 - Inner loop has to move all the elements of S to the right by one slot before inserting x.
 - Since S grows in size as outer loop iterates, this results in $1, 2, 3, ..., n-1$ operations.
 - $1 + 2 + 3 + ... + n-1 = n(n-1)/2 = O(n^2)$.
Time cost analysis

• **Best case:**

 • Outer loop executes \(n \) times.

 • Inner loop only executes *once* -- \(x \) is inserted as the rightmost element of \(S \).

 • This results in only 1 operation per outer loop iteration.

 • \(1 + 1 + 1 + ... + 1 = O(n). \)

 • The *best case* is realized when the data are *already sorted*.
Heapsort.
Heapsort

- The heap data structure we covered earlier in the course turns out to be useful for sorting.
- A heap allows the removal of the largest element in $O(\log n)$ time.
- To see how this is useful in sorting, recall how selection sort operates:

 While U is not empty:

 Remove the largest element of U and add it to S.
Heapsort

• Selection sort uses a simple linear search through U to find the largest element in $O(n)$ time.

• Using a heap, we can do this in $O(\log n)$ time.

• This results in the following heapsort algorithm:

 Build a heap from the data in U.
 While U is not empty:
 Remove largest from U and add it to S.
Heapsort

- Building a heap from n data in U takes time at most $O(n \log n)$. *
- The loop iterates n times.
 - Finding+removing largest takes time $O(\log n)$.
- In total, heapsort takes time $O(n \log n) + n*O(\log n) = O(n \log n)$ in both the worst case and best case.

* It’s actually possible to heapify an array of n elements in $O(n)$ time, but that doesn’t affect heapsort’s asymptotic performance.
Heapsort

- Example:

 Unsorted part

 6 1 4 3 8 7 2 5

 Sorted part

 First, convert this into an array-based max-heap.
Heapsort

- Example:

 Unssorted part

 6 1 4 3 8 7 2 5
 8 6 7 5 3 4 2 1

 Sorted part
Heapsort

- Example:

Unsorted part

6 1 4 3 8 7 2 5
8 6 7 5 3 4 2 1

Sorted part

Now, repeatedly call `removeLargest()` and add that element to the sorted part.
Heapsort

- Example:

<table>
<thead>
<tr>
<th>Unsorted part</th>
<th>Sorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 1 4 3 8 7 2 5</td>
<td></td>
</tr>
<tr>
<td>8 6 7 5 3 4 2 1</td>
<td>8</td>
</tr>
<tr>
<td>7 6 4 5 3 1 2</td>
<td>7 8</td>
</tr>
<tr>
<td>6 5 4 2 3 1</td>
<td>6 7 8</td>
</tr>
<tr>
<td>5 3 4 2 1</td>
<td>5 6 7 8</td>
</tr>
<tr>
<td>4 3 1 2</td>
<td>4 5 6 7 8</td>
</tr>
<tr>
<td>3 2 1</td>
<td>3 4 5 6 7 8</td>
</tr>
<tr>
<td>2 1</td>
<td>2 3 4 5 6 7 8</td>
</tr>
<tr>
<td>1</td>
<td>1 2 3 4 5 6 7 8</td>
</tr>
</tbody>
</table>

Done.
Heapsort

- As with the other sorting algorithms we’ve examined, heapsort too can operate in-place.
- The “trick” to making it work is that the input array to heapsort will serve as the heap’s underlying storage.
- Recall how an array-based heap is implemented internally:

```c
int _numNodes;
int[] _nodeArray;  // Length >= _numNodes
```
Heapsort

• Whenever we add a new element to a heap, we store it in `_nodeArray[_numNodes]` and then increment `_numNodes`, e.g.:

```
_nodeArray
[3, 2, 1, _, _, _]
_numNodes: 3

Before adding 6.

_nodeArray
[3, 2, 1, 6, _, _]
_numNodes: 4

After adding 6.
```
Heapsort

- We must then call `bubbleUp` on the new element.

Before `bubbleUp`.

<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>1</th>
<th>6</th>
</tr>
</thead>
</table>
_nodeArray
_numNodes: 4

After `bubbleUp`.

<table>
<thead>
<tr>
<th>6</th>
<th>3</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
</table>
_nodeArray
_numNodes: 4
Heapsort

• To make heapsort work in place, the heap we create will use the input array as its underlying storage.

• No need to “insert” the elements to the array -- they’re already there.

• Hence, to add an element to the heap, all we must do is:

 1. Increment _numNodes

 2. Call bubbleUp on the last element of _nodeArray.
Heapsort

• Example -- let’s turn the following 8-element input array into a heap.

 6 1 4 3 8 7 2 5

• The array above is the heap’s underlying storage (_nodeArray).

• Initially, _numNodes = 0.

• Each time we “add” an element to the heap, _numNodes will increase by 1.

* In practice, this requires adding another constructor to HeapImpl12 that takes a single argument, int[] _underlyingStorage, passed in by the user.
Heapsort

- Example -- let’s turn the following 8-element input array into a heap.

Heapified elements Non-heapified elements
6 1 4 3 8 7 2 5

_numNodes: 0
Heapsort

- Example -- let’s turn the following 8-element input array into a heap.

Heapified elements Non-heapified elements
6 1 4 3 8 7 2 5

_numNodes: 1 Increment _numNodes
Heapsort

• Example -- let’s turn the following 8-element input array into a heap.

Heapified elements Non-heapified elements
6 1 4 3 8 7 2 5

_numNodes: 1

Call bubbleUp
Heapsort

- Example -- let's turn the following 8-element input array into a heap.

<table>
<thead>
<tr>
<th>Heapified elements</th>
<th>Non-heapified elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 1 4 3 8 7 2 5</td>
<td></td>
</tr>
</tbody>
</table>

_numNodes: 2

Increment _numNodes
Heapsort

- Example -- let’s turn the following 8-element input array into a heap.

6 1 4 3 8 7 2 5

_Call bubbleUp

_heapified elements Non-heapified elements
Heapsort

• Example -- let’s turn the following 8-element input array into a heap.

Heapified elements Non-heapified elements
6 1 4 3 8 7 2 5

_numNodes: 3
Increment _numNodes
Heapsort

- Example -- let’s turn the following 8-element input array into a *heap*.

 Heapified elements Non-heapified elements
 6 1 4 3 8 7 2 5

 _numNodes: 3

 Call *bubbleUp*
Heapsort

- Example -- let’s turn the following 8-element input array into a *heap*.

 Heapified elements Non-heapified elements
 6 1 4 3 8 7 2 5

_numNodes: 4

Increment _numNodes
Heapsort

• Example -- let’s turn the following 8-element input array into a heap.

Heapified elements Non-heapified elements
6 1 4 3 8 7 2 5

_numNodes: 4

Call bubbleUp
Heapsort

• Example -- let’s turn the following 8-element input array into a heap.

Heapified elements Non-heapified elements

6 3 4 1 8 7 2 5

_numNodes: 4 Call bubbleUp
Heapsort

• Example -- let’s turn the following 8-element input array into a heap.

Heapified elements Non-heapified elements
6 3 4 1 8 7 2 5

_numNodes: 5 Increment _numNodes
Heapsort

• Example -- let’s turn the following 8-element input array into a heap.

Heapified elements Non-heapified elements
6 3 4 1 8 7 2 5

_numNodes: 5

Call bubbleUp
Heapsort

- Example -- let’s turn the following 8-element input array into a heap.
 Heapified elements Non-heapified elements
 8 6 4 1 3 7 2 5

_numNodes: 5

Call bubbleUp

Keep repeating this process...
Heapsort

• Example -- let’s turn the following 8-element input array into a heap.

Heapified elements Non-heapified elements
8 6 7 5 3 4 2 1

_numNodes: 8 Done.

• We have now constructed a heap within the input array itself.

• This requires 0 extra storage.
Heapsort

• However, we’re still not done.

• We still have to call `removeLargest()` repeatedly, and store its result into the leftmost position of the sorted part of the array.

• Since we’re operating in-place, this will require that store the largest value \(x \) in a temporary variable.
Heapsort

- Given that the *unsorted part* of the array is now a valid heap, we can repeatedly call `removeLargest()` to populate the *sorted part* of the array:

Unsorted part Sorted part

8 6 7 5 3 4 2 1

save the heap’s largest element in `_max`, and then remove the largest element.
Heapsort

• Given that the *unsorted part* of the array is now a valid *heap*, we can repeatedly call `removeLargest()` to populate the *sorted part* of the array:

<table>
<thead>
<tr>
<th>Unsorted part</th>
<th>Sorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 6 7 5 3 4 2 1</td>
<td></td>
</tr>
</tbody>
</table>

Save the heap’s largest element in `_max`, and then remove the largest element.
Heapsort

- Given that the *unsorted part* of the array is now a valid *heap*, we can repeatedly call `removeLargest()` to populate the *sorted part* of the array:

<table>
<thead>
<tr>
<th>Unsorted part</th>
<th>Sorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 6 7 5 3 4 2</td>
<td>_max: 8</td>
</tr>
<tr>
<td></td>
<td>_numNodes: 7</td>
</tr>
</tbody>
</table>

Calling `removeLargest` requires us to `trickleDown` from the root.
Heapsort

- Given that the *unsorted part* of the array is now a valid *heap*, we can repeatedly call `removeLargest()` to populate the *sorted part* of the array:

```
Unsorted part       Sorted part
7  6  1  5  3  4  2
```

_max: 8
_numNodes: 7

Calling `removeLargest` requires us to `trickleDown` from the root.
Heapsort

• Given that the *unsorted part* of the array is now a valid heap, we can repeatedly call `removeLargest()` to populate the *sorted part* of the array:

<table>
<thead>
<tr>
<th>Unsorted part</th>
<th>Sorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 6 4 5 3 1 2</td>
<td></td>
</tr>
</tbody>
</table>

Calling `removeLargest()` requires us to `trickleDown` from the root.
Heapsort

• Given that the *unsorted part* of the array is now a valid *heap*, we can repeatedly call `removeLargest()` to populate the *sorted part* of the array:

<table>
<thead>
<tr>
<th>Unsorted part</th>
<th>Sorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 6 4 5 3 1 2</td>
<td>8</td>
</tr>
</tbody>
</table>

mètre: _numNodes: 7

Finally, we store `_max` into the *sorted part* of the array.
Heapsort

• Given that the unsorted part of the array is now a valid heap, we can repeatedly call removeLargest() to populate the sorted part of the array:

<table>
<thead>
<tr>
<th>Unsorted part</th>
<th>Sorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 6 4 5 3 1 2 8</td>
<td></td>
</tr>
</tbody>
</table>

_max: 7
_numNodes: 7

Save the heap’s largest element in _max, and then remove the largest element.
Heapsort

• Given that the unsorted part of the array is now a valid heap, we can repeatedly call removeLargest() to populate the sorted part of the array:

Unsorted part: 2 6 4 5 3 1

Sorted part: 8

_max: 7
_numNodes: 7

Calling removeLargest requires us to trickleDown from the root.
Heapsort

- Given that the *unsorted part* of the array is now a valid heap, we can repeatedly call `removeLargest()` to populate the *sorted part* of the array:

<table>
<thead>
<tr>
<th>Unsorted part</th>
<th>Sorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 2 4 5 3 1</td>
<td>8</td>
</tr>
</tbody>
</table>

_max: 7
_numNodes: 7

Calling `removeLargest` requires us to `trickleDown` from the root.
Heapsort

- Given that the *unsorted part* of the array is now a valid *heap*, we can repeatedly call `removeLargest()` to populate the *sorted part* of the array:

<table>
<thead>
<tr>
<th>Unsorted part</th>
<th>Sorted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 5 4 2 3 1</td>
<td>8</td>
</tr>
</tbody>
</table>

```text
_max: 7
_numNodes: 7
```

Calling `removeLargest` requires us to `trickleDown` from the root.
Heapsort

• Given that the unsorted part of the array is now a valid heap, we can repeatedly call removeLargest() to populate the sorted part of the array:

Unsorted part Sorted part
6 5 4 2 3 1 7 8

_max: _numNodes: 7

Finally, we store _max into the sorted part of the array.
Heapsort

- We repeatedly remove the largest element and store it into the leftmost slot of the unsorted part of the array, until the heap is empty.
- At that point, the array will be completely sorted.
- Since this required only one auxiliary variable (_max), the algorithm works in-place.
Heapsort

- In summary, heapsort is an in-place sorting algorithm whose best and worst case time costs are $O(n \log n)$.

- However, the algorithm is *not* stable because the heap ordering may cause the relative order of duplicate elements to become inverted.
Mergesort.
Approach 2: divide and conquer

- So far we’ve looked at sorting algorithms that partition the input array into a sorted part and unsorted part, and then “grow” the sorted part to be the entire array.

- An alternative approach altogether is based on the divide-and-conquer principle:

 - To sort a list of size n:
 - Divide the list into two halves (approx. size $n/2$).
 - Sort each half independently using recursion.
 - Combine the 2 sorted lists of $n/2$ elements into 1 sorted list of n elements.
Mergesort

- The first algorithm we examine that uses divide-and-conquer is **Mergesort**.

- Here’s the “main idea” behind the algorithm:
 - Suppose we have a *left list* and a *right list* that are *already sorted*.
 - To combine these two lists into one larger sorted list, we just:
 - Iterate through both lists simultaneously.
 - “Pick out” the smaller element from the current position of either the left or right list, and insert it into our *combined* list.
Merging two sorted lists

- Example:

<table>
<thead>
<tr>
<th>Left list</th>
<th>Right list</th>
<th>Combined list</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 4 6</td>
<td>2 5 7 8</td>
<td></td>
</tr>
</tbody>
</table>

Iterate through both lists:

- Pick out the smaller element \(x \) from the current position of either the left or right list;
- Advance the pointer of whichever list contained \(x \);
- Then insert \(x \) into the combined list.
Merging two sorted lists

• Example:

<table>
<thead>
<tr>
<th>Left list</th>
<th>Right list</th>
<th>Combined list</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 4 6</td>
<td>2 5 7 8</td>
<td>1</td>
</tr>
</tbody>
</table>

Iterate through both lists:

Pick out the smaller element *x* from the current position of either the left or right list;
Advance the pointer of whichever list contained *x*;
Then *insert* *x* into the combined list.
Merging two sorted lists

• Example:

<table>
<thead>
<tr>
<th>Left list</th>
<th>Right list</th>
<th>Combined list</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 4 6</td>
<td>2 5 7 8</td>
<td>1 2</td>
</tr>
</tbody>
</table>

Iterate through both lists:

Pick out the smaller element x from the current position of either the left or right list;
Advance the pointer of whichever list contained x;
Then insert x into the combined list.
Merging two sorted lists

- Example:

<table>
<thead>
<tr>
<th>Left list</th>
<th>Right list</th>
<th>Combined list</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 4 6</td>
<td>2 5 7 8</td>
<td>1 2 3</td>
</tr>
</tbody>
</table>

Iterate through both lists:

Pick out the smaller element x from the current position of either the left or right list;

Advance the pointer of whichever list contained x;

Then *insert* x into the combined list.
Merging two sorted lists

• Example:

<table>
<thead>
<tr>
<th>Left list</th>
<th>Right list</th>
<th>Combined list</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 4 6</td>
<td>2 5 7 8</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>i</td>
<td>j</td>
<td>k</td>
</tr>
</tbody>
</table>

Iterate through both lists:

Pick out the smaller element x from the current position of either the left or right list;
Advance the pointer of whichever list contained x;
Then insert x into the combined list.
Merging two sorted lists

- Example:

<table>
<thead>
<tr>
<th>Left list</th>
<th>Right list</th>
<th>Combined list</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 4 6</td>
<td>2 5 7 8</td>
<td>1 2 3 4 5</td>
</tr>
</tbody>
</table>

Iterate through both lists:

- Pick out the smaller element x from the current position of either the left or right list;
- Advance the pointer of whichever list contained x;
- Then insert x into the combined list.
Merging two sorted lists

- **Example:**

<table>
<thead>
<tr>
<th>Left list</th>
<th>Right list</th>
<th>Combined list</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 4 6</td>
<td>2 5 7 8</td>
<td>1 2 3 4 5 6</td>
</tr>
</tbody>
</table>

Iterate through both lists:
- *Pick out* the smaller element \(x \) from the current position of either the left or right list;
- *Advance* the pointer of whichever list contained \(x \);
- Then *insert* \(x \) into the combined list.
Merging two sorted lists

• Example:

<table>
<thead>
<tr>
<th>Left list</th>
<th>Right list</th>
<th>Combined list</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 4 6</td>
<td>2 5 7 8</td>
<td>1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>

Iterate through both lists:

Pick out the smaller element x from the current position of either the left or right list;
Advance the pointer of whichever list contained x;
Then insert x into the combined list.
Merging two sorted lists

- Example:

<table>
<thead>
<tr>
<th>Left list</th>
<th>Right list</th>
<th>Combined list</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 4 6</td>
<td>2 5 7 8</td>
<td>1 2 3 4 5 6 7 8</td>
</tr>
</tbody>
</table>

Done.

Iterate through both lists:
- Pick out the smaller element x from the current position of either the left or right list;
- Advance the pointer of whichever list contained x;
- Then insert x into the combined list.
Mergesort

• Given a left list ($n/2$ elements) and a right list ($n/2$ elements), “merging” them into a combined list (n elements) takes time $O(n)$.

• However, it requires that we allocate a temporary array of size n.

• Mergesort does not operate in-place.

• After merging, we copy the elements in the temporary array back into the input array.

* Except when using a linked-list representation.
Mergesort

• Given a procedure to merge two sorted lists, we can define a recursive sorting algorithm in the following way:
 • Given an input array:
 • If its length is 1, then it’s already sorted.
 • Else:
 • Divide the list into two halves.
 • Recursively sort each half.
 • Merge their results into one combined list.
Mergesort

- Mergesort’s pseudocode:

```java
void mergesort (array) {
    If array.length == 1, then do nothing. Base case
    Else:
        Split array evenly into leftArray and rightArray.
        mergesort(leftArray);
        mergesort(rightArray);
        Merge the leftArray and rightArray into array
}
```

- Let’s see how it works in practice...
Mergesort

- Example: First stage: recursively divide until we reach the base case.

```
6 1 4 3 8 7 2 5
```

void mergesort (array) {
 If array.length == 1, then do nothing.
 Else:
 Split array evenly into leftArray and rightArray.
 mergesort(leftArray);
 mergesort(rightArray);
 Merge the leftArray and rightArray into array
}

Split list and recurse.
Mergesort

• Example: First stage: recursively divide until we reach the base case.

6 1 4 3 8 7 2 5

6 1 4 3

8 7 2 5

Split list and recurse.

```java
void mergesort (array) {
    If array.length == 1, then do nothing.
    Else:
        Split array evenly into leftArray and rightArray.
        mergesort(leftArray);
        mergesort(rightArray);
        Merge the leftArray and rightArray into array
}
```
Mergesort

• Example: First stage: recursively divide until we reach the base case.

6 1 4 3 8 7 2 5
6 1 4 3
6 1
6

void mergesort (array) {
 If array.length == 1, then do nothing.
 Else:
 Split array evenly into leftArray and rightArray.
 mergesort(leftArray);
 mergesort(rightArray);
 Merge the leftArray and rightArray into array

}
Mergesort

• Example:

Each of these is a “list” (size 1) passed to a recursive call to Mergesort.

6 1 4 3 8 7 2 5

void mergesort (array) {
 If array.length == 1, then do nothing.
 Else:
 Split array evenly into leftArray and rightArray.
 mergesort(leftArray);
 mergesort(rightArray);
 Merge the leftArray and rightArray into array
}
Mergesort

• Example:

Second stage: merge each pair of sorted sub-lists.

void mergesort (array) {
 If array.length == 1, then do nothing.
 Else:
 Split array evenly into leftArray and rightArray.
 mergesort(leftArray);
 mergesort(rightArray);
 Merge the leftArray and rightArray into array
}

Merge the two sub-lists.

1 6 3 4 7 8 2 5

6 1 4 3 8 7 2 5
void mergesort (array) {
 If array.length == 1, then do nothing.
 Else:
 Split array evenly into leftArray and rightArray.
 mergesort(leftArray);
 mergesort(rightArray);
 Merge the leftArray and rightArray into array
}
Mergesort

• Example:

Second stage: merge each pair of sorted sub-lists.

1 2 3 4 5 6 7 8
1 3 4 6 2 5 7 8
1 6 3 4 7 8 2 5
6 1 4 3 8 7 2 5

void mergesort (array) {
 If array.length == 1, then do nothing.
 Else:
 Split array evenly into leftArray and rightArray.
 mergesort(leftArray);
 mergesort(rightArray);
 Merge the leftArray and rightArray into array
}
Mergesort

- Example:

1 2 3 4 5 6 7 8

1 3 4 6 2 5 7 8

1 6 3 4 7 8 2 5

6 1 4 3 8 7 2 5

void mergesort (array) {
 If array.length == 1, then do nothing.
 Else:
 Split array evenly into leftArray and rightArray.
 mergesort(leftArray);
 mergesort(rightArray);
 Merge the leftArray and rightArray into array
}
Mergesort

• Example:

1 2 3 4 5 6 7 8

1 3 4 6 2 5 7 8

1 6 3 4 7 8 2 5

6 1 4 3 8 7 2 5

• The depth of this recursive call stack is the number of times we can divide \(n \) by 2, i.e., \(O(\log n) \).
Mergesort

• Example:

1 2 3 4 5 6 7 8

1 3 4 6 2 5 7 8

1 6 3 4 7 8 2 5

6 1 4 3 8 7 2 5

• At each level, each element in the input array had to be “touched” once (for the merge operation).

• In total: $O(\log n) \times n = O(n \log n)$.
• Because Mergesort’s dividing and merging requires the same number of operations \textit{regardless} of the particular input, Mergesort’s \textit{best case} and \textit{worst case} time complexities are both $O(n \log n)$.

• Mergesort is \textit{stable} as long as the \texttt{merge} procedure selects the left array’s x in the case of ties.
Quicksort.

Tomorrow.
Sorting demo.