CSE I2:

Basic data structures and object-oriented design
 Jacob Whitehill jake@mplab.ucsd.edu

Lecture Eighteen 3I Aug 201I

More on sorting.

Insertion sort.

Insertion sort

- Like selection sort, insertion sort maintains a "sorted part" S and "unsorted part" U of the input array.
- With insertion sort, S is to the left of U.

Sorted part Unsorted part

- Insertion sort operates by repeatedly removing the leftmost element of U and inserting it into its "proper place" in S.

Insertion sort

- Example:

Sorted part

Unsorted part
$\begin{array}{llllllll}6 & 1 & 4 & 3 & 8 & 7 & 5\end{array}$

Insertion sort

- Example:

Sorted part

Unsorted part

$$
\begin{array}{llllllll}
6 & 1 & 4 & 3 & 8 & 7 & 2 & 5 \\
& 1 & 4 & 3 & 8 & 7 & 2 & 5
\end{array}
$$

Insertion sort

- Example:

Sorted part

Unsorted part

$$
\begin{array}{llllllll}
6 & 1 & 4 & 3 & 8 & 7 & 2 & 5 \\
& 1 & 4 & 3 & 8 & 7 & 2 & 5
\end{array}
$$

Insertion sort

- Example:

Sorted part

Unsorted part

$$
16
$$

$$
\begin{array}{llllllll}
6 & 1 & 4 & 3 & 8 & 7 & 2 & 5 \\
& 1 & 4 & 3 & 8 & 7 & 2 & 5 \\
& & 4 & 3 & 8 & 7 & 2 & 5
\end{array}
$$

Insertion sort

- Example:

Sorted part

Unsorted part

$$
16
$$

$$
\begin{array}{llllllll}
6 & 1 & 4 & 3 & 8 & 7 & 2 & 5 \\
& 1 & 4 & 3 & 8 & 7 & 2 & 5 \\
& & 4 & 3 & 8 & 7 & 2 & 5
\end{array}
$$

Insertion sort

- Example:

Sorted part

Unsorted part

$$
16
$$

$$
146
$$

$$
\begin{array}{llllllll}
6 & 1 & 4 & 3 & 8 & 7 & 2 & 5 \\
& 1 & 4 & 3 & 8 & 7 & 2 & 5 \\
& & 4 & 3 & 8 & 7 & 2 & 5 \\
& & & 3 & 8 & 7 & 2 & 5
\end{array}
$$

Insertion sort

- Example:

Sorted part

Unsorted part

$$
16
$$

$$
146
$$

$$
\begin{array}{llllllll}
6 & 1 & 4 & 3 & 8 & 7 & 2 & 5 \\
& 1 & 4 & 3 & 8 & 7 & 2 & 5 \\
& & 4 & 3 & 8 & 7 & 2 & 5 \\
& & & 3 & 8 & 7 & 2 & 5
\end{array}
$$

Insertion sort

- Example:

Sorted part

Unsorted part

$$
\begin{array}{llllllll}
6 & 1 & 4 & 3 & 8 & 7 & 2 & 5 \\
& 1 & 4 & 3 & 8 & 7 & 2 & 5
\end{array}
$$

$$
16
$$

$$
146
$$

$$
1346
$$

Insertion sort

- Example:

Sorted part

Unsorted part

$$
16
$$

$$
146
$$

$$
1346
$$

$$
\begin{array}{llllllll}
6 & 1 & 4 & 3 & 8 & 7 & 2 & 5 \\
& 1 & 4 & 3 & 8 & 7 & 2 & 5 \\
& & 4 & 3 & 8 & 7 & 2 & 5 \\
& & & 3 & 8 & 7 & 2 & 5 \\
& & & & 8 & 7 & 2 & 5
\end{array}
$$

Insertion sort

- Example:

Sorted part

Unsorted part
$\begin{array}{llllllll}6 & 1 & 4 & 3 & 8 & 7 & 2 & 5 \\ & 1 & 4 & 3 & 8 & 7 & 2 & 5 \\ & 4 & 3 & 8 & 7 & 2 & 5 \\ & & & 3 & 8 & 7 & 2 & 5 \\ & & & & 8 & 7 & 2 & 5 \\ & & & & 7 & 2 & 5\end{array}$

Insertion sort

- Example:

Sorted part

6
16
146
1346
13468
134678
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 6 & 7\end{array}$
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \text { Done. }\end{array}$

Insertion sort

- With insertion sort, most of the "effort" is in inserting the element into its proper slot.
- In contrast, with selection sort, most of the effort is in finding the largest element to insert.
- Like selection sort, insertion sort too can operate inplace:
- When we remove the leftmost element x from U, we save it in a temporary variable.
- To find x 's proper "slot": we "slide down" each element y of S to the right as long as $y>x$.
- We finally insert x, and repeat until U is empty.

Insertion sort

- Example:

Sorted part Unsorted part

$$
\begin{array}{lllllllll}
6 & 1 & 4 & 3 & 8 & 7 & 2 & 5 & x: 6
\end{array}
$$

Insertion sort

- Example:

Sorted part Unsorted part 61438725

Insertion sort

- Example:

Sorted part Unsorted part

$$
6144387225 \quad x: 1
$$

Insertion sort

- Example:

Sorted part Unsorted part

6438725
$x: I$

Move $y=6$ to the
right because $y>x$.

Insertion sort

- Example:

Sorted part Unsorted part

$$
\begin{array}{llllllll}
6 & 4 & 3 & 8 & 7 & 2 & 5 & x: 1
\end{array}
$$

Insertion sort

- Example:

Sorted part Unsorted part 16438725

Insertion sort

- Example:

Sorted part Unsorted part

 $\begin{array}{lllllllll}1 & 6 & 4 & 3 & 8 & 7 & 2 & 5 & x: 4\end{array}$
Insertion sort

- Example:

Sorted part Unsorted part

 $\begin{array}{llllllll}1 & 6 & 3 & 8 & 7 & 2 & 5 & x: 4\end{array}$Move $y=6$ to the right because $y>x$.

Insertion sort

- Example:

Sorted part Unsorted part

 $16387285 \quad x: 4$
Insertion sort

- Example:

Sorted part Unsorted part 14638725

Insertion sort

- Example:

Sorted part Unsorted part

$$
146387285 \quad x: 3
$$

Insertion sort

- Example:

Sorted part Unsorted part 1468725
 $x: 3$

Move $y=6$ to the right because $y>x$.

Insertion sort

- Example:

Sorted part Unsorted part

$$
\begin{array}{llllllll}
1 & 4 & 6 & 8 & 7 & 2 & 5 & x: 3
\end{array}
$$

Insertion sort

- Example:

Sorted part Unsorted part 1468725
 $x: 3$

Move $y=4$ to the right because $y>x$.

Insertion sort

- Example:

Sorted part Unsorted part $146887250 \quad x: 3$

Insertion sort

- Example:

Sorted part Unsorted part 13468725

Insertion sort

- Example:

Sorted part Unsorted part 13468725

Insertion sort

- Example:

Sorted part Unsorted part 13467825

Insertion sort

- Example:

Sorted part Unsorted part 12346785

Insertion sort

- Example:

Sorted part Unsorted part 12345678

Insertion sort

- Pseudocode:

The reason we need this variable is that
"sliding" y to the right may overwrite the leftmost element of U.

While U is not empty:
Save leftmost element x of U into temporary variable.
Remove x from U.
Loop from right to left on element y of S :
If $y>x$:
Slide y to the right by one slot.
Let y be the next-rightmost element of S.
Else ($\mathrm{y} \leq \mathrm{x}$):
Insert x to the right of y.
Since the algorithm requires only $O(I)$
additional memory (to store x), it is still
considered to operate "in-place".

Stability

- Insertion sort is stable as long as we "shift over" an element y in S if $y>x$.

Sorted part Unsorted part
l 2 31 $3_{2} 78$
123 | 3278
1 2 31 $3_{2} 78$
| 2 31 32 78
\| 2 3। 78
$x: 32$
We don't move $y=3$, to the right because y not $>x$.

Stability

- Insertion sort is stable as long as we "shift over" an element y in S if $y>x$.

Sorted part Unsorted part
1 2 31 $3_{2} 78$
| 2 3, $3_{2} 78$
1 2 31 $3_{2} 78$
| 2 3, 3278
| 2 3। 3278

Stability

- Insertion sort is stable as long as we "shift over" an element y in S if $y>x$.

12313278
1 2 31, 3278
1 23 31 3278
123|3278
1 23 132 78
12313278
12313278 Stable.

Stability

- If instead we "shift over" y whenever $y \geq x$, then insertion sort is not stable.

Sorted part Unsorted part
1 2 31 3278
| 2 3, 3278
| 2 31 3278
| 2 3, 3278
| 2 3। 78
$x: 32$
We move $y=3$, to the right because $y \geq x$.

Stability

- If instead we "shift over" y whenever $y \geq x$, then insertion sort is not stable.

Sorted part Unsorted part
1 2 31 3278
| 2 31 $3_{2} 78$
123 1 $3_{2} 78$
| 2 31 3278
| 2 3। 78
$x: 32$

Stability

- If instead we "shift over" y whenever $y \geq x$, then insertion sort is not stable.

Sorted part Unsorted part
l 2 31 $3_{2} 78$
| 2 31 $3_{2} 78$
| 2 31 3278
1 2 31 32 78
| 23 3 3, 78

Stability

- If instead we "shift over" y whenever $y \geq x$, then insertion sort is not stable.

Sorted part Unsorted part
1 2 31 3278
| 2 31 $3_{2} 78$
| 2 31 3278
| 2 31 32 78
| 2 323178
| 2 32 31 78
| 2 32 3| 78 Not stable.

Time cost analysis

- Worst case:
- Outer loop executes n times.
- Inner loop has to move all the elements of S to the right by one slot before inserting x.
- Since S grows in size as outer loop iterates, this results in I, $2,3, \ldots, n$-I operations.
- $I+2+3+\ldots+n-I=n(n-I) / 2=O\left(n^{2}\right)$.

Time cost analysis

- Best case:
- Outer loop executes n times.
- Inner loop only executes once $--x$ is inserted as the rightmost element of S.
- This results in only I operation per outer loop iteration.
- $1+1+1+\ldots+1=O(n)$.
- The best case is realized when the data are already sorted.

Heapsort.

Heapsort

- The heap data structure we covered earlier in the course turns out to be useful for sorting.
- A heap allows the removal of the largest element in $O(\log n)$ time.
- To see how this is useful in sorting, recall how selection sort operates:

While U is not empty:
Remove the largest element of U and add it to S.

Heapsort

- Selection sort uses a simple linear search through U to find the largest element in $O(n)$ time.
- Using a heap, we can do this in $O(\log n)$ time.
- This results in the following heapsort algorithm:

Build a heap from the data in U. While U is not empty:

Remove largest from U and add it to S.

Heapsort

- Building a heap from n data in U takes time at most $O(n \log n)$.
- The loop iterates n times.
- Finding+removing largest takes time $O(\log n)$.
- In total, heapsort takes time
$O(n \log n)+n^{*} O(\log n)=O(n \log n)$ in both the worst case and best case.

[^0]
Heapsort

- Example:

Unsorted part
 $\begin{array}{llllllll}6 & 1 & 3 & 7 & 5\end{array}$
 First, convert this into an array-based max-heap.

 Sorted part
Heapsort

- Example:

Unsorted part
$\begin{array}{llllllll}6 & 1 & 4 & 3 & 7 & 5\end{array}$
86753421

Sorted part

Heapsort

- Example:

Unsorted part
$\begin{array}{llllllll}6 & 1 & 4 & 3 & 8 & 2 & 5\end{array}$
86753421
Now, repeatedly call
removeLargest() and add that element to the sorted part. Sorted part

Heapsort

- Example:

Heapsort

- As with the other sorting algorithms we've examined, heapsort too can operate in-place.
- The "trick" to making it work is that the input array to heapsort will serve as the heap's underlying storage.
- Recall how an array-based heap is implemented internally:
int _numNodes;
int[] _nodeArray; // Length >= _numNodes

Heapsort

- Whenever we add a new element to a heap, we store it in _nodeArray [_numNodes] and then increment _numNodes, e.g.:

_numNodes: 3

numNodes:

Before adding 6.

After adding 6.

Heapsort

- We must then call bubbleup on the new element.

Heapsort

- To make heapsort work in place, the heap we create will use the input array as its underlying storage.
- No need to "insert" the elements to the array -they're already there.
- Hence, to add an element to the heap, all we must do is:
I. Increment _numNodes

2. Call bubbleup on the last element of _nodeArray.

Heapsort

- Example -- let's turn the following 8-element input array into a heap.
$\begin{array}{llllllll}6 & 1 & 4 & 3 & 7 & 2 & 5\end{array}$
- The array above is the heap's underlying storage (_nodeArray).
- Initially, _numNodes $=0$.
- Each time we "add" an element to the heap, _numNodes will increase by I.

[^1]
Heapsort

Example -- let's turn the following 8-element input array into a heap.
Heapified elements Non-heapified elements
61438725
_numNodes: 0

Heapsort

- Example -- let's turn the following 8-element input array into a heap. Heapified elements Non-heapified elements
61438725
_numNodes: 1
Increment _numNodes

Heapsort

- Example -- let's turn the following 8-element input array into a heap. Heapified elements Non-heapified elements
61438725
_numNodes: 1
Call bubbleUp

Heapsort

- Example -- let's turn the following 8-element input array into a heap. Heapified elements Non-heapified elements
61438725
_numNodes: 2
Increment _numNodes

Heapsort

- Example -- let's turn the following 8-element input array into a heap. Heapified elements Non-heapified elements
61438725
_numNodes: 2
Call bubbleUp

Heapsort

- Example -- let's turn the following 8-element input array into a heap. Heapified elements Non-heapified elements
61438725
_numNodes: 3
Increment _numNodes

Heapsort

- Example -- let's turn the following 8-element input array into a heap. Heapified elements Non-heapified elements
61438725
_numNodes: 3
Call bubbleUp

Heapsort

- Example -- let's turn the following 8-element input array into a heap. Heapified elements Non-heapified elements
61438725
_numNodes: 4
Increment _numNodes

Heapsort

- Example -- let's turn the following 8-element input array into a heap. Heapified elements Non-heapified elements
61438725
_numNodes: 4
Call bubbleUp

Heapsort

- Example -- let's turn the following 8-element input array into a heap. Heapified elements Non-heapified elements
63418725
_numNodes: 4
Call bubbleUp

Heapsort

- Example -- let's turn the following 8-element input array into a heap. Heapified elements Non-heapified elements 63418725 _numNodes: 5 Increment _numNodes

Heapsort

- Example -- let's turn the following 8-element input array into a heap. Heapified elements Non-heapified elements 63418725

_numNodes: 5

Call bubbleUp

Heapsort

- Example -- let's turn the following 8-element input array into a heap. Heapified elements Non-heapified elements 86413725

_numNodes: 5

Call bubbleup

Keep repeating this process...

Heapsort

- Example -- let's turn the following 8-element input array into a heap.
Heapified elements Non-heapified elements
86753421
_numNodes: 8
Done.
- We have now constructed a heap within the input array itself.
- This requires 0 extra storage.

Heapsort

- However, we're still not done.
- We still have to call removeLargest() repeatedly, and store its result into the leftmost position of the sorted part of the array.
- Since we're operating in-place, this will require that store the largest value x in a temporary variable.

Heapsort

- Given that the unsorted part of the array is now a valid heap, we can repeatedly call removeLargest() to populate the sorted part of the array:

Unsorted part Sorted part
86753421
max:
_numNodes: 8

Save the heap's largest element in _max, and then remove the largest element.

Heapsort

- Given that the unsorted part of the array is now a valid heap, we can repeatedly call removeLargest() to populate the sorted part of the array:

Unsorted part Sorted part
86753421
max: 8
_numNodes: 8

Save the heap's largest element in _max, and then remove the largest element.

Heapsort

- Given that the unsorted part of the array is now a valid heap, we can repeatedly call removeLargest () to populate the sorted part of the array:

Unsorted part Sorted part
1675342
max: 8
_numNodes: 7
Calling removeLargest requires us to trickleDown from the root.

Heapsort

- Given that the unsorted part of the array is now a valid heap, we can repeatedly call removeLargest () to populate the sorted part of the array:

Unsorted part Sorted part

$$
7615342
$$

max: 8
_numNodes: 7

Calling removeLargest requires us to trickleDown from the root.

Heapsort

- Given that the unsorted part of the array is now a valid heap, we can repeatedly call removeLargest() to populate the sorted part of the array:

Unsorted part Sorted part
7645312
max: 8
_numNodes: 7
Calling removeLargest requires us to trickleDown from the root.

Heapsort

- Given that the unsorted part of the array is now a valid heap, we can repeatedly call removeLargest () to populate the sorted part of the array:

Unsorted part Sorted part

$$
764453128
$$

max :
_numNodes: 7
Finally, we store _max into the sorted part of the array.

Heapsort

- Given that the unsorted part of the array is now a valid heap, we can repeatedly call removeLargest() to populate the sorted part of the array:

Unsorted part Sorted part

76453128

max: 7
_numNodes: 7

Save the heap's largest element in _max, and then remove the largest element.

Heapsort

- Given that the unsorted part of the array is now a valid heap, we can repeatedly call removeLargest () to populate the sorted part of the array:

Unsorted part

Sorted part

8

Calling removeLargest requires us to trickleDown from the root.

Heapsort

- Given that the unsorted part of the array is now a valid heap, we can repeatedly call removeLargest() to populate the sorted part of the array:

Unsorted part

Sorted part

$$
\begin{array}{lllll}
6 & 2 & 4 & 3 & 1
\end{array}
$$

Calling removeLargest requires us to trickleDown from the root.

Heapsort

- Given that the unsorted part of the array is now a valid heap, we can repeatedly call removeLargest() to populate the sorted part of the array:

Unsorted part

$$
\begin{array}{llllll}
6 & 5 & 4 & 2 & 1
\end{array}
$$

$$
\max : 7
$$

_numNodes: 7

Sorted part

8

Calling removeLargest requires us to trickleDown from the root.

Heapsort

- Given that the unsorted part of the array is now a valid heap, we can repeatedly call removeLargest() to populate the sorted part of the array:

Unsorted part Sorted part
6542317
8
max:
_numNodes: 7
Finally, we store _max into the sorted part of the array.

Heapsort

- We repeatedly remove the largest element and store it into the leftmost slot of the unsorted part of the array, until the heap is empty.
- At that point, the array will be completely sorted.
- Since this required only one auxiliary variable (_max), the algorithm works in-place.

Heapsort

- In summary, heapsort is an in-place sorting algorithm whose best and worst case time costs are $O(n \log n)$.
- However, the algorithm is not stable because the heap ordering may cause the relative order of duplicate elements to become inverted.

Mergesort.

Approach 2: divide and conquer

- So far we've looked at sorting algorithms that partition the input array into a sorted part and unsorted part, and then "grow" the sorted part to be the entire array.
- An alternative approach altogether is based on the divide-and-conquer principle:
- To sort a list of size n :
- Divide the list into two halves (approx. size $n / 2$).
- Sort each half independently using recursion.
- Combine the 2 sorted lists of $n / 2$ elements into I sorted list of n elements.

Mergesort

- The first algorithm we examine that uses divide-andconquer is Mergesort.
- Here's the "main idea" behind the algorithm:
- Suppose we have a left list and a right list that are already sorted.
- To combine these two lists into one larger sorted list, we just:
- Iterate through both lists simultaneously.
- "Pick out" the smaller element from the current position of either the left or right list, and insert it into our combined list.

Merging two sorted lists

- Example:

Combined list

Iterate through both lists:
Pick out the smaller element x from the current position of either the left or right list;
Advance the pointer of whichever list contained x ;
Then insert x into the combined list.

Merging two sorted lists

- Example:

Iterate through both lists:
Pick out the smaller element x from the current position of either the left or right list;
Advance the pointer of whichever list contained x ;
Then insert x into the combined list.

Merging two sorted lists

- Example:

Left list
 \uparrow

1346257812

Right list
Combined list
\uparrow
${ }_{\mathrm{k}}^{\mathrm{k}}$

Iterate through both lists:
Pick out the smaller element x from the current position of either the left or right list;
Advance the pointer of whichever list contained x ;
Then insert x into the combined list.

Merging two sorted lists

- Example:

Left list
 \uparrow

13462578123

Right list
\uparrow

Combined list
\uparrow

Iterate through both lists:
Pick out the smaller element x from the current position of either the left or right list;
Advance the pointer of whichever list contained x ;
Then insert x into the combined list.

Merging two sorted lists

- Example:

Right list

Combined list
1234
${ }_{\mathbf{k}}{ }_{\mathbf{k}}$

Iterate through both lists:
Pick out the smaller element x from the current position of either the left or right list;
Advance the pointer of whichever list contained x ;
Then insert x into the combined list.

Merging two sorted lists

- Example:

Combined list
$\begin{array}{lll}\uparrow & \uparrow & \uparrow \\ i & j & \text { k }\end{array}$

Iterate through both lists:
Pick out the smaller element x from the current position of either the left or right list;
Advance the pointer of whichever list contained x ;
Then insert x into the combined list.

Merging two sorted lists

- Example:

Combined list

Iterate through both lists:
Pick out the smaller element x from the current position of either the left or right list;
Advance the pointer of whichever list contained x ;
Then insert x into the combined list.

Merging two sorted lists

- Example:

Left list

13462578
\uparrow

1234567
Combined list
k

Iterate through both lists:
Pick out the smaller element x from the current position of either the left or right list;
Advance the pointer of whichever list contained x ;
Then insert x into the combined list.

Merging two sorted lists

- Example:

Left list

13462578
Combined list
12345678

Done.

Iterate through both lists:
Pick out the smaller element x from the current position of either the left or right list;
Advance the pointer of whichever list contained x ;
Then insert x into the combined list.

Mergesort

- Given a left list ($n / 2$ elements) and a right list ($n / 2$ elements),"merging" them into a combined list (n elements) takes time $O(n)$.
- However, it requires that we allocate a temporary array of size n.
- Mergesort does not operate in-place.
- After merging, we copy the elements in the temporary array back into the input array.

Mergesort

- Given a procedure to merge two sorted lists, we can define a recursive sorting algorithm in the following way:
- Given an input array:
- If its length is I, then it's already sorted.
- Else:
- Divide the list into two halves.
- Recursively sort each half.
- Merge their results into one combined list.

Mergesort

- Mergesort's pseudocode:
void mergesort (array) \{
If array. length $==1$, then do nothing.
Else:
Split array evenly into leftArray and rightArray.

part mergesort(rightArray);
Merge the leftArray and rightArray into array \}
- Let's see how it works in practice...

Mergesort

- Example: First stage: recursively divide until we reach the base case.

61438725

Split list and
recurse.

```
void mergesort (array) {
    If array.length == 1, then do nothing.
    Else:
        Split array evenly into leftArray and rightArray.
        mergesort(leftArray);
        mergesort(rightArray);
        Merge the leftArray and rightArray into array
}
```


Mergesort

- Example: First stage: recursively divide until we reach the base case.

61438725

6143
8725
Split list and recurse.

```
void mergesort (array) {
    If array.length == 1, then do nothing.
    Else:
        Split array evenly into leftArray and rightArray.
        mergesort(leftArray);
        mergesort(rightArray);
        Merge the leftArray and rightArray into array
}
```


Mergesort

- Example: First stage: recursively divide until we reach the base case.

```
                    6 1 4 3 8 7 2 5
            6 1 4 3
                8 2 5
                8
                                25
                                    Split list and
                                    recurse.
                                    6
void mergesort (array) {
    If array.length == 1, then do nothing.
    Else:
        Split array evenly into leftArray and rightArray.
        mergesort(leftArray);
        mergesort(rightArray);
        Merge the leftArray and rightArray into array
}
```


Mergesort

- Example:

```
Each of these is a "list" (size I) passed to a recursive call to Mergesort.
    6
void mergesort (array) {
    If array.length == 1, then do nothing.
    Else:
        Split array evenly into leftArray and rightArray.
        mergesort(leftArray);
        mergesort(rightArray);
        Merge the leftArray and rightArray into array
}
```


Mergesort

- Example:

Second stage: merge each pair of sorted sub-lists.

```
                1 6
                34
                78

```

void mergesort (array) \{
If array.length $==1$, then do nothing.

```

\section*{Else:}
```

Split array evenly into leftArray and rightArray.
mergesort (leftArray) ;
mergesort(rightArray);
Merge the leftArray and rightArray into array
\}

```

\section*{Mergesort}

\section*{Example:}

Second stage: merge each pair of sorted sub-lists.
```

 14 4 6
 2 5 78Merge the two sub-lists.
 16
34
78
25

```

```

void mergesort (array) \{
If array.length $==1$, then do nothing.

```

\section*{Else:}
```

Split array evenly into leftArray and rightArray.
mergesort (leftArray) ;
mergesort(rightArray) ;
Merge the leftArray and rightArray into array
\}

```

\section*{Mergesort}
- Example:

Second stage: merge each pair of sorted sub-lists.
```

 1423454678
 78
25
$\begin{array}{llllllll}6 & 1 & 4 & 3 & 8 & 7 & 2 & 5\end{array}$
void mergesort (array) \{
If array.length $==1$, then do nothing.

```

\section*{Else:}
```

Split array evenly into leftArray and rightArray.
mergesort (leftArray) ;
mergesort(rightArray) ;
Merge the leftArray and rightArray into array
\}

```
```

 1346
    ```
                1346
                                    2 7 8
                                    2 7 8
            1 6
            1 6
                34
```

 34
    ```

\section*{Mergesort}
```

Example:
Done.

```

\section*{12345678}
1346 2578
```163478
\[
25
\]
```



```
void mergesort (array) \{
If array.length \(==1\), then do nothing.
```


## Else:

```
Split array evenly into leftArray and rightArray.
mergesort (leftArray) ;
mergesort(rightArray) ;
Merge the leftArray and rightArray into array
\}
```


## Mergesort

- Example:

$$
\begin{aligned}
& \begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 7 & 8
\end{array} \\
& \begin{array}{ll}
1346 & 2578
\end{array} \\
& \begin{array}{llllll}
16 & 34 & 78 & 2
\end{array} \\
& \begin{array}{llllllll}
6 & 1 & 4 & 3 & 8 & 7 & 2 & 5
\end{array}
\end{aligned}
$$

- The depth of this recursive call stack is the number of times we can divide $n$ by 2, i.e., $O(\log n)$.


## Mergesort

- Example:

$$
\begin{aligned}
& \begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 7 & 8
\end{array} \\
& 1346 \quad 2578 \\
& \begin{array}{llllll}
16 & 34 & 78 & 2
\end{array} \\
& \begin{array}{llllllll}
6 & 1 & 4 & 3 & 8 & 7 & 2 & 5
\end{array}
\end{aligned}
$$

- At each level, each element in the input array had to be "touched" once (for the merge operation).
- In total: $O(\log n) * n=O(n \log n)$.


## Mergesort

- Because Mergesort's dividing and merging requires the same number of operations regardless of the particular input, Mergesort's best case and worst case time complexities are both $O(n \log n)$.
- Mergesort is stable as long as the merge procedure selects the left array's $x$ in the case of ties.


# Quicksort. 

Tomorrow.

## Sorting demo.


[^0]:    * It's actually possible to heapify an array of $n$ elements in $O(n)$ time, but that doesn't affect heapsort's asymptotic performance.

[^1]:    * In practice, this requires adding another constructor to HeapImpl12 that takes a single argument, int [] _underlyingStorage, passed in by the user.

