Quicksort.
The last sorting algorithm we consider is **Quicksort**.

Quicksort has one of the best performance profiles of all the general-purpose sorting algorithms in the *average case*.

Like Mergesort, Quicksort is based on the *divide-and-conquer* principle.

Quicksort differs from Mergesort in how it divides the input array into two pieces.
• The high-level idea of Quicksort is the following:
 • Rearrange ("partition") the input array into a left part L and a right part R so that:
 everything in the left part \leq everything in the right part.
 • Then, recursively call Quicksort on both the left and right halves.
Quicksort

• Pseudocode:

```java
void quicksort (array) {
    If array.length == 1, then do nothing.
    Else:
        Partition array into left part and right part, so that:
            everything in left part ≤ everything in right part.
        quicksort(leftPart);
        quicksort(rightPart);
}
```
Partitioning

• The key to Quicksort is the partition function, which needs to operate in $O(n)$ time.

• $\text{partition}(\text{array})$ works by picking a pivot element x from array.

• Left part contains elements $\leq x$.

• Right part contains elements $\geq x$.

• The simplest implementations choose the first element of array as the pivot.

• Better-performing implementations choose a random element of array.
Partitioning

• The partition method will work as follows:

```c
void partition (array) {
    pivot = pickPivot(array);
    Set i = -1
    Set j = N
    while i < j:
        Increment i until array[i] ≥ pivot.
        Decrement j until array[j] ≤ pivot.
        If i < j, then swap array[i] and array[j].
}
```

• This procedure will effectively move all elements ≤ pivot to the left, and all elements ≥ pivot to the right.
Partitioning

• Let's try an example where we select the pivot to just be the array's first element:

\[
6 \ 1 \ 4 \ 3 \ 8 \ 7 \ 2 \ 5
\]

\[
i = -1 \quad \text{pivot} = 6 \quad j = 8
\]

```java
void partition (array) {
    pivot = pickRandomElement(array);
    Set i = -1
    Set j = N
    while i < j:
        Increment i until array[i] ≥ pivot.
        Decrement j until array[j] ≤ pivot.
        If i < j, then swap array[i] and array[j].
}
```
Partitioning

- Let’s try an example where we select the pivot to just be the array’s first element:

6 1 4 3 8 7 2 5

\[\begin{array}{c}
\text{i = 0} \quad \text{pivot = 6} \quad \text{j = 8}
\end{array} \]

```java
void partition (array) {
    pivot = pickRandomElement(array);
    Set i = -1
    Set j = N
    while i < j:
        Increment i until array[i] ≥ pivot.
        Decrement j until array[j] ≤ pivot.
        If i < j, then swap array[i] and array[j].
}
```
Partitioning

- Let's try an example where we select the pivot to just be the array's *first element*:

```
6 1 4 3 8 7 2 5
```

```
i = 0  \quad \text{pivot} = 6  \quad j = 7
```

```java
void partition (array) {
    pivot = pickRandomElement(array);
    Set i = -1
    Set j = N
    while i < j:
        Increment i until array[i] ≥ pivot.
        Decrement j until array[j] ≤ pivot.
        If i < j, then swap array[i] and array[j].
}
```
Partitioning

• Let’s try an example where we select the pivot to just be the array’s first element:

\[
\begin{array}{cccccccc}
5 & 1 & 4 & 3 & 8 & 7 & 2 & 6 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
i = 0 & pivot = 6 & j = 7 \\
\end{array}
\]

```c
void partition (array) {
    pivot = pickRandomElement(array);
    Set i = -1
    Set j = N
    while i < j:
        Increment i until array[i] ≥ pivot.
        Decrement j until array[j] ≤ pivot.
        If i < j, then swap array[i] and array[j].
}
```
Partitioning

- Let's try an example where we select the pivot to just be the array's *first element*:

```
5 1 4 3 8 7 2 6
```

\[i = 1 \quad \text{pivot} = 6 \quad j = 7\]

```c
void partition (array) {
    pivot = pickRandomElement(array);
    Set i = -1
    Set j = N
    while i < j:
        Increment i until array[i] ≥ pivot.
        Decrement j until array[j] ≤ pivot.
        If i < j, then swap array[i] and array[j].
}
```
Partitioning

- Let’s try an example where we select the pivot to just be the array’s first element:

```
5 1 4 3 8 7 2 6
```

```
i = 2     pivot = 6     j = 7
```

```c
void partition (array) {
    pivot = pickRandomElement(array);
    Set i = -1
    Set j = N
    while i < j:
        Increment i until array[i] ≥ pivot.
        Decrement j until array[j] ≤ pivot.
        If i < j, then swap array[i] and array[j].
}
```
Let's try an example where we select the pivot to just be the array’s first element:

\[
5 \quad 1 \quad 4 \quad 3 \quad 8 \quad 7 \quad 2 \quad 6
\]

\[
i = 3 \quad \text{pivot} = 6 \quad j = 7
\]

```c
void partition (array) {
    pivot = pickRandomElement(array);
    Set i = -1
    Set j = N
    while i < j:
        Increment i until array[i] ≥ pivot.
        Decrement j until array[j] ≤ pivot.
        If i < j, then swap array[i] and array[j].
}
```
Partitioning

- Let's try an example where we select the pivot to just be the array's *first element*:

\[
\begin{array}{cccccccc}
5 & 1 & 4 & 3 & 8 & 7 & 2 & 6 \\
\end{array}
\]

\[
i = 4 \quad \text{pivot} = 6 \quad j = 7
\]

```c
void partition (array) {
    pivot = pickRandomElement(array);
    Set i = -1
    Set j = N
    while i < j:
        // Increment i until array[i] \geq pivot.
        // Decrement j until array[j] \leq pivot.
        // If i < j, then swap array[i] and array[j].
}
```
Partitioning

- Let’s try an example where we select the pivot to just be the array’s *first element*:

\[
\begin{array}{cccccccc}
5 & 1 & 4 & 3 & 8 & 7 & 2 & 6 \\
\end{array}
\]

\[
\begin{array}{cc}
\hat{\in} & \hat{\in} \\
\end{array}
\]

\[
i = 4 \quad pivot = 6 \quad j = 6
\]

```java
void partition (array) {
    pivot = pickRandomElement(array);
    Set i = -1
    Set j = N
    while i < j:
        Increment i until array[i] ≥ pivot.
        Decrement j until array[j] ≤ pivot.
        If i < j, then swap array[i] and array[j].
}
```
Partitioning

• Let’s try an example where we select the pivot to just be the array’s *first element*:

5 1 4 3 2 7 8 6

\[\begin{align*}
 i &= 4 & \text{pivot} &= 6 & j &= 6 \\
\end{align*} \]

```java
void partition (array) {
  pivot = pickRandomElement(array);
  Set i = -1
  Set j = N
  while i < j:
    Increment i until array[i] ≥ pivot.
    Decrement j until array[j] ≤ pivot.
    If i < j, then swap array[i] and array[j].
}
```
Partitioning

- Let's try an example where we select the pivot to just be the array's first element:

5 1 4 3 2 7 8 6

i = 5 pivot = 6 j = 6

```java
void partition (array) {
    pivot = pickRandomElement(array);
    Set i = -1
    Set j = N
    while i < j:
        Increment i until array[i] ≥ pivot.
        Decrement j until array[j] ≤ pivot.
        If i < j, then swap array[i] and array[j].
}
```
Partitioning

- Let's try an example where we select the pivot to just be the array's first element:

 5 1 4 3 2 7 8 6

 `i = 5 pivot = 6 j = 5`

```
void partition (array) {
    pivot = pickRandomElement(array);
    Set i = -1
    Set j = N
    while i < j:
        Increment i until array[i] ≥ pivot.
        Decrement j until array[j] ≤ pivot.
        If i < j, then swap array[i] and array[j].
}
```
Let’s try an example where we select the pivot to just be the array’s first element:

5 1 4 3 2 7 8 6

pivot = 6

```
void partition (array) {
    pivot = pickRandomElement(array);
    Set i = -1
    Set j = N
    while i < j:
        Increment i until array[i] ≥ pivot.
        Decrement j until array[j] ≤ pivot.
        If i < j, then swap array[i] and array[j].
}
```
Partitioning

- Let's try an example where we select the pivot to just be the array's first element:

\[
\begin{array}{cccccccc}
5 & 1 & 4 & 3 & 2 & 7 & 8 & 6 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{\Large \text{i = 5}} & \text{\Large \text{pivot = 6}} & \text{\Large \text{j = 4}} \\
\end{array}
\]

```c
void partition (array) {
  pivot = pickRandomElement(array);
  Set i = -1
  Set j = N
  while i < j:
    Increment i until array[i] \geq pivot.
    Decrement j until array[j] \leq pivot.
    If i < j, then swap array[i] and array[j].
}
```
Partitioning

- Let's try an example where we select the pivot to just be the array's *first element*:

\[
\begin{array}{ccccccc}
5 & 1 & 4 & 3 & 2 & 7 & 8 & 6 \\
\end{array}
\]

\[
i = 5 \quad \text{pivot} = 6 \quad j = 4
\]

```java
void partition (array) {
    pivot = pickRandomElement(array);
    Set i = -1
    Set j = N
    while i < j:
        Increment i until array[i] ≥ pivot.
        Decrement j until array[j] ≤ pivot.
        If i < j, then swap array[i] and array[j].
}
```
Partitioning

Let's try an example where we select the pivot to just be the array's first element:

5 1 4 3 2
7 8 6

pivot = 6

\[
\begin{array}{c|c}
\text{Left part} & \text{Right part} \\
5 1 4 3 2 & 7 8 6 \\
\end{array}
\]

\[
\begin{array}{c}
i = 5 \quad \text{pivot} = 6 \quad j = 4 \\
\end{array}
\]

Done.

The partition method also has the nice side effect that the final value of \(j\) tells us the right-most element in the left part.

```c
void partition (array) {
    pivot = pickRandomElement(array);
    Set i = -1
    Set j = N
    while i < j:
        Increment i until array[i] \geq pivot.
        Decrement j until array[j] \leq pivot.
        If i < j, then swap array[i] and array[j].
}
```
Quicksort

- Example:

 6 1 4 3 8 7 2 5

 Partition.
Quicksort

- Example:

\[
\begin{array}{cccccccc}
6 & 1 & 4 & 3 & 8 & 7 & 2 & 5 \\
5 & 1 & 4 & 3 & 2 & 7 & 8 & 6 \\
\end{array}
\]

Recurse.

Left part Right part
Quicksort

• Example:

6 1 4 3 8 7 2 5

5 1 4 3 2 7 8 6

5 1 4 3 2 7 8 6

Partition.
Quicksort

Example:

6 1 4 3 8 7 2 5
5 1 4 3 2 7 8 6

5 1 4 3 2
2 1 4 3 5

7 8 6
6 8 7

Recurse.

Left part Right part Left part Right part
Quicksort

- Example:

```
6 1 4 3 8 7 2 5
5 1 4 3 2 7 8 6

5 1 4 3 2
7 8 6
2 1 4 3 5
6 8 7
2 1 4 3 5 6 8 7
```

Partition.
Quicksort

- Example:

```
6 1 4 3 8 7 2 5
5 1 4 3 2 7 8 6
2 1 4 3 5
2 1 4 3 5
1 2 4 3
```

Recurse.
Quicksort

• Example:

6 1 4 3 8 7 2 5
5 1 4 3 2 7 8 6

5 1 4 3 2
7 8 6
2 1 4 3 5
6 8 7

2 1 4 3 5 6 8 7
1 2 4 3 5 6 7 8

1 2 4 3 5 6 7 8
Partition.
QuickSort

- Example:

```
6 1 4 3 8 7 2 5
5 1 4 3 2 7 8 6
```

```
5 1 4 3 2
7 8 6
2 1 4 3 5
6 8 7
```

```
2 1 4 3 5
6 8 7
1 2 4 3 5
6 7 8
```

```
1 2 4 3 5
6 7 8
1 2 4 3 5
6 7 8
```

Recurse.
Quicksort

• Example:

6 1 4 3 8 7 2 5
5 1 4 3 2 7 8 6

2 1 4 3 5
6 8 7

1 2 4 3 5
6 7 8

1 2 4 3 5
6 7 8

1 2 4 3 5
6 7 8

Partition.
Quicksort

- Example:

6 1 4 3 8 7 2 5
5 1 4 3 2 7 8 6

5 1 4 3 2
7 8 6
2 1 4 3 5
6 8 7

2 1 4 3 5
6 8 7
1 2 4 3 5
6 7 8

1 2 4 3 5
6 7 8
1 2 4 3 5
6 7 8

1 2 4 3 5
6 7 8
1 2 3 4 5
6 7 8

Recurse.
Quicksort

- Example:

```
6 1 4 3 8 7 2 5
5 1 4 3 2 7 8 6
```

```
5 1 4 3 2
7 8 6
2 1 4 3 5
6 8 7

2 1 4 3 5
6 8 7
1 2 4 3 5
6 7 8

1 2 4 3 5
6 7 8
1 2 4 3 5
6 7 8

1 2 4 3 5
6 7 8
1 2 3 4 5
6 7 8
1 2 3 4 5
6 7 8
```

Done.
Quicksort

• We can also do this *in-place*:

\[6 \ 1 \ 4 \ 3 \ 8 \ 7 \ 2 \ 5 \]

Done.
Quicksort

- We can also do this *in-place*:

 6 1 4 3 8 7 2 5
 5 1 4 3 2 7 8 6

Done.
Quicksort

- We can also do this *in-place*:

```
6 1 4 3 8 7 2 5
5 1 4 3 2 7 8 6
2 1 4 3 5 6 8 7
```

Done.
Quicksort

• We can also do this *in-place*:

```
6 1 4 3 8 7 2 5
5 1 4 3 2 7 8 6
2 1 4 3 5 6 8 7
1 2 4 3 5 6 7 8
```

Done.
Quicksort

- We can also do this *in-place*:

```
6 1 4 3 8 7 2 5
5 1 4 3 2 7 8 6
2 1 4 3 5 6 8 7
1 2 4 3 5 6 7 8
1 2 4 3 5 6 7 8
```

Done.
Quicksort

• We can also do this in-place:

```
6 1 4 3 8 7 2 5
5 1 4 3 2 7 8 6
2 1 4 3 5 6 8 7
1 2 4 3 5 6 7 8
1 2 3 4 5 6 7 8
```

Done.
Quicksort

- We can also do this *in-place*:

 6 1 4 3 8 7 2 5
 5 1 4 3 2 7 8 6
 2 1 4 3 5 6 8 7
 1 2 4 3 5 6 7 8
 1 2 4 3 5 6 7 8
 1 2 3 4 5 6 7 8

Done.
Quicksort

- The version of Quicksort just demonstrated operates in-place, but it is not stable.
- Alternative implementations are stable, but do not operate in-place.
Quicksort

• With Quicksort, *all* the sorting all happens “on the way down” the stack of recursive calls.

• As soon as every call to Quicksort has reached the base case, the array is *sorted*.

• Contrast this with Mergesort, in which the *merging* takes place “on the way back up” the stack of recursive calls.

• As soon as every call to Mergesort has reached the base case, not even a single element has been re-arranged.
Mergesort

- Example: First stage: recursively divide until we reach the base case.

```java
void mergesort (array) {
    If array.length == 1, then do nothing.
    Else:
        Split array evenly into leftArray and rightArray.
        mergesort(leftArray);
        mergesort(rightArray);
        Merge the leftArray and rightArray into array
}
```
Mergesort

- Example: First stage: recursively divide until we reach the base case.

6 1 4 3 8 7 2 5

6 1 4 3 8 7 2 5

void mergesort (array) {
 If array.length == 1, then do nothing.
 Else:
 Split array evenly into leftArray and rightArray.
 mergesort(leftArray);
 mergesort(rightArray);
 Merge the leftArray and rightArray into array
}
Mergesort

• Example: First stage: recursively divide until we reach the base case.

6 1 4 3 8 7 2 5

6 1 4 3

8 7 2 5

6 1 4 3

8 7 2 5

6 1 4 3

8 7 2 5

6 1 4 3 8 7 2 5

void mergesort (array) {
 If array.length == 1, then do nothing.
 Else:
 Split array evenly into leftArray and rightArray.
 mergesort(leftArray);
 mergesort(rightArray);
 Merge the leftArray and rightArray into array
}
Mergesort

• Example:

Each of these is a “list” (size 1) passed to a recursive call to Mergesort.

6 1 4 3 8 7 2 5

void mergesort (array) {
 If array.length == 1, then do nothing.
 Else:
 Split array evenly into leftArray and rightArray.
 mergesort(leftArray);
 mergesort(rightArray);
 Merge the leftArray and rightArray into array
}
Mergesort

• Example: Second stage: merge each pair of sorted sub-lists.

void mergesort (array) {
 If array.length == 1, then do nothing.
 Else:
 Split array evenly into leftArray and rightArray.
 mergesort(leftArray);
 mergesort(rightArray);
 Merge the leftArray and rightArray into array
}
Mergesort

- Example:

 Second stage: merge each pair of sorted sub-lists.

 \[
 \begin{array}{cccc}
 1 & 3 & 4 & 6 \\
 2 & 5 & 7 & 8 \\
 \end{array}
 \]

 \[
 \begin{array}{cccc}
 1 & 6 & 3 & 4 \\
 2 & 5 & 7 & 8 \\
 \end{array}
 \]

 \[
 \begin{array}{cccc}
 6 & 1 & 4 & 3 \\
 7 & 8 & 2 & 5 \\
 \end{array}
 \]

 \[
 \begin{array}{cccc}
 6 & 1 & 4 & 3 \\
 2 & 5 & 7 & 8 \\
 \end{array}
 \]

 \[
 \begin{array}{cccc}
 1 & 6 & 3 & 4 \\
 7 & 8 & 2 & 5 \\
 \end{array}
 \]

 \[
 \begin{array}{cccc}
 6 & 1 & 4 & 3 \\
 7 & 8 & 2 & 5 \\
 \end{array}
 \]

 void mergesort (array) {
 If array.length == 1, then do nothing.
 Else:
 Split array evenly into leftArray and rightArray.
 mergesort(leftArray);
 mergesort(rightArray);
 Merge the leftArray and rightArray into array
 }

 Merge the two sub-lists.
Mergesort

- Example:

 Second stage: merge each pair of sorted sub-lists.

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 6 & 3 & 4 & 7 & 8 & 2 & 5 \\
6 & 1 & 4 & 3 & 8 & 7 & 2 & 5 \\
\end{array}
\]

void mergesort (array) {
 If array.length == 1, then do nothing.
 Else:
 Split array evenly into leftArray and rightArray.
 mergesort(leftArray);
 mergesort(rightArray);
 Merge the leftArray and rightArray into array
}

Merge the two sub-lists.
Mergesort

• Example:

```
1 2 3 4 5 6 7 8
1 3 4 6         2 5 7 8
1 6     3 4     7 8     2 5
6   1   4   3   8   7   2   5
```

```c
void mergesort (array) {
    If array.length == 1, then do nothing.
    Else:
        Split array evenly into leftArray and rightArray.
        mergesort(leftArray);
        mergesort(rightArray);
        Merge the leftArray and rightArray into array
}
```
Quicksort

- The time cost of Quicksort in the average case differs substantially from the worst case.

- In the average case, the partition procedure splits the array into equal-sized parts.
 - This results in a recursion depth of $O(\log n)$.

- At each level of recursion, the entire array must be “touched” (during partitioning), so n.

- In total, Quicksort is $n \times O(\log n) = O(n \log n)$.

Thursday, September 1, 2011
Quicksort

- In the worst case, the partition procedure splits the array into a 1-element part, and a \(n-1\)-element part.
- If this occurs throughout the entire recursion stack, then the recursion depth will be \(O(n)\) instead of \(O(\log n)\).
- Since every element must still be “touched” at each level of recursion, this results in \(O(n) \times O(n) = O(n^2)\) operations.
 - Hence, in the worst case, Quicksort is no better than insertion/selection sort.
Quicksort

• This worst case is realized if (a) the input array is already sorted and (b) we always choose the first element to be the pivot.

• Example:

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]

\[n \text{ levels deep}\]
QuickSort

- To prevent this worst-case performance from happening, practical implementations of Quicksort pick the pivot element randomly.

- This ensures that, on a list that is already sorted, Quicksort still gives $O(n \log n)$ performance.
Objects can be expensive.
This is the last slide of the course.