
CSE 12:
Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Six
9 Aug 2011

Tuesday, August 9, 2011

Circular linked lists.

Tuesday, August 9, 2011

Circular linked lists

• Before moving on to other data structures,
we will discuss one more variant of the
basic “linked list” concept.

• A circular linked list is a list where the tail’s
“next” pointer points back to the head.

• If the linked list is doubly-linked, then the
head’s “previous” pointer also points back
to the tail.

Tuesday, August 9, 2011

Circular linked lists

_prev
_next
_data

Node

_prev
_next
_data

Node

_head _tail

_prev
_next
_data: o

Node

CircularDoublyLinkedList

_prev
_next
_data: o2

Node

Tuesday, August 9, 2011

Circular linked lists

_prev
_next
_data

Node

_prev
_next
_data

Node

_head _tail

_prev
_next
_data: o

Node

CircularDoublyLinkedList

_prev
_next
_data: o2

Node

With a circular linked list, we don’t even
really need a tail.

Instead, all we really care about is whether we add to
the front of the list (to the “right” of _head), or to
the back of the list (to the “left” of _head).

Tuesday, August 9, 2011

Circular linked lists
• The utility of circular linked lists is perhaps most

clearly illustrated when there are no dummy nodes.

• Empty list: _head = null.

• List of size 1:

_prev
_next
_data

Node

_head

CircularDoublyLinkedList

Tuesday, August 9, 2011

Circular linked lists

• List of size 2:

_prev
_next
_data

Node

_head

CircularDoublyLinkedList

_prev
_next
_data

Node

Tuesday, August 9, 2011

Iterating through a
circular linked list

• As long as a circular linked list is non-empty, an Iterator
can iterate forever.

• Just keep following the current Node’s _next pointer.

class CircularListIterator {
 Node _current;
 ...
 boolean hasNext () {
 return _listSize > 0;
 }
 Object next () {
 _current = _current._next;
 return _current._data;
 }
}

Tuesday, August 9, 2011

Simulating a circular
linked list

• Using DoublyLinkedList12 (with dummy nodes, but
without pointers to “loop back around”), we can easily
simulate a circular linked list.

• In Iterator.next(), if we’ve iterated to the tail, then
just start back over at the head...

Object next () {
 if (_current == _tail) { // Loop back
 _current = _head;
 }
 _current = _current._next;
 ...
}

Tuesday, August 9, 2011

Circular linked lists

• Circular linked lists are most useful for storing a
collection of objects in which “looping forever” is an
intuitive and useful operation.

• Examples:

• Looping around vertices of a polygon.

Tuesday, August 9, 2011

Circular linked lists
• CPU scheduling:

• One CPU can only execute one computer program
at any given time.

• On a single-core machine, to simulate
“multitasking”, each program is given a small
“timeslice” (few milliseconds) to run on the CPU.

• After the timeslice expires, the next program in the
list of processes is selected, and so on.

• After all programs in the list have received their
timeslice, the CPU scheduler goes back to the first
process.

Tuesday, August 9, 2011

Circular linked lists for
CPU scheduling

...

CPU
Scheduler
_current

Circular linked list of
processes waiting for

CPU access.

_next

_next

_next

_next

Tuesday, August 9, 2011

Type-safety and casting.

Tuesday, August 9, 2011

Type-safety in Java

• As mentioned in Lecture Three, Java was designed
from the ground up to offer security.

• One aspect of security is ensuring that a variable
that, for example, is supposed to point to a String
doesn’t actually point to an Integer.

// Won’t compile
final String s = new Integer(6);

• This form of security is known as type-safety.

Tuesday, August 9, 2011

Type-safety in Java

• That example was somewhat obvious; let’s look at
a more subtle one...

final Object o = new Integer();
final String s = (String) o;

This code will compile ok, ...

Tuesday, August 9, 2011

Type-safety in Java

• That example was somewhat obvious; let’s look at
a more subtle one...

final Object o = new Integer();
final String s = (String) o; // Compiles ok

...but at run-time, the second statement
will trigger a ClassCastException --
an Integer is never also a String!

Tuesday, August 9, 2011

Type-safety

• Java and the JVM enforce type-safety:

• Every Object knows what kind of class it
is, what its parent class is, and all the
interfaces that it implements.

• If you attempt to “cast” an object into a
type with which it is not compatible, then
this will trigger a ClassCastException.

• Your program will terminate.

Tuesday, August 9, 2011

Casting

• In object-oriented languages like Java, objects are
cast into different classes/interfaces when we assign
them to reference variables of different types.

• Consider:
class A { ...
}
class B extends A { ...
}

B b = new B();
A a = b; // Upcast from B to A.
B b2 = (B) a; // Downcast from A to B.

A

B
subclasses

The terms upcast and downcast have to do with the class hierarchy,
in which parent classes are “above” child classes.

Tuesday, August 9, 2011

Upcasting
• If class B is a subclass of A, and we convert a

reference of type B to a reference of type
A, then we are upcasting, e.g.: A a = b;

• Since all objects of type B are implicitly
also of type A, this cast is guaranteed to
succeed.

• Every object of type B can also be treated
as an object of type A.

• All methods and instance variables of A
are guaranteed to be accessible.

Tuesday, August 9, 2011

Downcasting

• If class B is a subclass of A, and we convert a
reference of type A to a reference of type B, then
we are downcasting, e.g.: B b = (B) a;

• Since objects of type A are not guaranteed to
always also be of type B, we must explicitly
inform the compiler that we “know” that b is
of class B.

• We must explicitly “request” the cast by
writing (B).

Tuesday, August 9, 2011

Downcasting

• At run-time, before performing the cast
from class A to B, the JVM will check
whether b is actually a B object.

• If it is, then execution proceeds merrily.

• If not, then the JVM will throw a
ClassCastException.

Tuesday, August 9, 2011

Casting to interfaces
• We can also cast to an interface type, e.g.:

Object o = new DoublyLinkedList12();
Iterable iterable = (Iterable) o;

• Since not every object of Object class is
guaranteed to implement the Iterable
interface, we must “downcast” to Iterable.

• At run-time, the JVM will check whether o is
of some class that implements Iterable,
and throw a ClassCastException if it is
not.

Tuesday, August 9, 2011

Importance of type-safety
• Not all languages are type-safe.

• In C++, for example, the compiler is happy
to compile the following code:

Integer *integer = new Integer(123);
Student *student = (Student *) integer;
student->_age = 23;

Here, we “force” the compiler to treat
the Integer pointer as a Student
pointer.

Here we attempt to modify the _age instance variable of a
“Student” object. But student actually points to an
Integer object!

Tuesday, August 9, 2011

Danger in casting

• The outcome of this program can’t be good
-- we’re trying to modify the “_age” of an
Integer object!

• What’s going on here in terms of memory?

• Let’s first convert this example to Java...

Tuesday, August 9, 2011

Danger in casting

• Let’s assume the following class definitions:

class Integer { // 4 bytes total
 int _value;
}

class Student { // 8 bytes total
 String _name;
 int _age;
}

Tuesday, August 9, 2011

Danger in casting

integer: 8200

student: 8200

_value: 123

Address

8192

8196

8200

8204

...
Contents

...

I
n
t
e
g
e
r

r
e
f
e
r
e
n
c
e

Integer integer = new Integer(123);
Student student = (Student) integer;

I
n
t
e
g
e
r

Something
important

S
t
u
d
e
n
t

r
e
f
e
r
e
n
c
e

Tuesday, August 9, 2011

Danger in casting

integer: 8200

student: 8200

_value: 123

Address

8192

8196

8200

8204

...
Contents

...

I
n
t
e
g
e
r

r
e
f
e
r
e
n
c
e

Integer integer = new Integer(123);
Student student = (Student) integer;

I
n
t
e
g
e
r

String _name

int _age

S
t
u
d
e
n
t

Let’s also suppose a “real”
Student object would look like

this:

Something
Important

S
t
u
d
e
n
t

r
e
f
e
r
e
n
c
e

Tuesday, August 9, 2011

Danger in casting

integer: 8200

student: 8200

_value: 123

Address

8192

8196

8200

8204

...
Contents

...

I
n
t
e
g
e
r

r
e
f
e
r
e
n
c
e

Integer integer = new Integer(123);
Student student = (Student) integer;
student._age = 85;

String _name

int _age: 85

• In the last line of code, the program
attempts to modify the “_age”
instance variable of the “Student”
object pointed to by student.

• _age would be stored at 8204.

• In reality, student actually points to
an Integer object.

• That Integer object does not own
address 8204!

• Something Important has been
clobbered.

S
t
u
d
e
n
t

r
e
f
e
r
e
n
c
e

Tuesday, August 9, 2011

Clobbering memory
• When you write data outside of a variable’s “proper

bounds”, you are “clobbering memory”.

• In the previous example, treating the Integer like a
Student caused the statement student._age = 85 to
overwrite Something Important.

• Without Java’s protective type safety, this could cause
your program to:

• Crash.

• Behave in unexpected ways at some indeterminate
point in the future. <== Often worse than crashing.

Tuesday, August 9, 2011

Clobbering memory

• In some settings (e.g., a web server
application that processes data sent from
user), treating a variable as an object of the
wrong type could be exploited by an
attacker.

• By causing your code to “clobber” the
right memory, an attacker might gain
control of your entire machine. :-(

Tuesday, August 9, 2011

Type-safety in Java

• Java and the JVM help to prevent such
attacks.

• All downcasts are checked by the JVM to
make sure they are valid before execution
proceeds.

• As always, this added security comes at a
cost:

• A downcast in Java is slower than a
downcast in C++.

Tuesday, August 9, 2011

Java collections before
generics.

Tuesday, August 9, 2011

Java Collections Framework
• Since Java version 1.2, the JDK has offered

pre-built “collections” of various types as
part of the Java Collections Framework
(JCF).

• The JCF includes such classes as:

• ArrayList

• Vector

• HashTree

• Set

• etc., etc.

Tuesday, August 9, 2011

CSE12 Collections
• In this course, we have worked on two

“collections” -- ArrayList, and
DoublyLinkedList12.

• Similar to the JCF collections in Java 1.2,
our collections have dealt with Objects:

• public void add (Object o);

• public Object get (int index);

• Every object in Java is of type Object;
hence, these collections can store variables
of any type.

Tuesday, August 9, 2011

Collections of Objects

• Hence, the same class ArrayList can be used to
create a list of Strings as well as a list of Integers:

final ArrayList listOfStrings = new ArrayList();
listOfStrings.add(“yo”);

final ArrayList listOfIntegers = new ArrayList();
listOfIntegers.add(new Integer(32));

• This is convenient -- we don’t have to create a two
different classes to store Strings versus Integers.

Tuesday, August 9, 2011

Downside of downcasting

• Unfortunately, the fact that the List12 interface
takes and returns Objects also means that we
have to downcast the Object every time we call
get(index):

list.add(“hello”);
final String s = (String) listOfStrings.get(0);

• Having to downcast every time is both tedious
and distracting because it litters the code with
parentheses and class names.

Tuesday, August 9, 2011

• There’s also a security reason why downcasting
an Object returned by a collection is bad:

• We may accidentally try to downcast an
Object to an incompatible type.

Downside of downcasting

Tuesday, August 9, 2011

• Consider a method in which you use several
collections to store data of several types:

ArrayList list1, list2, list3;
list1 = new ArrayList(); // for Strings
list2 = new ArrayList(); // for Integers
list3 = new ArrayList(); // for Students
list1.add(“test”);
list2.add(new Integer(17));
list2.add(new Integer(42));
...
list3.add(new Student());
list1.add(new Student());
list2.add(new Integer(4));
list1.add(“another string”);

Downside of downcasting

Tuesday, August 9, 2011

• Consider a method in which you use several
collections to store data of several types:

ArrayList list1, list2, list3;
list1 = new ArrayList(); // for Strings
list2 = new ArrayList(); // for Integers
list3 = new ArrayList(); // for Students
list1.add(“test”);
list2.add(new Integer(17));
list2.add(new Integer(42));
...
list3.add(new Student());
list1.add(new Student()); // Wrong list!
list2.add(new Integer(4));
list1.add(“another string”);

Downside of downcasting

Tuesday, August 9, 2011

• If we later retrieve an Object from list1 and
assume (incorrectly) that it contains only Strings,
our program will crash:

final Iterator iterator = list1.iterator();
while (iterator.hasNext()) {
 final String s = (String) iterator.next();
 ...
}

• It is still nice that the JVM catches our mistake at
run-time, but it would be even nicer for the Java
compiler to catch our mistake at compile-time.

Downside of downcasting

Given the code on previous slide, this will
trigger a ClassCastException.

Tuesday, August 9, 2011

• Unfortunately, with collections of Objects,
this is not really possible.

• The compiler has no way of “knowing” that
list1 was intended “only for Strings”.

• ArrayList.add(o) is happy to accept
any Object o.

Downside of downcasting

Tuesday, August 9, 2011

More plausible example
• A more plausible example of the problem above

might occur if you are implementing a method
that takes a collection as a parameter:

// Specified list should contain only Strings.
// Returns a list of appended strings.
List12 appendStrings (List12 strList) {
 List12 appendedStrList = new ArrayList();

 final Iterator iterator = strList.iterator();
 while (iterator.hasNext()) {
 appendedStrList.add(
 “appendage” + (String) list.next()
);
 }
 return appendedStrList;
}

Tuesday, August 9, 2011

More plausible example
• A more plausible example of the problem above

might occur if you are implementing a method
that takes a collection as a parameter:

// Specified list should contain only Strings.
// Returns a list of appended strings.
List12 appendAndPrint (List12 strList) {
 List12 appendedStrList = new ArrayList();

 final Iterator iterator = list.iterator();
 while (iterator.hasNext()) {
 appendedStrList.add(
 “appendage” + (String) list.next()
);
 }
 return appendedStrList;
}

If user passed in a list that contained
any non-String object, then we’ll get

a ClassCastException.

Tuesday, August 9, 2011

Naive fix
• How can we fix the problems of tedium, ugly

code, and potential ClassCastExceptions?

• One naive strategy is to define a different
ArrayList for every class we want to store in
it, e.g.:
class ArrayListOfStrings {
 public void add (String s) { ... }
 public String get (int index) { ... }
}
class ArrayListOfIntegers {
 public void add (Integer i) { ... }
 public Integer get (int index) { ... }
}
class ArrayListOfShapes {
 public void add (Shape s) { ... }
 public Shape get (int index) { ... }
}

With specific types, we no longer
have to downcast the result, and

we’re guaranteed that get
(index) returns a String.

Tuesday, August 9, 2011

Naive fix

• However, this “naive fix” is very tedious -- we
have to create another version of the
ArrayList for every class we want to support.

• “Copying+pasting code” would save some time,
but this is never a good idea.

• Inevitably, one of the ArrayListOfX classes
will change, and you’ll forget to change the
other ones correspondingly.

• Let’s take another look at those “related
classes”...

Tuesday, August 9, 2011

Better fix: factor out the type
class ArrayListOfStrings {
 public void add (String s) { ... }
 public String get (int index) { ... }
}
class ArrayListOfIntegers {
 public void add (Integer i) { ... }
 public Integer get (int index) { ... }
}
class ArrayListOfShapes {
 public void add (Shape s) { ... }
 public Shape get (int index) { ... }
}

• The only place these class definitions differ is in
the type of the objects they hold.

• It seems like there should be a way to “factor
out” the type...

Tuesday, August 9, 2011

Java generics.

Tuesday, August 9, 2011

Java generics

• Since Java 1.5, Java has offered the ability to
parameterize a class by a type.

• For example, when writing a “collection” class such
as ArrayList, we can give it a type parameter T.

• As with data parameters, the parameter name is
up to the programmer.

• Type parameters are typically given one-letter
names:

• K for “key”, V for “value”, E for “element, etc.

Tuesday, August 9, 2011

Generics for “ArrayListOfX”

• Consider our problem of writing multiple
ArrayListOfX classes to store data of different
types:

• With Java generics, we can write just one version
of the class and parameterize it by type T, the
type of data the ArrayList should contain.

Tuesday, August 9, 2011

class ArrayList<T> implements List<T> {
 T[] _underlyingStorage;
 int _numElements;

 void add (T element) {
 _underlyingStorage[_numElements] = element;
 _numElements++;

 T get (int index) {
 return _underlyingStorage[index];
 }
}

The type parameter T is specified in angled
brackets just after the classname. Thereafter,
it can be used inside the class anywhere a
type is expected. (Almost -- more later.)

Interfaces too can be
parameterized by a type.

Generics for “ArrayListOfX”

Tuesday, August 9, 2011

Generics for “ListOfX”
• Similarly to classes, interfaces too can be parameterized

by a type:
interface List<T> {
 void add (T element);
 T get (int index);
 void remove (int index);
}

Tuesday, August 9, 2011

• In short: (almost) everywhere in our previous versions of
List and ArrayList, we replace the type Object with
the type parameter T.

• To instantiate the “generic” ArrayList<T> in code:

final ArrayList<Student> list = new ArrayList<Student>();

• Instantiating the ArrayList with type parameter
T=Student can be conceptualized as doing a “search-and-
replace” to change <T> to <Student>:

When we instantiate the generic collection, we must specify
the value of the type parameter.

class ArrayList<T> ... {
 void add (T element) { ...
 }
 T get (int index) { ...
 }
}

class ArrayList ... {
 void add (Student element) { ...
 }
 Student get (int index) { ...
 }
}

Generics for “ArrayListOfX”

Tuesday, August 9, 2011

• Now, our list can only be populated with Student data
(or any subclass of Student):

list.add(new Student()); // -- ok by definition
list.add(new UCSDStudent()); // -- ok if it’s a subclass

• What happens if we try to break this rule and add a non-
Student object to list?

list.add(“error”); // not ok -- compiler catches this!

Generics for “ArrayListOfX”

Tuesday, August 9, 2011

Generics for “ListOfX”
• Now, our list can only be populated with Student data (or

any subclass of Student):

list.add(new Student()); // -- ok by definition
list.add(new UCSDStudent()); // -- ok if it’s a subclass

• What happens if we try to break this rule and add a non-
Student object to list?

list.add(“error”); // not ok -- compiler catches this!

• With Java generics, the compiler will catch this error -- it
knows that “error” is a String, and that list is of type
ArrayList<Student>.

• Since ArrayList<Student>’s add(element) method
expects a Student, there is a type mismatch -- compile-
time error.

Tuesday, August 9, 2011

Benefits of generics
• It is preferable for the compiler to catch this mistake

rather than the JVM:

• We fix the bug before the program crashes.

• The compiler rules out the possibility that we mismatch
container type and element type.

• With generics, we also no longer have to downcast the
return value of get(index):
final ArrayList<String> list = new ArrayList<String>();
list.add(“hello”);
final String s = list.get(0); // No downcast necessary

• This is because the result of get(index) is guaranteed
to be of type String -- we don’t have to additionally
“promise” the compiler anything.

Tuesday, August 9, 2011

