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Circular linked lists.
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Circular linked lists

• Before moving on to other data structures, 
we will discuss one more variant of the 
basic “linked list” concept.

• A circular linked list is a list where the tail’s 
“next” pointer points back to the head.

• If the linked list is doubly-linked, then the 
head’s “previous” pointer also points back 
to the tail.
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Circular linked lists
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Circular linked lists
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With a circular linked list, we don’t even 
really need a tail.

Instead, all we really care about is whether we add to 
the front of the list (to the “right” of _head), or to 
the back of the list (to the “left” of _head).
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Circular linked lists
• The utility of circular linked lists is perhaps most 

clearly illustrated when there are no dummy nodes.

• Empty list: _head = null.

• List of size 1:
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Circular linked lists

• List of size 2:
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Iterating through a 
circular linked list

• As long as a circular linked list is non-empty, an Iterator 
can iterate forever.

• Just keep following the current Node’s _next pointer.

class CircularListIterator {
  Node _current;
  ...
  boolean hasNext () {
    return _listSize > 0;
  }
  Object next () {
    _current = _current._next;
    return _current._data;
  }
}
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Simulating a circular 
linked list

• Using DoublyLinkedList12 (with dummy nodes, but 
without pointers to “loop back around”), we can easily 
simulate a circular linked list.

• In Iterator.next(), if we’ve iterated to the tail, then 
just start back over at the head...

Object next () {
  if (_current == _tail) {  // Loop back
    _current = _head;
  }
  _current = _current._next;
  ...
}
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Circular linked lists

• Circular linked lists are most useful for storing a 
collection of objects in which “looping forever” is an 
intuitive and useful operation.

• Examples:

• Looping around vertices of a polygon.
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Circular linked lists
• CPU scheduling:

• One CPU can only execute one computer program 
at any given time.

• On a single-core machine, to simulate 
“multitasking”, each program is given a small 
“timeslice” (few milliseconds) to run on the CPU.

• After the timeslice expires, the next program in the 
list of processes is selected, and so on.

• After all programs in the list have received their 
timeslice, the CPU scheduler goes back to the first 
process.
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Circular linked lists for 
CPU scheduling
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Type-safety and casting.
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Type-safety in Java

• As mentioned in Lecture Three, Java was designed 
from the ground up to offer security.

• One aspect of security is ensuring that a variable 
that, for example, is supposed to point to a String 
doesn’t actually point to an Integer.

// Won’t compile
final String s = new Integer(6);

• This form of security is known as type-safety.
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Type-safety in Java

• That example was somewhat obvious; let’s look at 
a more subtle one...

final Object o = new Integer();
final String s = (String) o;

This code will compile ok, ...
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Type-safety in Java

• That example was somewhat obvious; let’s look at 
a more subtle one...

final Object o = new Integer();
final String s = (String) o;  // Compiles ok

...but at run-time, the second statement 
will trigger a ClassCastException -- 
an Integer is never also a String!
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Type-safety

• Java and the JVM enforce type-safety:

• Every Object knows what kind of class it 
is, what its parent class is, and all the 
interfaces that it implements.

• If you attempt to “cast” an object into a 
type with which it is not compatible, then 
this will trigger a ClassCastException.

• Your program will terminate.
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Casting

• In object-oriented languages like Java, objects are 
cast into different classes/interfaces when we assign 
them to reference variables of different types.

• Consider:
class A { ...
}
class B extends A { ...
}

B b = new B();
A a = b;       // Upcast from B to A.
B b2 = (B) a;  // Downcast from A to B.

A

B
subclasses

The terms upcast and downcast have to do with the class hierarchy, 
in which parent classes are “above” child classes.
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Upcasting
• If class B is a subclass of A, and we convert a 

reference of type B to a reference of type 
A, then we are upcasting, e.g.:  A a = b;

• Since all objects of type B are implicitly 
also of type A, this cast is guaranteed to 
succeed.

• Every object of type B can also be treated 
as an object of type A.

• All methods and instance variables of A 
are guaranteed to be accessible.
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Downcasting

• If class B is a subclass of A, and we convert a 
reference of type A to a reference of type B, then 
we are downcasting, e.g.:  B b = (B) a;

• Since objects of type A are not guaranteed to 
always also be of type B, we must explicitly 
inform the compiler that we “know” that b is 
of class B.

• We must explicitly “request” the cast by 
writing (B).
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Downcasting

• At run-time, before performing the cast 
from class A to B, the JVM will check 
whether b is actually a B object.

• If it is, then execution proceeds merrily.

• If not, then the JVM will throw a 
ClassCastException.
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Casting to interfaces
• We can also cast to an interface type, e.g.:

Object o = new DoublyLinkedList12();
Iterable iterable = (Iterable) o;

• Since not every object of Object class is 
guaranteed to implement the Iterable 
interface, we must “downcast” to Iterable.

• At run-time, the JVM will check whether o is 
of some class that implements Iterable, 
and throw a ClassCastException if it is 
not.
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Importance of type-safety
• Not all languages are type-safe.

• In C++, for example, the compiler is happy 
to compile the following code:

Integer *integer = new Integer(123);
Student *student = (Student *) integer;
student->_age = 23;

Here, we “force” the compiler to treat 
the Integer pointer as a Student 
pointer.

Here we attempt to modify the _age instance variable of a 
“Student” object. But student actually points to an 
Integer object!
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Danger in casting

• The outcome of this program can’t be good 
-- we’re trying to modify the “_age” of an 
Integer object!

• What’s going on here in terms of memory?

• Let’s first convert this example to Java...
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Danger in casting

• Let’s assume the following class definitions:

class Integer {  // 4 bytes total
  int _value;
}

class Student {  // 8 bytes total
  String _name;
  int _age;
}
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Danger in casting
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Danger in casting
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Danger in casting
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Integer integer = new Integer(123);
Student student = (Student) integer;
student._age = 85;

String _name

int _age: 85

• In the last line of code, the program 
attempts to modify the “_age” 
instance variable of the “Student” 
object pointed to by student.

• _age would be stored at 8204.

• In reality, student actually points to 
an Integer object.

• That Integer object does not own 
address 8204!

• Something Important has been 
clobbered.
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Clobbering memory
• When you write data outside of a variable’s “proper 

bounds”, you are “clobbering memory”.

• In the previous example, treating the Integer like a 
Student caused the statement student._age = 85 to 
overwrite Something Important.

• Without Java’s protective type safety, this could cause 
your program to:

• Crash.

• Behave in unexpected ways at some indeterminate 
point in the future.  <== Often worse than crashing.
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Clobbering memory

• In some settings (e.g., a web server 
application that processes data sent from 
user), treating a variable as an object of the 
wrong type could be exploited by an 
attacker.

• By causing your code to “clobber” the 
right memory, an attacker might gain 
control of your entire machine. :-(
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Type-safety in Java

• Java and the JVM help to prevent such 
attacks.

• All downcasts are checked by the JVM to 
make sure they are valid before execution 
proceeds.

• As always, this added security comes at a 
cost:

• A downcast in Java is slower than a 
downcast in C++.
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Java collections before 
generics.
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Java Collections Framework
• Since Java version 1.2, the JDK has offered 

pre-built “collections” of various types as 
part of the Java Collections Framework 
(JCF).

• The JCF includes such classes as:

• ArrayList

• Vector

• HashTree

• Set

• etc., etc.
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CSE12 Collections
• In this course, we have worked on two 

“collections” -- ArrayList, and 
DoublyLinkedList12.

• Similar to the JCF collections in Java 1.2, 
our collections have dealt with Objects:

• public void add (Object o);

• public Object get (int index);

• Every object in Java is of type Object; 
hence, these collections can store variables 
of any type.
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Collections of Objects

• Hence, the same class ArrayList can be used to 
create a list of Strings as well as a list of Integers:

final ArrayList listOfStrings = new ArrayList();
listOfStrings.add(“yo”);

final ArrayList listOfIntegers = new ArrayList();
listOfIntegers.add(new Integer(32));

• This is convenient -- we don’t have to create a two 
different classes to store Strings versus Integers.
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Downside of downcasting

• Unfortunately, the fact that the List12 interface 
takes and returns Objects also means that we 
have to downcast the Object every time we call 
get(index):

list.add(“hello”);
final String s = (String) listOfStrings.get(0);

• Having to downcast every time is both tedious 
and distracting because it litters the code with 
parentheses and class names.
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• There’s also a security reason why downcasting 
an Object returned by a collection is bad:

• We may accidentally try to downcast an 
Object to an incompatible type.

Downside of downcasting
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• Consider a method in which you use several 
collections to store data of several types:

ArrayList list1, list2, list3;
list1 = new ArrayList();  // for Strings
list2 = new ArrayList();  // for Integers
list3 = new ArrayList();  // for Students
list1.add(“test”);
list2.add(new Integer(17));
list2.add(new Integer(42));
...
list3.add(new Student());
list1.add(new Student());
list2.add(new Integer(4));
list1.add(“another string”);

Downside of downcasting
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• Consider a method in which you use several 
collections to store data of several types:

ArrayList list1, list2, list3;
list1 = new ArrayList();  // for Strings
list2 = new ArrayList();  // for Integers
list3 = new ArrayList();  // for Students
list1.add(“test”);
list2.add(new Integer(17));
list2.add(new Integer(42));
...
list3.add(new Student());
list1.add(new Student());  // Wrong list!
list2.add(new Integer(4));
list1.add(“another string”);

Downside of downcasting
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• If we later retrieve an Object from list1 and 
assume (incorrectly) that it contains only Strings, 
our program will crash:

final Iterator iterator = list1.iterator();
while (iterator.hasNext()) {
  final String s = (String) iterator.next();
  ...
}

• It is still nice that the JVM catches our mistake at 
run-time, but it would be even nicer for the Java 
compiler to catch our mistake at compile-time.

Downside of downcasting

Given the code on previous slide, this will 
trigger a ClassCastException.
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• Unfortunately, with collections of Objects, 
this is not really possible.

• The compiler has no way of “knowing” that 
list1 was intended “only for Strings”.

• ArrayList.add(o) is happy to accept 
any Object o.

Downside of downcasting
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More plausible example
• A more plausible example of the problem above 

might occur if you are implementing a method 
that takes a collection as a parameter:

// Specified list should contain only Strings.
// Returns a list of appended strings.
List12 appendStrings (List12 strList) {
  List12 appendedStrList = new ArrayList();

  final Iterator iterator = strList.iterator();
  while (iterator.hasNext()) {
    appendedStrList.add(
      “appendage” + (String) list.next()
    );
  }
  return appendedStrList;
}
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More plausible example
• A more plausible example of the problem above 

might occur if you are implementing a method 
that takes a collection as a parameter:

// Specified list should contain only Strings.
// Returns a list of appended strings.
List12 appendAndPrint (List12 strList) {
  List12 appendedStrList = new ArrayList();

  final Iterator iterator = list.iterator();
  while (iterator.hasNext()) {
    appendedStrList.add(
      “appendage” + (String) list.next()
    );
  }
  return appendedStrList;
} 

If user passed in a list that contained 
any non-String object, then we’ll get 

a ClassCastException.
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Naive fix
• How can we fix the problems of tedium, ugly 

code, and potential ClassCastExceptions?

• One naive strategy is to define a different 
ArrayList for every class we want to store in 
it, e.g.:
class ArrayListOfStrings {
  public void add (String s) { ... }
  public String get (int index) { ... }
}
class ArrayListOfIntegers {
  public void add (Integer i) { ... }
  public Integer get (int index) { ... }
}
class ArrayListOfShapes {
  public void add (Shape s) { ... }
  public Shape get (int index) { ... }
}

With specific types, we no longer 
have to downcast the result, and 

we’re guaranteed that get
(index) returns a String.
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Naive fix

• However, this “naive fix” is very tedious -- we 
have to create another version of the 
ArrayList for every class we want to support.

• “Copying+pasting code” would save some time, 
but this is never a good idea.

• Inevitably, one of the ArrayListOfX classes 
will change, and you’ll forget to change the 
other ones correspondingly.

• Let’s take another look at those “related 
classes”...
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Better fix: factor out the type
class ArrayListOfStrings {
  public void add (String s) { ... }
  public String get (int index) { ... }
}
class ArrayListOfIntegers {
  public void add (Integer i) { ... }
  public Integer get (int index) { ... }
}
class ArrayListOfShapes {
  public void add (Shape s) { ... }
  public Shape get (int index) { ... }
}

• The only place these class definitions differ is in 
the type of the objects they hold.

• It seems like there should be a way to “factor 
out” the type...
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Java generics.
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Java generics

• Since Java 1.5, Java has offered the ability to 
parameterize a class by a type.

• For example, when writing a “collection” class such 
as ArrayList, we can give it a type parameter T.

• As with data parameters, the parameter name is 
up to the programmer.

• Type parameters are typically given one-letter 
names:

• K for “key”, V for “value”, E for “element, etc.
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Generics for “ArrayListOfX”

• Consider our problem of writing multiple 
ArrayListOfX classes to store data of different 
types:

• With Java generics, we can write just one version 
of the class and parameterize it by type T, the 
type of data the ArrayList should contain.
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class ArrayList<T> implements List<T> {
  T[] _underlyingStorage;
  int _numElements;

  void add (T element) {
    _underlyingStorage[_numElements] = element;
    _numElements++;

  T get (int index) {
    return _underlyingStorage[index];
  }
}

The type parameter T is specified in angled 
brackets just after the classname. Thereafter, 
it can be used inside the class anywhere a 
type is expected. (Almost -- more later.)

Interfaces too can be 
parameterized by a type.

Generics for “ArrayListOfX”

Tuesday, August 9, 2011



Generics for “ListOfX”
• Similarly to classes, interfaces too can be parameterized 

by a type:
interface List<T> {
  void add (T element);
  T get (int index);
  void remove (int index);
}
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• In short: (almost) everywhere in our previous versions of 
List and ArrayList, we replace the type Object with 
the type parameter T.

• To instantiate the “generic” ArrayList<T> in code:

final ArrayList<Student> list = new ArrayList<Student>();

• Instantiating the ArrayList with type parameter 
T=Student can be conceptualized as doing a “search-and-
replace” to change <T> to <Student>:

When we instantiate the generic collection, we must specify 
the value of the type parameter.

class ArrayList<T> ... {
  void add (T element) { ...
  }
  T get (int index) { ...
  }
}

class ArrayList ... {
  void add (Student element) { ...
  }
  Student get (int index) { ...
  }
}

Generics for “ArrayListOfX”
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• Now, our list can only be populated with Student data 
(or any subclass of Student):

list.add(new Student());  // -- ok by definition
list.add(new UCSDStudent());  // -- ok if it’s a subclass

• What happens if we try to break this rule and add a non-
Student object to list?

list.add(“error”);  // not ok -- compiler catches this!

Generics for “ArrayListOfX”
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Generics for “ListOfX”
• Now, our list can only be populated with Student data (or 

any subclass of Student):

list.add(new Student());  // -- ok by definition
list.add(new UCSDStudent());  // -- ok if it’s a subclass

• What happens if we try to break this rule and add a non-
Student object to list?

list.add(“error”);  // not ok -- compiler catches this!

• With Java generics, the compiler will catch this error -- it 
knows that “error” is a String, and that list is of type 
ArrayList<Student>.

• Since ArrayList<Student>’s add(element) method 
expects a Student, there is a type mismatch -- compile-
time error.
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Benefits of generics
• It is preferable for the compiler to catch this mistake 

rather than the JVM:

• We fix the bug before the program crashes.

• The compiler rules out the possibility that we mismatch 
container type and element type.

• With generics, we also no longer have to downcast the 
return value of get(index):
final ArrayList<String> list = new ArrayList<String>();
list.add(“hello”);
final String s = list.get(0);  // No downcast necessary

• This is because the result of get(index) is guaranteed 
to be of type String -- we don’t have to additionally 
“promise” the compiler anything.

Tuesday, August 9, 2011


