
CSE 12:
Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Seven
10 Aug 2011

Wednesday, August 10, 2011

More on Java generics.

Wednesday, August 10, 2011

Making ArrayList generic

• We’ve already discussed the benefit to the
user of making a collection generic.

• We also saw (in brief) how to instantiate a
generic type, and a bit on how to
implement a generic data structure.

• But let’s be a bit more precise.

• We’ll keep going with the ArrayList<T>
example.

Wednesday, August 10, 2011

Making List generic
• Before creating a generic ArrayList class, let’s go

back to the “contract” between implementor and user
-- the List interface.

• The benefits of a generic interface are exactly
analogous to the benefits of a generic class:

• When you use a variable of the interface type, the
compiler will check that the types are consistent:

final List<Integer> list = ... // some concrete impl
list.add(new Integer(5)); // ok
list.add(“test”); // not ok -- compile-time error

Wednesday, August 10, 2011

• As described before, when writing a generic List, we
include a type parameter at the start of the class
definition.

• The type parameter tells the generic List interface
which type of element the list can accept.

• We can define a generic List interface as follows:

interface List<T> {
 int size ();
 void add (T element);
 T get (int index);
 void remove (int index);
}

Making List generic

Wednesday, August 10, 2011

Generics syntax
• Let’s examine more carefully how the syntax works:

interface List<T> {
 int size ();
 void add (T element);
 T get (int index);
 void remove (int index);
}

Wednesday, August 10, 2011

Generics syntax
• Let’s examine more carefully how the syntax works:

interface List<T> {
 int size ();
 void add (T element);
 T get (int index);
 void remove (int index);
}

When we write angled
brackets just after the type

name, we are declaring a type
parameter. Here, the type

parameter name is T.
void method (Student student) {
 student.setAge(24);
 student.printAddress();
}

This is analogous, in a Java
method signature, to declaring
a data parameter and giving it

the name student.

Wednesday, August 10, 2011

Generics syntax
• Let’s examine more carefully how the syntax works:

interface List<T> {
 int size ();
 void add (T element);
 T get (int index);
 void remove (int index);
}

Following the declaration of
type parameter T, whenever
we write T, we are using the

type parameter’s value. void method (Student student) {
 student.setAge(24);
 student.printAddress();
}

This is analogous, in a Java method
signature, to using that parameter

inside the method body.

Wednesday, August 10, 2011

Generics syntax
• Now, suppose we want the List interface to extend

the Iterable interface. We could write:

interface List<T> extends Iterable<T> {
 int size ();
 void add (T element);
 T get (int index);
 void remove (int index);
}

Despite the angled brackets,
we are actually “using” T, not
declaring T. We are “passing
T to the generic Iterable

interface.”

void method (Student student) {
 student.setAge(24);
 student.printAddress();
 otherMethod(student);
}

This is analogous, in a Java method
signature, to passing the

parameter to another method

Wednesday, August 10, 2011

Generics syntax

• Bear in mind that type parameters are
passed to a generic class at compile-time,
whereas data parameters are passed to a
method at run-time.

Wednesday, August 10, 2011

• Now that we have a generic List, we can define a
generic ArrayList.

• As mentioned last lecture, this consists mostly of
replacing “Object” with “T”:
class ArrayList<T> implements List<T> {
 T[] _underlyingStorage;
 int _numElements;

 public void add (T element) { ... }
 public T get (int index) { ... }
 public Iterator<T> iterator () {
 }

 private class ArrayListIterator implements Iterator<T> {
 ...
 T next () { ... }
 void remove () { ... }
 boolean hasNext () { ... }
 }
}

Making ArrayList generic

Wednesday, August 10, 2011

Making ArrayList generic
• There is one important exception, however:

• In the constructor ArrayList(), we cannot write:
_underlyingStorage = new T[128];

• The Java compiler will give an error: “generic
array creation”.

• It would also be illegal to try to write:
final T element = new T();

• Why?

• It has to do with how generics are
implemented “under the hood”.

Wednesday, August 10, 2011

Erasure

• Java generics are implemented based on the
principle of erasure.

• In one sentence:

• After the Java compiler checks that the
types are ok, it erases the type
parameters associated with generic
classes/methods and replaces them with
just “Object”.

* Not quite true -- it actually replaces them with the upper bound of the type parameter.

*

Wednesday, August 10, 2011

Erasure

• Let’s now define erasure more leisurely. Consider:

final List<String> list = new ArrayList<String>();

• The List was instantiated with a type parameter set
to String.

• This means that list.add(o) now expects o to be of
String type. It will then verify that variables passed to
add(o) have the correct type:

list.add(“yup”); // ok
list.add(new Object()); // will not compile

Wednesday, August 10, 2011

Erasure
• Now, after verifying that all type parameters are

compatible with the generic List, the compiler
proceeds to compile your code.

• The compile strips away (“erases”) all of the
type parameters.

• The code
final List<String> list = new List<String>();

is essentially replaced by:
final List list = new List();

• We’re right back where we started -- an List
of Objects!

Wednesday, August 10, 2011

Erasure

• Actually, not quite -- we still get two big benefits:

• The compiler already verified that in all calls to
add(o), o was compatible with the list’s type.

• No possibility of adding non-Strings to a list
that’s supposed to contain only Strings.

• We didn’t have to cast the result of get(index)
to be String.

Wednesday, August 10, 2011

Erasure

• However, the erasure does have some suboptimal side
effects:

• We cannot instantiate an object of generic type T:
final T t = new T(); // won’t compile

• Reason: After stripping away the type information T,
the JVM wouldn’t know which constructor to call.

• We also cannot instantiate arrays of generic type:
final T[] array = new T[]; // won’t compile

Wednesday, August 10, 2011

Arrays of generic type
final T[] array = new T[]; // won’t compile

• As a work-around, we have to instantiate an array of a
particular (non-generic) type. An array of Objects will
actually be sufficient for ArrayList:

final T[] array = (T[]) new Object[128];

• The ugly downcast is back.

• However, we only have to do this once in all of
ArrayList.

• Since this one line of code is an implementation of
ArrayList, the user need never be bothered by it.

Wednesday, August 10, 2011

Arrays of generic type
final T[] array = (T[]) new Object[128];

• In this “workaround” solution, we are once again
“promising” the Java compiler that the Object[] we
instantiate is really of type T[].

• If it’s not, we’ll end up with a ClassCastException.

• Because we’re downcasting from Object[] to a
generic type T, the compiler will issue a warning that
the types are “unchecked”.

• In this particular instance, we can safely ignore this
warning.

Wednesday, August 10, 2011

Erasure

• FYI: C++ offers “templates” (analogous to
generics).

• Templates are not implemented using erasure.

• Instead, the compiler essentially compiles a
separate version of your generic class for every
type parameter you use.

• In C++, it is legal to write new T();

Wednesday, August 10, 2011

Data structures: a
quantitative perspective.

Wednesday, August 10, 2011

Data structures so far

• Up to now, we’ve focused on data
structures from a software construction
perspective:

• Data structures as ADTs.

• Separation of implementation from
interface.

• Encoding of the user’s data in a sequence
of bits.

Wednesday, August 10, 2011

Data structures: a
quantitative analysis

• Just as important is the quantitative performance of
those structures, e.g.:

• Time cost: If I have a linked list of 100 elements,
how long will it take to find a particular element?
What if the list is 1000 elements long? 10,000?

• Space cost: How much overhead (e.g., in Nodes)
is there in a DoublyLinkedList12 versus an
ArrayList?

Wednesday, August 10, 2011

Data structures: a
quantitative analysis

• In the remainder of this lecture we will discuss
algorithmic analysis, in particular, methods of
estimating the time cost of algorithms.

• Data structures and algorithms are invariably
coupled:

• Without an algorithm, the data are useless.

• Without a data structure, the algorithm can’t
accomplish anything -- they need “space” to
execute.

Wednesday, August 10, 2011

Measuring time cost
• Instead of measuring time cost in terms of seconds,

milliseconds, etc., we will count the “number of abstract
operations”.

• Examples of “abstract operations” include:

• i = i + 1; // Assignment and/or arithmetic

• if (i > 5) { // Comparison

• On the other hand, calling another method -- i.e., another
algorithm -- would not be considered a single, abstract
operation:

• otherMethod(); // Have to look inside otherMethod!

Wednesday, August 10, 2011

Measuring time cost
• As with all algorithmic analysis, we are interested in

how the time cost grows as the size of the input to the
algorithm grows:

• For instance, if we want to sort a list of numbers,
and the size of the list is N, then we want to
describe, as a function of N, how many operation
the sort procedure will take.

• For the case of analyzing data structures and their
associated storage/retrieval/removal algorithms, the
input size N will often be the number of data already
stored in the ADT.

Wednesday, August 10, 2011

Measuring time cost

• We are interested in asymptotic analysis:

• We don’t care if the time cost is n, or 3n, or 0.1n
-- the main thing is that it’s “something times n”.

• We do care whether it’s n or n2 or 2n.

• Despite the fact that asymptotic analysis hides a lot
of detail, it is still a very useful tool for comparing
and selecting algorithms and data structures.

Wednesday, August 10, 2011

Unit testing.

Wednesday, August 10, 2011

Testing is (obviously) important
• Anyone who has written >0 programs knows that

they rarely work the first time.

• There are different kinds of approaches to testing
software:

• “Macro-level” testing -- after the software is
finished, test its functionality by running it as any
“normal user” would.

• E.g., hire 20 people to run the newest version of
Microsoft Word for 1 day and use it normally.

• We could conceivably automate the testing
process by using a keyboard-and-mouse simulator.

Wednesday, August 10, 2011

Testing is (obviously) important

• In this course, however, we are more interested in
“micro-level” testing:

• “Micro-level” testing tests individual classes and
methods to make sure they behave as intended.

• Example: Given a DoublyLinkedList12 class, let’s
test whether the boolean remove() method
works properly.

• Micro-level testing is sometimes known as unit-
testing -- test the “units” of a program’s code.

Wednesday, August 10, 2011

Testing a List implementation
public interface List {
 // Adds o to the “back” of the list, i.e.,
 // o becomes the element with the highest
 // index in the List.
 void add (Object o);

 // Returns the element stored at the specified
 // index.
 Object get (int index)
 throws IndexOutOfBoundsException;

 // Removes the element stored at the specified
 // index.
 void remove (int index)
 throws IndexOutOfBoundsException;

 // Returns the number of elements stored in
 // the List.
 int size ();
}

Wednesday, August 10, 2011

