CSE 12: Basic data structures and object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Ate
11 Aug 2011
More on performance analysis.
Asymptotic performance analysis

• Asymptotic performance analysis is a coarse but useful means of describing and comparing the performance of algorithms as a function of the input size \(n \) when \(n \) gets large.

• Asymptotic analysis applies to both time cost and space cost.

• Asymptotic analysis hides details of timing (that we don’t care about) due to:
 • Speed of computer.
 • Slight differences in implementation.
 • Programming language.
\(\Theta, \Omega, \text{ and } \theta\)

- In order to justify describing the time cost \(T(n) = 3n + 4\) as just “linear” \((n)\), we first need some mathematical machinery:
 - We define a lower bound on \(T\) with \(\Omega\).
 - We define an upper bound on \(T\) with \(O\).
 - We define a tight bound (bounded above and below) on \(T\) with \(\theta\).
 - \(\theta\) is important because it is more specific than \(O\).
 (For example, technically, \(3n + 4 = O(2^n)\).)
Abuse of notation

• When we say that $3n+5$ is “linear in n”, what we really mean (mathematically) is that $3n+5$ is $\theta(n)$.

• *Note*: In computer science, we often say O where we really mean θ. This is a slight abuse of notation.

• We will use O in this course to mean θ.
Asymptotic performance analysis

- Asymptotic analysis assigns algorithms to different “complexity classes”:
 - $O(1)$ - constant - performance of algorithm does not depend on input size.
 - $O(n)$ - linear - doubling n will double the time cost.
 - $O(\log n)$ - logarithmic
 - $O(n^2)$ - quadratic
 - $O(2^n)$ - exponential

- Algorithms that differ in complexity class can have vastly different run-time performance (for large n).
Analysis of data structures

• Let’s put these ideas into practice and analyze the performance of algorithms related to ArrayList:
 • add(o), get(index), find(o), and remove (index).

• As a first step, we must decide what the “input size” means.

• What is the “input” to these algorithms?
Analysis of data structures

• Each of the methods (algorithms) above operates on the _underlying_Storage and either _o_ or index.

• _o_ and index are always length 1 -- their size cannot grow.

• However, the number of data in _underlying_Storage (stored in _num_Elements) will grow as the user adds elements to the ArrayList.

• Hence, we measure asymptotic time cost as a function of n, the number of elements stored (_numElements).
Adding to back of list

• What is the time complexity of this method?

```java
class ArrayList<T> {
    ...
    void addToBack (T o) {
        // Assume _underlyingStorage is big enough
        _underlyingStorage[_numElements] = o;
        _numElements++;
    }
}
```
Adding to back of list

• What is the time complexity of this method?

```java
class ArrayList<T> {
    ...
    void addToBack (T o) {
        // Assume _underlyingStorage is big enough
        _underlyingStorage[_numElements] = o;
        _numElements++;
    }
}
```

$O(1)$ -- no matter how many elements the list already contains, the cost is just 2 "abstract operations".

Note that, for this method, the worst case, average case, and best case are all the same.
Retrieving an element

• What is the time complexity of this method?

class ArrayList<T> {
 ...
 T get (int index) {
 return _underlyingStorage[index];
 }
}
Retrieving an element

• What is the time complexity of this method?

class ArrayList<T> {
 ...
 T get (int index) {
 return _underlyingStorage[index];
 }
}

$O(1)$.

Thursday, August 11, 2011
Adding to front of list

- What is the time complexity of this method?

class ArrayList<T> {
 ...
 void addToFront (T o) {
 ...
 }
}
Adding to front of list

• What is the time complexity of this method?

class ArrayList<T> {
 ...
 void addToFront (T o) {
 // Assume _underlyingStorage is big enough
 for (int i = 0; i < _numElements; i++) {
 _underlyingStorage[i+1] = _underlyingStorage[i];
 }
 _underlyingStorage[i] = o;
 _numElements++;
 }
}

\[O(n). \]
Finding an element

• What is the time complexity of this method in the best case? Worst case?

```java
class ArrayList<T> {
    ...
    // Returns lowest index of o in the ArrayList, or // -1 if o is not found.
    int find (T o) {
        for (int i = 0; i < _numElements; i++) {
            if (_underlyingStorage[i].equals(o)) { // not null
                return i;
            }
        }
        return -1;
    }
}
```
Finding an element

• What is the time complexity of this method in the best case? Worst case?

class ArrayList<T> {
 ...
 // Returns lowest index of o in the ArrayList, or
 // -1 if o is not found.
 int find (T o) {
 for (int i = 0; i < _numElements; i++) {
 if (_underlyingStorage[i].equals(o)) { // not null
 return i;
 }
 }
 return -1;
 }
}

$O(1)$ in best case; $O(n)$ in worst case.
Adding n elements

- Now, let’s consider the time complexity of doing many adds in sequence, starting from an empty list:

```java
void addManyToFront (T[] many) {
    for (int i = 0; i < many.length; i++) {
        addToFront(many[i]);
    }
}
```

- What is the time complexity of addManyToFront on an array of size n?
Adding \(n\) elements

- To calculate the total time cost, we have to \textit{sum} the time costs of the individual calls to \texttt{addToFront}.

- Each call to \texttt{addToFront(o)} takes about time \(i\), where \(i\) is the \textit{current} size of the list. (We have to “move over” \(i\) elements by one step to the right.)

```java
void addManyToFront (T[] many) {
    for (int i = 0; i < many.length; i++) {
        addToFront(many[i]);
    }
}
```

- Let \(T(i)\) the cost of \texttt{addToFront} at iteration \(i\):
 \[T(0)=1, \ T(1)=2, \ldots, \ T(n-1)=n.\]
Adding n elements

- Now we just have to add together all the $T(i)$:
 \[
 \sum_{i=0}^{n-1} T(i) = \sum_{i=0}^{n-1} i = \frac{n(n-1)}{2} = O(n^2)
 \]

- Note that we would get the same asymptotic bound even if we calculated the cost $T(i)$ slightly differently, e.g., $T(i)=3i+2$:
 \[
 \sum_{i=0}^{n-1} T(i) = \sum_{i=0}^{n-1} (3i + 2) = \sum_{i=0}^{n-1} 3i + \sum_{i=0}^{n-1} 2
 \]
 \[
 = 3 \sum_{i=0}^{n-1} i + 2n
 \]
 \[
 = 3 \left(\frac{n(n-1)}{2} \right) + 2n
 \]
 \[
 = O(n^2)
 \]
Finding an element

- What is the time complexity of this method in the average case?

class ArrayList<T> {
 ...
 // Returns lowest index of o in the ArrayList, or
 // -1 if o is not found.
 int find (T o) {
 for (int i = 0; i < _numElements; i++) {
 if (_underlyingStorage[i].equals(o)) { // not null
 return i;
 }
 }
 return -1;
 }
}
Finding an element: average case

• Finding an exact formula for the average case performance can be tricky (if not impossible).

• In order to compute the average, or expected, time cost, we must know:
 • The time cost $T(X_n)$ for a particular input X of size n.
 • The probability $P(X_n)$ of that input X.
 • The expected time cost, over all inputs X of size n, is then:

$$\text{AvgCaseTimeCost}_n = E[T(X_n)] = \sum_{X_n} P(X_n)T(X_n)$$
Finding an element: average case

• Finding an exact formula for the average case performance can be tricky (if not impossible).

• In order to compute the average, or expected, time cost, we must know:

 • The time cost $T(X_n)$ for a particular input X of size n.

 • The probability $P(X_n)$ of that input X.

 • The expected time cost, over all inputs X of size n, is then:

$$\text{AvgCaseTimeCost}_n = E[T(X_n)] = \sum_{X_n} P(X_n) T(X_n)$$

 “E” for “Expectation”

In this case, X consists of both the element o and the contents of _underlyingStorage._
Finding an element: average case

• In the \texttt{find(o)} method listed above, it is possible that the user gives us an \(o \) that is not contained in the list.

• This will result in \(O(n) \) time cost.

• How “likely” is this event?

 • \textit{We have no way of knowing} -- we could make an arbitrary assumption, but the result would be meaningless.

• Let’s \textit{remove this case from consideration} and assume that \(o \) is always present in the list.

• What is the average-case time cost \textit{then}?
Finding an element: average case

• Even when we assume o is present in the list somewhere, we have no idea whether the o the user gives us will “tend to be at the front” or “tend to be at the back” of the list.

• However, here we can make a plausible assumption:

 • For an `ArrayList` of n elements, the probability that o is contained at index i is $1/n$.

 • In other words, o is equally likely to be in any of the “slots” of the array.
Finding an element: average case

- Given this assumption, we can finally make headway.
- Let’s define $T(i)$ to be the cost of the `find(o)` method as a function of i, the location in `_underlyingStorage` where o is located. What is $T(i)$?

```java
class ArrayList<T> {
    ...
    // Returns lowest index of o in the ArrayList, or
    // -1 if o is not found.
    int find (T o) {
        for (int i = 0; i < _numElements; i++) {
            if (_underlyingStorage[i].equals(o)) { // not null
                return i;
            }
        }
        return -1;
    }
}
```
Finding an element: average case

• Given this assumption, we can finally make headway.

• Let’s define $T(i)$ to be the cost of the `find(o)` method as a function of i, the location in `_underlyingStorage` where o is located. What is $T(i)$?

class ArrayList<T> {
 ...
 // Returns lowest index of o in the ArrayList, or
 // -1 if o is not found.
 int find (T o) {
 for (int i = 0; i < _numElements; i++) {
 if (_underlyingStorage[i].equals(o)) { // not null
 return i;
 }
 }
 return -1;
 }
}
Finding an element: average case

- Now, we can re-write the expected time cost in terms of an arbitrary input X, as the expected time cost in terms of where in the array the element o will be found.

\[
\text{AvgCaseTimeCost}_n = \sum_i P(i)T(i)
\]

Redefine $P(X_n)$ and $T(X_n)$ in terms of $P(i)$ and $T(i)$.

\[
= \sum_i \frac{1}{n}
\]

Substitute terms.

\[
= \frac{1}{n} \sum i
\]

Move $1/n$ out of the summation.

\[
= \frac{1}{n} \frac{n(n+1)}{2}
\]

Formula for arithmetic series.

\[
= \frac{n+1}{2}
\]

The n's cancel.

\[
= O(n)
\]

Find asymptotic bound.
Questions to ponder

• What is the time cost of adding to the back of a singly-linked list, as a function of the number of elements already in the list?
 • With just a _head pointer?
 • With both _head and _tail?
 • What if _head and _tail point to dummy nodes?
More on performance measurement.
Empirical performance measurement

• As an alternative to describing an algorithm’s performance with a “number of abstract operations”, we can also measure its time empirically using a clock.

• As illustrated last lecture, counting “abstract operations” can anyway hide real performance differences, e.g., between using `int[]` and `Integer[]`.

Thursday, August 11, 2011
Empirical performance measurement

- There are also many cases where you don’t know how an algorithm works internally.
- Many programs and libraries are not open source!
 - You have to analyze an algorithm’s performance as a black box.
 - “Black box” -- you can run the program but cannot see how it works internally.
- It may even be useful to deduce the asymptotic time cost by measuring the time cost for different input sizes.
Procedure for measuring time cost

• Let’s suppose we wish to measure the time cost of algorithm A as a function of its input size n.

• We need to choose the set of values of n that we will test.

• If we make n too big, our algorithm A may never terminate (the input is “too big”).

• If we make n too small, then A may finish so fast that the “elapsed time” is practically 0, and we won’t get a reliable clock measurement.
Procedure for measuring time cost

• In practice, one “guesses” a few values for n, sees how fast A executes on them, and selects a range of values for n.

• Let’s define an array of different input sizes, e.g.:
  ```java
  int[] N = { 1000, 2000, 3000, ..., 10000 };
  ```

• Now, for each input size $N[i]$, we want to measure A’s time cost.
Procedure for measuring time cost

• Procedure (draft 1):

```java
for (int i = 0; i < N.length; i++) {
    final Object X = initializeInput(N[i]);
    final long startTime = getClockTime();
    A(X);   // Run algorithm A on input X of size N[i]
    final long endTime = getClockTime();
    final long elapsedTime = endTime - startTime;
    System.out.println("Time for N[" + i + "]: " + elapsedTime);
}
```

Make sure to start and stop the clock as “tightly” as possible around the actual algorithm A.
Procedure for measuring time cost

- The procedure would work fine if there were no variability in how long $A(x)$ took to execute.

- Unfortunately, in the “real world”, each measurement of the time cost of $A(x)$ is corrupted by noise:
 - Garbage collector!
 - Other programs running.
 - Cache locality.
 - Swapping to/from disk.
 - Input/output requests from external devices.
Procedure for measuring time cost

• If we measured the time cost of $A(X)$ based on just one measurement, then our estimate of the “true” time cost of $A(X)$ will be very imprecise.

• We might get unlucky and measure $A(X)$ while the computer is doing a “system update”.

• If we’ve very unlucky, this might occur during some values of i, but not for others, thereby skewing the trend we seek to discover across the different $N[i]$.
Improved procedure for measuring time cost

- A much-improved procedure for measuring the time cost of $A(X)$ is to compute the average time across M trials.

- Procedure (draft 2):
  ```java
  for (int i = 0; i < N.length; i++) {
    final Object X = initializeInput(N[i]);

    final long[] elapsedTimes = new long[M];
    for (int j = 0; j < M; j++) {
      final long startTime = getClockTime();
      A(X); // Run algorithm A on input X of size N[i]
      final long endTime = getClockTime();
      elapsedTimes[j] = endTime - startTime;
    }
    final double avgElapsedTime = computeAvg(elapsedTimes);
    System.out.println("Time for N[" + i + "]: " +
                       avgElapsedTime);
  }
  ```
Improved procedure for measuring time cost

• If the elapsed time measured in the jth trial is T_j, then the average over all M trials is:

$$
\bar{T} = \frac{1}{M} \sum_{j=1}^{M} T_j
$$

• We will use the average time “T-bar” as an estimate of the “true” time cost of $A(X)$.

• The more trials M we use to compute the average, the more precise our estimate “T-bar” will be.
Improved procedure for measuring time cost

• Alternatively, we can start/stop the clock just once.

• Procedure (draft 2b):

  ```java
  for (int i = 0; i < N.length; i++) {
    final Object X = initializeInput(N[i]);

    final long startTime = getClockTime();
    for (int j = 0; j < M; j++) {
      A(X);  // Run algorithm A on input X of size N[i]
    }
    final long endTime = getClockTime();
    final double avgElapsedTime = (endTime - startTime) / M;
    System.out.println("Time for N[" + i + "]: "+ avgElapsedTime);
  }
  ```
Quantifying uncertainty

• A key issue in any experiment is to quantify the uncertainty of all measurements.

• Example:
 • We are attempting to estimate the “true” time cost of $A(X)$ by averaging together the results of many trials.
 • After computing “T-bar”, how far from the “true” time cost of $A(X)$ was our estimate?
Quantifying uncertainty

- A key issue in any experiment is to quantify the uncertainty of all measurements.

- Example:
 - You are attempting to estimate the “true” time cost of $A(X)$ by averaging together the results of many trials.
 - After computing “T-bar”, how far from the “true” time cost of $A(X)$ was your estimate?
 - In order to compute this, we would have to know what the true time cost is -- and that’s what we’re trying to estimate!
 - We must find another way to quantify uncertainty...
Standard error versus standard deviation

• Some of you may already be familiar with the standard deviation:

\[\sigma = \sqrt{\frac{1}{M} \sum_{j=1}^{M} (T_j - \overline{T})^2} \]

• The standard deviation measures how “varied” the individual measurements \(T_j \) are.

• The standard deviation gives a sense of “how much noise there is.”

• However, in most cases, we are less interested in characterizing the noise, and more interested in measuring the true time cost of \(\mathbf{A}(\mathbf{X}) \) itself.

• For this, we want the standard error.
Quantifying your uncertainty

- In statistics, the uncertainty associated with a measurement (e.g., the time cost of $A(X)$) is typically quantified using the *standard error*:

\[
\text{StdErr} = \frac{\sigma}{\sqrt{M}} \quad \text{where} \quad \sigma = \sqrt{\frac{1}{M} \sum_{j=1}^{M} (T_j - \bar{T})^2}
\]

where “T-bar” is the average (computed on earlier slide).

- Notice: as M grows larger, the StdErr becomes smaller.
Error bars

• The standard error is often used to compute *error bars* on graphs to indicate how reliable they are.

• Different error bars have different meanings! Some of them indicate confidence intervals, some indicate standard error, some indicate standard deviation -- it’s important to know which!
Example

The graph compares the performance of `ArrayList` and `LinkedList` in terms of time taken to add data. The x-axis represents the number of data points to add (in thousands), while the y-axis shows the time taken in seconds. The graph indicates that `ArrayList` has a more stable performance across different data sizes compared to `LinkedList`, which shows a significant increase in time for a specific data size.
Stacks and queues.
Stacks and queues.

• Let’s now bring in two more fundamental data structures into the course.

• So far we have covered lists -- array-based lists and linked-lists.

• These are both linear data structures -- each element in the container has at most one successor and one predecessor.

• Lists are most frequently used when we wish to store objects in a container, and probably never remove them from it.

• E.g., if Amazon uses a list to store its huge collection of customers, it has no intention of “removing” a customer (except at program termination).
Stacks and queues

• Stacks and queues, on the other hand, are examples of *linear* data structures in which every object inserted into it will generally be removed:
 • The stack/queue is intended only as “temporary” storage.
 • Both stacks and queues allow the user to add and remove elements.
 • Where they differ is the *order* in which elements are removed *relative to when they were added.*
Stacks

- Stacks are *last-in-first-out* (LIFO) data structures.
- The classic analogy for a “stack” is a pile of dishes:
 - Suppose you’ve already added dishes A, B, and C to the “stack” of dishes.
 - Now you add one more, D.
 - Now you remove one dish -- *you get D back*.
 - If you remove another, you get C, and so on.
- With stacks, you can only add to/remove from the *top* of the stack.

If you try to remove a middle dish, you get that annoying clanging sound.
• Stacks find many uses in computer science, e.g.:
 • Implementing *procedure calls*.

• Consider the following code:
  ```java
  void f () {
    _num = 4;
    g();
    _num++;
  }
  void g () {
    h();
    _num = 7;
  }
  void h () {
    System.out.println(“Yup!”);
  }
  ```

 How does the CPU know to “jump” from `f` to `g`, `g` to `h`, then `h` back to `g`, and finally `g` back to `f`?
On all modern machines, a program’s *instructions* and its *data* are stored *together* somewhere in the computer’s long sequence of bits (Von Neumann architecture).

Just by “glancing” at the contents of computer memory, one would have no idea whether a certain byte contains code or data -- it’s all just bits.

To keep track of which instruction in memory is currently being executed, the CPU maintains an Instruction Pointer (IP).
Code execution

- Suppose the IP is 8:
 - Then the next instruction to execute is `num=4;
 - The CPU then advances the IP to the next instruction (4 bytes later) to 12.
• The next instruction is `call g();`.

• The CPU must now “move” the IP to address 24 (start of g’s code) so g can start.
• g has now started.

• The first thing g does is call h.

• We have to move the IP again.
Code execution

- h now prints out “yup!”.
The return instructions tell the CPU to move the IP back to where it was before the current method was called.

But where is that?
The return call at address 40 *should* cause the CPU to jump to address 28 -- the next instruction in **g**.
We then execute _num=7;
And now we have to return to where the \textit{caller} of g left off (address 16).
Code execution

Memory

<table>
<thead>
<tr>
<th>Address</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>num=7</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>_num=4;</td>
</tr>
<tr>
<td>12</td>
<td>call g();</td>
</tr>
<tr>
<td>16</td>
<td>_num++;</td>
</tr>
<tr>
<td>20</td>
<td>return;</td>
</tr>
<tr>
<td>24</td>
<td>call h();</td>
</tr>
<tr>
<td>28</td>
<td>_num = 7;</td>
</tr>
<tr>
<td>32</td>
<td>return;</td>
</tr>
<tr>
<td>36</td>
<td>println("yup!");</td>
</tr>
<tr>
<td>40</td>
<td>return;</td>
</tr>
</tbody>
</table>

- **How does the CPU know which address to “return” to?**
- **We need some kind of data structure to manage the “return addresses” for us.**
What we need is a last-in-first-out data structure ("stack") to remember all the return addresses:

- **Rule 1**: Before method x calls method y, method x first adds its "return address" to the stack.

- **Rule 2**: When method y "returns" to its caller, it removes the top of the stack and sets the IP to that address.

Let’s see this work in practice...
Code execution

Address	Memory
0 | 4
4 | _num=4;
8 | call g();
12 | _num++;
16 | return;
20 | call h();
24 | _num = 7;
28 | return;
32 | ...println("yup!");
36 | h
40 | return;
...

• “Return address” stack:

Return address stack:

IP	f
(num) | g

(bottom of stack)
Code execution

- "Return address" stack:
 - "push" 16 onto stack
 - 16 (bottom of stack)

Address	Memory
0 | 4
4 | _num=4;
8 | call g();
12 | _num++;
16 | return;
20 | call h();
24 | _num = 7;
28 | return;
32 | println("yup!");
36 | ...
40 | return;
Code execution

- "Return address" stack:

 "push" 28 onto stack

 28
 16
 (bottom of stack)
Code execution

#### Address	Memory
0 | 4
4 | _num=4;
8 | call g();
12 | _num++;
16 | return;
20 | call h();
24 | _num = 7;
28 | return;
32 | ...println("yup!");
36 | return;
40 | ...
...

- **"Return address" stack:**
 - 28
 - 16
 (bottom of stack)
Code execution

```
_num = 4;
call g();
_num++;
return;
call h();
_num = 7;
return;
...println("yup!");
return;
```

- "Return address" stack:

 "pop" 28 off the stack...

 28
 16
 (bottom of stack)

Address	Memory
0 | 4
4 |
8 | _num=4;
12 | call g();
16 | _num++;
20 | return;
24 | call h();
28 | _num = 7;
32 | return;
36 | ...println("yup!");
40 | return;
... |

Thursday, August 11, 2011
Code execution

```
    _num = 4;
    call g();
    _num++;
    return;
    call h();
    _num = 7;
    return;
    ...println("yup!");
    return;
```

- “Return address” stack:

 ...and jump to that address.

 \[\text{IP} \quad 16 \quad \text{(bottom of stack)} \]
Code execution

• “Return address” stack:
 “pop” 16 off the stack...

16
(bottom of stack)
Code execution

- “Return address” stack:
 ...and jump to that address.

(bottom of stack)
Stack ADT

• To support the last-in-first-out adding/removal of elements, a stack must adhere to the following interface:

```java
interface Stack<T> {
    // Adds the specified object to the top of the stack.
    void push (T o);

    // Removes the top of the stack and returns it.
    T pop () ;

    // Returns the top of the stack without removing it.
    T peek () ;
}
```
Stack ADT

• Similarly to a list, a stack can be implemented straightforwardly using two kinds of backing stores:
 • Linked list
 • Array

• Think about how these would work...

• In the case of linked list, our StackImpl class might start out like:

  ```java
  class StackImpl<T> {
      DoublyLinkedList12<T> _underlyingStorage;
  }
  ```