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Asymptotic performance analysis
• Asymptotic performance analysis is a coarse but useful 

means of describing and comparing the performance of 
algorithms as a function of the input size n when n gets 
large.

• Asymptotic analysis applies to both time cost and 
space cost.

• Asymptotic analysis hides details of timing (that we don’t 
care about) due to:

• Speed of computer.

• Slight differences in implementation.

• Programming language.
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O, Ω, and θ
• In order to justify describing the time cost T(n)

=3n+4 as just “linear” (n), we first need some 
mathematical machinery:

• We define a lower bound on T with Ω.

• We define an upper bound on T with O.

• We define a tight bound (bounded above and 
below) on T with θ.

• θ is important because it is more specific 
than O.
(For example, technically, 3n+4=O(2n).)
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Abuse of notation

• When we say that 3n+5 is “linear in n”, what 
we really mean (mathematically) is that 3n+5 is 
θ(n).

• Note: In computer science, we often say O 
where we really mean θ. This is a slight abuse of 
notation.

• We will use O in this course to mean θ.
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• Asymptotic analysis assigns algorithms to different 
“complexity classes”:

• O(1) - constant - performance of algorithm does 
not depend on input size.

• O(n) - linear - doubling n will double the time cost.

• O(log n) - logarithmic

• O(n2) - quadratic

• O(2n) - exponential

• Algorithms that differ in complexity class can have 
vastly different run-time performance (for large n).

Asymptotic performance analysis
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Analysis of data structures

• Let’s put these ideas into practice and analyze the 
performance of algorithms related to ArrayList:

• add(o), get(index), find(o), and remove
(index).

• As a first step, we must decide what the “input 
size” means.

•  What is the “input” to these algorithms?
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Analysis of data structures
• Each of the methods (algorithms) above operates 

on the _underlyingStorage and either o or index.

• o and index are always length 1 -- their size 
cannot grow.

• However, the number of data in 
_underlyingStorage (stored in _numElements) 
will grow as the user adds elements to the 
ArrayList.

• Hence, we measure asymptotic time cost as a 
function of n, the number of elements stored 
(_numElements).
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Adding to back of list

class ArrayList<T> {
  ...
  void addToBack (T o) {
    // Assume _underlyingStorage is big enough
    _underlyingStorage[_numElements] = o;
    _numElements++;
  }
}

• What is the time complexity of this 
method?
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Adding to back of list

class ArrayList<T> {
  ...
  void addToBack (T o) {
    // Assume _underlyingStorage is big enough
    _underlyingStorage[_numElements] = o;
    _numElements++;
  }
}

• What is the time complexity of this 
method?

O(1) -- no matter how many elements the 
list already contains, the cost is just 2 
“abstract operations”.

Note that, for this method, the 
worst case, average case, and 
best case are all the same.
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Retrieving an element

class ArrayList<T> {
  ...
  T get (int index) {
    return _underlyingStorage[index];
  }
}

• What is the time complexity of this 
method?
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Retrieving an element

class ArrayList<T> {
  ...
  T get (int index) {
    return _underlyingStorage[index];
  }
}

O(1).

• What is the time complexity of this 
method?
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Adding to front of list

class ArrayList<T> {
  ...
  void addToFront (T o) {
    ...
  }
}

• What is the time complexity of this 
method?
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Adding to front of list

class ArrayList<T> {
  ...
  void addToFront (T o) {
    // Assume _underlyingStorage is big enough
    for (int i = 0; i < _numElements; i++) {
      _underlyingStorage[i+1] = _underlyingStorage[i];
    }
    _underlyingStorage[i] = o;
    _numElements++;
  }
}

O(n).

• What is the time complexity of this 
method?

We have to move 
everything over by 1.
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Finding an element

class ArrayList<T> {
  ...
  // Returns lowest index of o in the ArrayList, or
  // -1 if o is not found.
  int find (T o) {
    for (int i = 0; i < _numElements; i++) {
      if (_underlyingStorage[i].equals(o)) { // not null
        return i;
      }
    }
    return -1;
  }
}

• What is the time complexity of this 
method in the best case? Worst case?
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Finding an element

class ArrayList<T> {
  ...
  // Returns lowest index of o in the ArrayList, or
  // -1 if o is not found.
  int find (T o) {
    for (int i = 0; i < _numElements; i++) {
      if (_underlyingStorage[i].equals(o)) { // not null
        return i;
      }
    }
    return -1;
  }
} O(1) in best case; O(n) in worst case.

• What is the time complexity of this 
method in the best case? Worst case?
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Adding n elements

• Now, let’s consider the time complexity of 
doing many adds in sequence, starting from 
an empty list:

void addManyToFront (T[] many) {
  for (int i = 0; i < many.length; i++) {
    addToFront(many[i]);
  }
}

• What is the time complexity of 
addManyToFront on an array of size n?
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Adding n elements
• To calculate the total time cost, we have to sum the 

time costs of the individual calls to addToFront.

• Each call to addToFront(o) takes about time i, where 
i is the current size of the list. (We have to “move 
over” i elements by one step to the right.)

void addManyToFront (T[] many) {
  for (int i = 0; i < many.length; i++) {
    addToFront(many[i]);
  }
}

• Let T(i) the cost of addToFront at iteration i:
T(0)=1, T(1)=2, ..., T(n-1)=n.
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Adding n elements
• Now we just have to add together all the T(i):

• Note that we would get the same asymptotic bound 
even if we calculated the cost T(i) slightly differently, 
e.g., T(i)=3i+2:

n−1�

i=0

T (i) =
n−1�

i=0

i =
n(n− 1)

2
= O(n2)
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Finding an element

class ArrayList<T> {
  ...
  // Returns lowest index of o in the ArrayList, or
  // -1 if o is not found.
  int find (T o) {
    for (int i = 0; i < _numElements; i++) {
      if (_underlyingStorage[i].equals(o)) { // not null
        return i;
      }
    }
    return -1;
  }
}

• What is the time complexity of this 
method in the average case?
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Finding an element: average case
• Finding an exact formula for the average case performance 

can be tricky (if not impossible).

• In order to compute the average, or expected, time cost, 
we must know:

• The time cost T(Xn) for a particular input X of size n.

• The probability P(Xn) of that input X.

• The expected time cost, over all inputs X of size n, is then:

AvgCaseTimeCostn = E[T (Xn)] =
�

Xn

P (Xn)T (Xn)
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Finding an element: average case
• Finding an exact formula for the average case performance 

can be tricky (if not impossible).

• In order to compute the average, or expected, time cost, 
we must know:

• The time cost T(Xn) for a particular input X of size n.

• The probability P(Xn) of that input X.

• The expected time cost, over all inputs X of size n, is then:

“E” for 
“Expectation”

Sum the time costs for all 
possible inputs, and weight each 
cost by how likely it is to occur.

In this case, X consists of both the element o 
and the contents of _underlyingStorage.

AvgCaseTimeCostn = E[T (Xn)] =
�

Xn

P (Xn)T (Xn)
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Finding an element: average case
• In the find(o) method listed above, it is possible that 

the user gives us an o that is not contained in the list.

• This will result in O(n) time cost.

• How “likely” is this event?

• We have no way of knowing -- we could make an 
arbitrary assumption, but the result would be 
meaningless.

• Let’s remove this case from consideration and assume 
that o is always present in the list.

• What is the average-case time cost then?
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Finding an element: average case

• Even when we assume o is present in the list 
somewhere, we have no idea whether the o the user 
gives us will “tend to be at the front” or “tend to be at 
the back” of the list.

• However, here we can make a plausible assumption:

• For an ArrayList of n elements, the probability that 
o is contained at index i is 1/n.

• In other words, o is equally likely to be in any of 
the “slots” of the array.
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Finding an element: average case
• Given this assumption, we can finally make headway.

• Let’s define T(i) to be the cost of the find(o) method as a 
function of i, the location in _underlyingStorage where o 
is located. What is T(i)? 

class ArrayList<T> {
  ...
  // Returns lowest index of o in the ArrayList, or
  // -1 if o is not found.
  int find (T o) {
    for (int i = 0; i < _numElements; i++) {
      if (_underlyingStorage[i].equals(o)) { // not null
        return i;
      }
    }
    return -1;
  }
}
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Finding an element: average case

T(i)=i

• Given this assumption, we can finally make headway.

• Let’s define T(i) to be the cost of the find(o) method as a 
function of i, the location in _underlyingStorage where o 
is located. What is T(i)? 

class ArrayList<T> {
  ...
  // Returns lowest index of o in the ArrayList, or
  // -1 if o is not found.
  int find (T o) {
    for (int i = 0; i < _numElements; i++) {
      if (_underlyingStorage[i].equals(o)) { // not null
        return i;
      }
    }
    return -1;
  }
}
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Finding an element: average case
• Now, we can re-write the expected time cost in terms of 

an arbitrary input X, as the expected time cost in terms of 
where in the array the element o will be found.

AvgCaseTimeCostn =
�

i

P (i)T (i)

=
�

i

1

n
i

=
1

n

�

i

i

=
1

n

n(n+ 1)

2

=
n+ 1

2
= O(n)

1

Move 1/n out of the summation.

Formula for arithmetic series.

Substitute terms.

Redefine P(Xn) and T(Xn) in 
terms of P(i) and T(i).

The n’s cancel.

Find asymptotic bound.
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Questions to ponder

• What is the time cost of adding to the back 
of a singly-linked list, as a function of the 
number of elements already in the list?

• With just a _head pointer?

• With both _head and _tail?

• What if _head and _tail point to 
dummy nodes?
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More on performance 
measurement.
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Empirical performance 
measurement

• As an alternative to describing an algorithm’s 
performance with a “number of abstract 
operations”, we can also measure its time 
empirically using a clock.

• As illustrated last lecture, counting “abstract 
operations” can anyway hide real performance 
differences, e.g., between using int[] and 
Integer[].
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Empirical performance 
measurement

• There are also many cases where you don’t know 
how an algorithm works internally.

• Many programs and libraries are not open source!

• You have to analyze an algorithm’s performance 
as a black box.

• “Black box” -- you can run the program but 
cannot see how it works internally.

• It may even be useful to deduce the asymptotic time 
cost by measuring the time cost for different input 
sizes.
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Procedure for measuring 
time cost

• Let’s suppose we wish to measure the time cost of 
algorithm A as a function of its input size n. 

• We need to choose the set of values of n that we 
will test.

• If we make n too big, our algorithm A may never 
terminate (the input is “too big”).

• If we make n too small, then A may finish so fast 
that the “elapsed time” is practically 0, and we 
won’t get a reliable clock measurement.
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Procedure for measuring 
time cost

• In practice, one “guesses” a few values for n, sees 
how fast A executes on them, and selects a range of 
values for n.

• Let’s define an array of different input sizes, e.g.:
int[] N = { 1000, 2000, 3000, ..., 10000 };

• Now, for each input size N[i], we want to measure 
A’s time cost.
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Procedure for measuring 
time cost

• Procedure (draft 1):

for (int i = 0; i < N.length; i++) {
  final Object X = initializeInput(N[i]);

  final long startTime = getClockTime();
  A(X);  // Run algorithm A on input X of size N[i]
  final long endTime = getClockTime();

  final long elapsedTime = endTime - startTime;
  System.out.println(“Time for N[“ + i + “]: “ +
                     elapsedTime);
}

Make sure to start and stop the clock 
as “tightly” as possible around the 

actual algorithm A.
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Procedure for measuring 
time cost

• The procedure would work fine if there were no variability 
in how long A(X) took to execute.

• Unfortunately, in the “real world”, each measurement of 
the time cost of A(X) is corrupted by noise:

• Garbage collector!

• Other programs running.

• Cache locality.

• Swapping to/from disk.

• Input/output requests from external devices.
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Procedure for measuring 
time cost

• If we measured the time cost of A(X) based on just one 
measurement, then our estimate of the “true” time cost 
of A(X) will be very imprecise.

• We might get unlucky and measure A(X) while the 
computer is doing a “system update”.

• If we’ve very unlucky, this might occur during some 
values of i, but not for others, thereby skewing the 
trend we seek to discover across the different N[i].
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Improved procedure for 
measuring time cost

• A much-improved procedure for measuring the time cost 
of A(X) is to compute the average time across M trials.

• Procedure (draft 2):
for (int i = 0; i < N.length; i++) {
  final Object X = initializeInput(N[i]);

  final long[] elapsedTimes = new long[M];
  for (int j = 0; j < M; j++) {
    final long startTime = getClockTime();
    A(X);  // Run algorithm A on input X of size N[i]  
    final long endTime = getClockTime();
    elapsedTimes[j] = endTime - startTime;
  }
  final double avgElapsedTime = computeAvg(elapsedTimes);
  System.out.println(“Time for N[“ + i + “]: “ +
                     avgElapsedTime);
}
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Improved procedure for 
measuring time cost

• If the elapsed time measured in the jth trial is Tj, then the 
average over all M trials is:

• We will use the average time “T-bar” as an estimate of the 
“true” time cost of A(X).

• The more trials M we use to compute the average, the 
more precise our estimate “T-bar” will be.

T =
1

M

M�

j=1

Tj
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Improved procedure for 
measuring time cost

• Alternatively, we can start/stop the clock just once.

• Procedure (draft 2b):
for (int i = 0; i < N.length; i++) {
  final Object X = initializeInput(N[i]);

  final long startTime = getClockTime();
  for (int j = 0; j < M; j++) {
    A(X);  // Run algorithm A on input X of size N[i]  
  }
  final long endTime = getClockTime();

  final double avgElapsedTime = (endTime - startTime) / M;
  System.out.println(“Time for N[“ + i + “]: “ +
                     avgElapsedTime);
}
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Quantifying uncertainty
• A key issue in any experiment is to quantify the uncertainty of 

all measurements.

• Example:

• We are attempting to estimate the “true” time cost of A(X) 
by averaging together the results of many trials.

• After computing “T-bar”, how far from the “true” time cost 
of A(X) was our estimate?
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Quantifying uncertainty
• A key issue in any experiment is to quantify the uncertainty of 

all measurements.

• Example:

• You are attempting to estimate the “true” time cost of A(X) 
by averaging together the results of many trials.

• After computing “T-bar”, how far from the “true” time cost 
of A(X) was your estimate?

• In order to compute this, we would have to know what 
the true time cost is -- and that’s what we’re trying to 
estimate!

• We must find another way to quantify uncertainty...
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Standard error versus 
standard deviation

• Some of you may already be familiar with the standard deviation:

• The standard deviation measures how “varied” the individual 
measurements Tj are.

• The standard deviation gives a sense of “how much noise 
there is.”

• However, in most cases, we are less interested in 
characterizing the noise, and more interested in measuring 
the true time cost of A(X) itself.

• For this, we want the standard error.

σ =

���� 1

M

M�

j=1

(Tj − T )2
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Quantifying your 
uncertainty

• In statistics, the uncertainty associated with a 
measurement (e.g., the time cost of A(X)) is typically 
quantified using the standard error:

where “T-bar” is the average (computed on earlier 
slide).

• Notice: as M grows larger, the StdErr becomes 
smaller.

StdErr =
σ√
M

σ =

���� 1

M

M�

j=1

(Tj − T )2where

Standard deviation
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Error bars

• The standard error is often used to compute error 
bars on graphs to indicate how reliable they are.

• Different error bars have different meanings! Some 
of them indicate confidence intervals, some indicate 
standard error, some indicate standard deviation -- 
it’s important to know which!
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Stacks and queues.
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Stacks and queues.
• Let’s now bring in two more fundamental data structures 

into the course.

• So far we have covered lists -- array-based lists and linked-
lists.

• These are both linear data structures -- each element in 
the container has at most one successor and one 
predecessor.

• Lists are most frequently used when we wish to store 
objects in a container, and probably never remove them from it.

• E.g., if Amazon uses a list to store its huge collection of 
customers, it has no intention of “removing” a customer 
(except at program termination).
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Stacks and queues
• Stacks and queues, on the other hand, are 

examples of linear data structures in which every 
object inserted into it will generally be removed:

• The stack/queue is intended only as 
“temporary” storage.

• Both stacks and queues allow the user to add and 
remove elements.

• Where they differ is the order in which elements 
are removed relative to when they were added.
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Stacks
• Stacks are last-in-first-out (LIFO) data structures.

• The classic analogy for a “stack” is a pile of dishes:

• Suppose you’ve already added dishes A, B, and C 
to the “stack” of dishes.

• Now you add one more, D.

• Now you remove one dish -- you get D back.

• If you remove another, you get C, and so on.

• With stacks, you can only add to/remove from the 
top of the stack.

If you try to remove a middle dish, you get that annoying clanging sound.

A

B

C

D
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Stacks
• Stacks find many uses in computer science, e.g.:

• Implementing procedure calls.

• Consider the following code:
void f () {
  _num = 4;
  g();
  _num++;
}
void g () {
  h();
  _num = 7;
}
void h () {
  System.out.println(“Yup!”);
}

How does the CPU know to “jump” from 
f to g, g to h, then h back to g, and finally 

g back to f?
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Von Neumann machine

• On all modern machines, a program’s instructions and its 
data are stored together somewhere in the computer’s 
long sequence of bits (Von Neumann architecture).

• Just by “glancing” at the contents of computer 
memory, one would have no idea whether a certain 
byte contains code or data -- it’s all just bits.

• To keep track of which instruction in memory is 
currently being executed, the CPU maintains an 
Instruction Pointer (IP).
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Code execution

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• Suppose the IP is 8:

• Then the next instruction 
to execute is _num=4;

• The CPU then advances the 
IP to the next instruction (4 
bytes later) to 12.

IP

_
n
u
m
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4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• The next instruction is 
call g().

• The CPU must now 
“move” the IP to address 
24 (start of g’s code) so g 
can start.

IP

_
n
u
m

Code execution
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4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• g has now started.

• The first thing g does is 
call h.

• We have to move the IP 
again.

IP
_
n
u
m

Code execution
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4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• h now prints out “yup!”.
IP

_
n
u
m

Code execution
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4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• The return instructions 
tells the CPU to move 
the IP back to where it 
was before the current 
method was called.

• But where is that?

IP

_
n
u
m

Code execution
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4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• The return call at address 
40 should cause the CPU 
to jump to address 28 -- 
the next instruction in g.

IP

_
n
u
m

Code execution
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7

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• We then execute 
_num=7;IP

_
n
u
m

Code execution
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7

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• And now we have to 
return to where the caller 
of g left off (address 16).IP

_
n
u
m

Code execution
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7

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• How does the CPU know which 
address to “return” to?

• We need some kind of data 
structure to manage the “return 
addresses” for us.

_
n
u
m

Code execution

IP
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7

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• What we need is a last-in-first-
out data structure (“stack”) to 
remember all the return 
addresses:

• Rule 1: Before method x calls 
method y, method x first adds 
its “return address” to the 
stack.

• Rule 2: When method y 
“returns” to its caller, it 
removes the top of the stack 
and sets the IP to that address.

• Let’s see this work in practice...

_
n
u
m

Code execution

IP

Thursday, August 11, 2011



Code execution

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;
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• “Return address” stack:
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_
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(bottom of stack)
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Code execution

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;
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(bottom of stack)
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“push” 16 onto stack

• “Return address” stack:
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Code execution

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
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h
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IP
_
n
u
m

(bottom of stack)
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“push” 28 onto stack

• “Return address” stack:
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Code execution

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;
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• “Return address” stack:
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Code execution

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
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h

Address

0
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16
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28

32
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(bottom of stack)

16

“pop” 28 off the stack...

28

• “Return address” stack:
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Code execution

7

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;
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...and jump to that address.

• “Return address” stack:
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Code execution

7

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
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h
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“pop” 16 off the stack...

16

• “Return address” stack:
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Code execution

7

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

IP

_
n
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(bottom of stack)

...and jump to that address.

• “Return address” stack:
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Stack ADT

• To support the last-in-first-out adding/removal of 
elements, a stack must adhere to the following interface:

interface Stack<T> {
  // Adds the specified object to the top of the stack.
  void push (T o);

  // Removes the top of the stack and returns it.
  T pop ();

  // Returns the top of the stack without removing it.
  T peek ();
}
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Stack ADT
• Similarly to a list, a stack can be implemented 

straightforwardly using two kinds of backing stores:

• Linked list

• Array

• Think about how these would work...

• In the case of linked list, our StackImpl class might 
start out like:
class StackImpl<T> {
  DoublyLinkedList12<T> _underlyingStorage;
}
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