CSE |12.

Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Nine
|5 Aug 201 |

Stacks.

Review of stacks

® Stacks are a last-in-first-out (LIFO) data structure
designed primarily to store data temporarily.

® Data are always added to/removed from the of the
stack.

® Stack ADT interface:

interface Stack<T> {
// Adds the specified object to the of the stack.

void push (T o) ;

// Removes the of the stack and returns it.
T pop () throws NoSuchElementException;

// Returns the of the stack without removing it.
T peek () throws NoSuchElementException;

Friday, August 19, 2011

Stack implementations

® A stack can be implemented straightforwardly using
two kinds of backing stores/underlying storage.

® Array

® More efficient for stacks of a fixed maximum
capacity.

® |Linked list

® More flexible for stacks with a growable
capacity.

Friday, August 19, 2011

Array-based stacks

® Arrays offer a natural implementation of stacks:
® Use T[] underlyingStorage to hold elements added to stack.
® Maximum capacity IS _underlyingStorage.length

® Keep track of “height” of stack using numElements instance

variable. .
_stack.push(y) ;
_stack.push(z) ;
_stack.push(w) ;
Bottom Top
T[] _underlyingStorage; a b C X y Z w
numElements: 7
_ 0 T

_pumElements -1

Friday, August 19, 2011

Array-based stacks

® |n every call to push (o), e.8.,, stack.push(q) ;
® numElements iS incremented.

® o s stored at index _numElements - 1.

Bottom Top
numElements: 8
_ 0 T

_numElements -1

Friday, August 19, 2011

Array-based stacks

® |n every call to peek():

® The element stored at index numElements
- 1 is saved to a local variable top.

® top is returned.

top

Bottom Top IEI
| |

_numElements: 8 O T

_numElements - 1

Friday, August 19, 2011

Array-based stacks

® |n every call to pop():

® The element stored at index numElements
- 1 is saved to a local variable top.

® numElements iS decremented.

. .
top is returned. top

Bottom Tcip @

numElements 7 T

_numElements -1

Friday, August 19, 2011

Exceptions

® |f a stack has reached its maximum capacity
(i.e., numElements ==
_underlyingStorage. length) and the user
calls push (o), then the stack will
overflow.

® |f a stack is empty (numElements == 0)
and the user calls pop (), then the stack will
underfiow.

Friday, August 19, 2011

Linked list-based stacks

® A stack can also be implemented using a
linked-list of nodes:

T[] _underlyingStorage

Array- a| b | c
based stack

int numElements: 3

Linked list- Node Node Node

based stack = | — null

a b Cc

_bottom or—1 4 _top or
_head _tail

vl

Friday, August 19, 2011

Linked list-based stacks

® Fach call to push (o) adds a new Node to
the top of the stack (or tail of the list),

e.g.

Linked list-
based stack

_bottom or
_head

Node

Node Node

a

vl

b

|
' null

C

or

Friday, August 19, 2011

Linked list-based stacks

® Fach call to peek () simply returns the data

referenced by top (or tail):

Linked list-
based stack

_bottom or
_head

Node

Node Node

a

vl

b

Node

C

d

)

// 4

— null

_top or
_tail

Friday, August 19, 2011

Linked list-based stacks

® Fach call to pop () removes the Node at the
_top of the stack (or tail of the list) and
returns the data it referenced, e.g.:

Linked list-
based stack

_bottom or
_head

Node

Node Node

a

vl

b

C

// 4

null

or

Friday, August 19, 2011

Linked list-based stacks

® A linked list-based stack ADT could be
implemented by defining a static inner-class Node
and essentially “re-implementing” the
DoublyLinkedList12 functionality.

® But this would be wasteful -- we already have a
functioning DoublyLinkedList12 ADT.

® Ve can save time and the possibility of human

error by “adapting” the DoublyLinkedList12
ADT to a stack ADT.

Friday, August 19, 2011

“Adapter” design pattern

® In software engineering, one of the classic “design
patterns’ is the adapter.

® An adapter is a class that “maps” from the interface of
one ADT -- the one we're trying to implement -- into
the interface of another ADT that already exists.

® |[f we adapt an ADT B to implement another ADT A,
then every method of A must be “converted” into a
related call of B.

® In particular, we can adapt the List12 ADT
(implemented by DoublyLinkedList12) to satisfy the
Stack ADT interface specification...

Friday, August 19, 2011

Stack as adaptation of
linked list

® How to “map”’ from stack ADT to rist12 ADT:

® Stack constructor instantiates
~dll = new DoublyLinkedListl2<T>() ;

® push (0) calls _dll.addToBack (o)
® pop() calls dll.removeBack ()

® peek() calls dll.get(dll.size() - 1)

Friday, August 19, 2011

Queues.

Queues

® Queues are a first-in-first-out (FIFO) data
structure used typically for temporary data
storage.

® Similarly to a train entering a tunnel, the
first car to enter the tunnel is the first
car to exit the tunnel.

® As with stacks, queues find many uses in
systems programming (programming of the
operating system).

Friday, August 19, 2011

Queues for Interprocess Communication

® One of the classical use-cases for queues is for inter-
process communication (IPC).

® Programs sometimes need to send messages to other
programs in order to get work done.

® E g, to write anything to the terminal or to a file, a
program must send a message to the operating
system requesting that the specified data be written.

Friday, August 19, 2011

Queues for Interprocess Communication

® |PC can take place between a computer program and
the operating system, or between two computer
programs:

® Examples:

® cat program to operating system:“please take this
message [contents of a particular file] and print it to
the screen.”

® 1s program to more program: ‘please take this
message [contents of a directory] and split it into
convenient page-size chunks.”

Friday, August 19, 2011

Queues for Interprocess Communication

® |n IPC, it is crucial that the messages be received
in the same order that they are sent.

® E.g,if we send the following messages...
sendMsg (“h”) ;
sendMsg (“e”) ;
sendMsg (“1”) ;
sendMsg (“1”) ;
sendMsg (“o”) ;

® ..then we expect “hello” to be received, and not
“lehol”!

® VWe need messaging to be a FIFO process.

Friday, August 19, 2011

Queues for Interprocess Communication

® Suppose Program A wishes to send a message to
Program B (perhaps running concurrently).

® One way in which we might conceive of implementing
IPC is for A to call a method of B (“procedure call”).

E class A { // Program A
Program b;
void someMethod () {

sshge
class B { // Program B Send MS :

}

// Process the request }

Friday, August 19, 2011

Queues for Interprocess Communication

® Unfortunately, this “procedure call” from A to B is
problematic:

® What if B is currently doing something else? (Remember
that it’s a separate program.) B might need a long time
before it can process A’s message.

® As a consequence,A’s procedure call will “hang”
execution of A.

class A { // Program A
Program b;
void someMethod () {

g-------

7))
oa
o

S
class B { // Program B Send Me

}

—

// Process the request

—
E E I I I I I I N N N N N

Friday, August 19, 2011

Queues for Interprocess Communication

® Message queues offer a way of “decoupling” the
sending of a message (from A) and the receiving/

processing of a message (in B).

® With message queues, two programs A and B that
wish to communicate can instantiate a message

queue between them.

queueAB = new Queue () ;

Program B|*""" o Queve ek Program A

_b. queue = queueAB; _a. queue = queueAB;

Friday, August 19, 2011

Queues for Interprocess Communication

® Whenever A wishes to send a message M to B, it
enqueues the message onto the queue.

Program B Fron: QueUe Back Program A

Friday, August 19, 2011

Queues for Interprocess Communication

® Whenever A wishes to send a message M to B, it
enqueues the message onto the queue.

Program B Fron: QueUe Back Program A

__queue.enqueue (0l) ;

Friday, August 19, 2011

Queues for Interprocess Communication

® Whenever A wishes to send a message M to B, it
enqueues the message onto the queue.

Program B Fron: QueUe Back Program A

__queue.enqueue (0l) ;
__queue.enqueue (02) ;

Friday, August 19, 2011

Queues for Interprocess Communication

® Whenever B wishes to receive/process a message M
from A, it dequeues a message from the queue.

® |n accordance with the FIFO principle, the first
message B dequeues is the first message A had
enqueued.

Program B Fron: QueUe Back Program A

Friday, August 19, 2011

Queues for Interprocess Communication

® Whenever B wishes to receive/process a message M
from A, it dequeues a message from the queue.

® |n accordance with the FIFO principle, the first
message B dequeues is the first message A had
enqueued.

Program B Fron: QueUe Back Program A

Friday, August 19, 2011

Queues for Interprocess Communication

® Whenever B wishes to receive/process a message M
from A, it dequeues a message from the queue.

® |n accordance with the FIFO principle, the first
message B dequeues is the first message A had
enqueued.

Program B Fron: QueUe Back Program A

Friday, August 19, 2011

Queues for Interprocess Communication

® Whenever B wishes to receive/process a message M
from A, it dequeues a message from the queue.

® |n accordance with the FIFO principle, the first
message B dequeues is the first message A had
enqueued.

Program B Fron: QueUe Back Program A

Friday, August 19, 2011

Queues for Interprocess Communication

® The queue as an “intermediary communication medium”
between A and B allows both programs to operate
independently.

class A { // Program A
Queue queue;
void someMethod () {

class B { // Program B
void processQueue () {

print (msqg) ;
}
}

Friday, August 19, 2011

Queue ADT

® The interface for a Queue ADT looks as follows:

interface Queue<T> {
// Adds o to the back of the queue.
void enqueue (T o) ;

// Removes the object at the front of the

// queue.
T dequeue () throws NoSuchElementException;

}

Friday, August 19, 2011

Implementing a queue

A queue can probably be most easily
conceptualized and implemented as a linked list.

The head of the list is the front of the queue.
The tail is the back of the queue.
Calls to enqueue (o) add a new Node to the back.

Calls to dequeue () remove a Node (and return its
data) from the front.

Linked list- Node Node Node

based queue 7| —| | —> null
o3 o2 ol
back
_front or 1 T - or
_head

._tail

Friday, August 19, 2011

Adapting a
DoublyLinkedList| 2

® As with the stack ADT, the gueue ADT also lends
itself to adapting the existing DoublyLinkedList12
ADT to suit its needs:

® |nstantiate dll = new DoublyLinkedList12<T> () ;
® (Calls to enqueue (o). dll.addToBack (o) ;

® Calls to dequeue (): return dll.removeFront();

Friday, August 19, 2011

Array-based queue

® Like stacks, queues too can be implemented using an
array as the underlying storage.

® However, arriving at at an efficient solution is non-trivial.

® Assume following instance variables:
® T[] underlyingStorage

® int frontIdx, backIdx --indices into
_underlyingStorage of where the front and back

of the queue are located.

Friday, August 19, 2011

Array-based queue

® enqueue (0):Append to the back of the array:

® This is easy:

_backIdx++;
_underlyingStorage[backIdx] = o;

_frontIdx .;backIdx

| |

T[] _underlyingStorage; |0l |02|03|04|05|06|07

O I 2 3 4 5 6

Friday, August 19, 2011

Array-based queue

® enqueue (o) :Append to the back of the array:

® This is easy:

_backIdx++;
_underlyingStorage[backIdx] = o;

® Example: queue.enqueue (08);
_frontldx _backIdx

| |

O I 2 3 45 6 7

Friday, August 19, 2011

Array-based queue

® dequeue (): Remove from the front of the array:

® This is harder -- what happens when we
remove ol!?

® There are several ways one can attempt to
implement this method...

_frontIdx _backIdx

| |

T[] _underlyingStorage; |0l |02|03|04|05|06|07 |08

O I 2 3 45 6 7

Friday, August 19, 2011

dequeue() -- Attempt #|

® One possibility is to “shift down” by | the entire
queue after the front has been removed:

final T front = underlyingStorage[0];

for (int i = frontlIdx+l; i <= backIdx; i++) {
_underlyingStorage[i-1l] = underlyingStorage[i];

}

_backIdx--; // The back has “moved up” by 1

return front;

_frontIdx _backIdx

| |

T[] _underlyingStorage; |0l |02|03|04|05|06|07 |08

O I 2 3 45 6 7

Friday, August 19, 2011

dequeue() -- Attempt #|

® One possibility is to “shift down” by | the entire
queue after the front has been removed:

final T front = underlyingStorage[0];

for (int i = frontlIdx+l; i <= backIdx; i++) {
_underlyingStorage[i-1l] = underlyingStorage[i];

}

_backIdx--; // The back has “moved up” by 1

return front;

® Example:
front _frontIdx _backIdx
T[] _underlyingStorage; o2|o03|o0d4|05|06|07 |08

O I 2 3 45 6 7

Friday, August 19, 2011

dequeue() -- Attempt #|

® One possibility is to “shift down” by | the entire
queue after the front has been removed:

final T front = underlyingStorage[0];
for (int i = 1; i < backIdx; i++) {
_underlyingStorage[i-1l] = underlyingStorage[i];

}
_backIdx--; // The back has “moved up” by 1

return front;

® Example:

front _f rontlIdx _backIdx

| |

T[] _underlyingStorage;

O I 2 3 45 6 7

Friday, August 19, 2011

dequeue() -- Attempt #2

® Another possibility is to allocate a huge array for the
~underlyingStorage, and then just keep advancing
_frontIdx by | whenever dequeue () is called.

final T front = underlyingStorage[frontlIdx];
_frontlIdx++;
return front;

front _frontldx _backIdx

| |

T[] _underlyingStorage; |Ol|02|03|04|05(06|07 |08

O I 2 3 45 6 7

Friday, August 19, 2011

dequeue() -- Attempt #2

® Another possibility is to allocate a huge array for the
~underlyingStorage, and then just keep advancing
_frontIdx by | whenever dequeue () is called.

final T front = underlyingStorage[frontlIdx];
_frontlIdx++;

return front;

® Example:
front _fro:l'ltIdx _baclkIdx
T[] _underlyingStorage; o2lo3|o0d4|o05|06|07 |08

O I 2 3 45 6 7

Friday, August 19, 2011

dequeue() -- Attempt #2

® Another possibility is to allocate a huge array for the
~underlyingStorage, and then just keep advancing
_frontIdx by | whenever dequeue () is called.

final T front = underlyingStorage[frontlIdx];
_frontlIdx++;

return front;

® Example:
_frontIdx _backIdx
T[] _underlyingStorage; o2|03|04|05|(06|07 |08

O I 2 3 45 6 7

Friday, August 19, 2011

dequeue() -- Attempt #2

® | et’s consider this implementation strategy when
enqueue (o) and dequeue () are called many times...

queue . enqueue (09) ;
queue .dequeue () ;
queue. enqueue (010) ;
queue.dequeue () ;

T[] _underlyingStorage;

_f rontlIdx _backIdx
! !
o2|03|04|05|(06|07 |08

2 3 45 6 7 8 9

Friday, August 19, 2011

dequeue() -- Attempt #2

® | et’s consider this implementation strategy when
enqueue (o) and dequeue () are called many times...

queue . enqueue (09) ;
queue .dequeue () ;
queue.enqueue (010) ;
queue .dequeue () ;

_f rontlIdx _backIdx

| |

Ol 2 3 45 6 7 8 9

Friday, August 19, 2011

dequeue() -- Attempt #2

® | et’s consider this implementation strategy when
enqueue (o) and dequeue () are called many times...

__queue.enqueue (09) ;

_queue.enqueue (0l1l0) ;
_queue.dequeue () ;

_frontIdx _backIdx
T[] _underlyingStorage; o3|04|05|06|07(08 |09

Ol 2 3 45 6 7 8 9

Friday, August 19, 2011

dequeue() -- Attempt #2

® | et’s consider this implementation strategy when
enqueue (o) and dequeue () are called many times...

queue.enqueue (09) ;
queue .dequeue () ;
queue.enqueue (010) ;
queue .dequeue () ;

_f rontlIdx _backIdx

| |

Ol 2 3 45 6 7 8 9

Friday, August 19, 2011

dequeue() -- Attempt #2

® | et’s consider this implementation strategy when
enqueue (o) and dequeue () are called many times...

__queue.enqueue (09) ;
__queue.dequeue () ;
_queue.enqueue (0l1l0) ;

_frontldx _backIdx
T[] _underlyingStorage; od|o5|06|07 (0809|010

Ol 2 3 45 6 7 8 9

Friday, August 19, 2011

dequeue() -- Attempt #2

® | et’s consider this implementation strategy when
enqueue (o) and dequeue () are called many times...

queue . enqueue (09) ;
queue .dequeue () ;
queue. enqueue (010) ;
queue.dequeue () ;

_frontldx _backIdx
T[] _underlyingStorage; od|o5|06|07 (0809|010

Ol 2 3 45 6 7 8 9

Friday, August 19, 2011

dequeue() -- Attempt #2

® This implementation of dequeue () is elegant and
efficient.

® The queue keeps “moving” to the right.

® Even though the length of the queue may be
small, the array would have to be of infinite length
to accommodate the eternal “sliding down”.

_frontldx _backIdx
T[] _underlyingStorage; od|o5|06|07 (0809|010

Ol 2 3 45 6 7 8 9

Friday, August 19, 2011

dequeue() -- Attempt #3

® Let’s try one more time...

® Let’s assume that the maximum length of the queue is
bounded, i.e., it will never exceed some MAX LENGTH.

® Note -- in general,MAX LENGTH and
~underlyingStorage could be different.

® We can simulate an “infinite array” by implementing a
ring buffer.

® |n a ring buffer, the back of the array is connected
to the front of the array by “bending the array into
a circle”.

Friday, August 19, 2011

dequeue() -- Attempt #3

® Example:T[] ringBuffer = (T[]) new Object[8];
® |n a ring buffer, the array indices 7 and 0 are adjacent.
® The index “before” 0 is 7.

® The index “after” 7 is 0.

U1 | Hh
o | Q
N | P
&>

w Q.
TN

Friday, August 19, 2011

dequeue() -- Attempt #3

® A ring buffer is a convenient programming abstraction.

® With ring buffers, when we wish to “iterate around” the array, we can use an
index variable currentIdx.

® FEach time we wish to retrieve the “next” element, we return _ringBuffer
[currentIdx] ;

® We then must “increment” currentIdx.

® |f currentIdx < 7,then:currentIdx++;

® |f currentIdx == 7,then:currentIdx = 0;
7 0
h|l a
6 |
albjc|d|e|f|(g|h a Q
O I 2 3 4 5 6 7

Friday, August 19, 2011

dequeue() -- Attempt #3

® Similar logic applies to iterating “backwards’:

® Each time we wish to retrieve the “previous” element, we return
_ringBuffer[currentldx];

® We then must “decrement”’ currentIdx.

® If currentIdx > 0,then:currentIdx--;

® |f currentIdx == 0,then:currentlIdx = 7;
7 0
hl a
o)
albl|c|d|e|f|g|h
O I 2 3 4 5 6 7

Friday, August 19, 2011

dequeue() -- Attempt #3

® Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

® Consider the queue below (initially frontidx = 2 and backidx = 4).

® We can call enqueue and dequeue repeatedly -- the queue will appear
to “‘slide around” the ring buffer.

® As long as dequeue () is called frequently enough (compared to
enqueue (0)), the ring buffer will never get full.

enqueue (£f) ; / 0
enqueue (g) ;
dequeue () ; 6 |
enqueue (h) ;
enqueue (1) ; 5 2 frontIdx
dequeue () ; ed B

4 3

_backIdx

Friday, August 19, 2011

dequeue() -- Attempt #3

® Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring

infinite storage.
® Consider the queue below (initially frontidx = 2 and backidx = 4).

® We can call enqueue and dequeue repeatedly -- the queue will appear
to “‘slide around” the ring buffer.

® As long as dequeue () is called frequently enough (compared to
enqueue (0)), the ring buffer will never get full.

7 0
enqueue (g) ;
dequeue () ; 6 |
enqueue (h) ;
enqueue (1) ; 5 2 frontIdx
dequeue () ; ed B

4 3

Friday, August 19, 2011

dequeue() -- Attempt #3

® Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

® Consider the queue below (initially frontidx = 2 and backidx = 4).

® We can call enqueue and dequeue repeatedly -- the queue will appear
to “‘slide around” the ring buffer.

® As long as dequeue () is called frequently enough (compared to
enqueue (0)), the ring buffer will never get full.

enqueue (£f) ; / 0

dequeue () ; 6 |
enqueue (h) ;

enqueue (1) ; 5 2 frontIdx
dequeue () ; ed B

4 3

Friday, August 19, 2011

dequeue() -- Attempt #3

® Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

® Consider the queue below (initially frontidx = 2 and backidx = 4).

® We can call enqueue and dequeue repeatedly -- the queue will appear
to “‘slide around” the ring buffer.

® As long as dequeue () is called frequently enough (compared to
enqueue (0)), the ring buffer will never get full.

enqueue (f) ; 7 0

enqueue (g) ; backIdx ¢ |
enqueue (h) ; a

enqueue (1) ; 5 .

dequeue() ; eTd
4 3

Friday, August 19, 2011

dequeue() -- Attempt #3

® Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

® Consider the queue below (initially frontidx = 2 and backidx = 4).

® We can call enqueue and dequeue repeatedly -- the queue will appear
to “‘slide around” the ring buffer.

® As long as dequeue () is called frequently enough (compared to
enqueue (0)), the ring buffer will never get full.

enqueue (f) ; 7 0
enqueue (g) ;
dequeue () ; 6 a |
enqueue (1) ; 5 .
dequeue() ; eTd

4 3

_frontIdx

Friday, August 19, 2011

dequeue() -- Attempt #3

® Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

® Consider the queue below (initially frontidx = 2 and backidx = 4).

® We can call enqueue and dequeue repeatedly -- the queue will appear
to “‘slide around” the ring buffer.

® As long as dequeue () is called frequently enough (compared to
enqueue (0)), the ring buffer will never get full.

enqueue (f) ; 7 0

enqueue (g) ; h

dequeue () ; 6 a |

enqueue (h) ;

dequeue() ; 5 eTd 2
4 3

_frontIdx

Friday, August 19, 2011

dequeue() -- Attempt #3

® Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring

infinite storage.
® Consider the queue below (initially frontidx = 2 and backidx = 4).

® We can call enqueue and dequeue repeatedly -- the queue will appear
to “‘slide around” the ring buffer.

® As long as dequeue () is called frequently enough (compared to
enqueue (0)), the ring buffer will never get full.

enqueue (f) ; 7 0 _Packidx
enqueue (g) ; h |1
dequeue () ; 6 a |
enqueue (h) ;

enqueue (1) ; 5 .

Friday, August 19, 2011

dequeue() -- Attempt #3

® Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

® Consider the queue below (initially frontidx = 2 and backidx = 4).

® We can call enqueue and dequeue repeatedly -- the queue will appear
to “‘slide around” the ring buffer.

® As long as dequeue () is called frequently enough (compared to
enqueue (0)), the ring buffer will never get full.

enqueue (f) ; 7 0 _Packldx
enqueue (g) ; h |1
dequeue () ; 6 a |
enqueue (h) ;
enqueue (1) ; g

. 3 2
dequeue() ; e

4 3

_frontIdx

Friday, August 19, 2011

dequeue() -- Attempt #3

® Using a ring buffer as the underlying storage, a queue can be
implemented so that both enqueue (0) and dequeue () have
time cost O(1).

® The disadvantage compared to a linked list-based
implementation is that the maximum length of the queue
must be known in advance.

® When the queue is “full”’ and the user calls enqueue (0),
then either:

® The queue will block -- hang until some other
program/thread calls dequeue; or

® Throw an exception.

® With linked lists, the queue can grow arbitrarily long.

Friday, August 19, 2011

