
CSE 12:
Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Nine
15 Aug 2011

Friday, August 19, 2011

Stacks.

Friday, August 19, 2011

Review of stacks
• Stacks are a last-in-first-out (LIFO) data structure

designed primarily to store data temporarily.

• Data are always added to/removed from the top of the
stack.

• Stack ADT interface:

interface Stack<T> {
 // Adds the specified object to the top of the stack.
 void push (T o);

 // Removes the top of the stack and returns it.
 T pop () throws NoSuchElementException;

 // Returns the top of the stack without removing it.
 T peek () throws NoSuchElementException;
}

Friday, August 19, 2011

Stack implementations
• A stack can be implemented straightforwardly using

two kinds of backing stores/underlying storage.

• Array

• More efficient for stacks of a fixed maximum
capacity.

• Linked list

• More flexible for stacks with a growable
capacity.

Friday, August 19, 2011

Array-based stacks
• Arrays offer a natural implementation of stacks:

• Use T[] _underlyingStorage to hold elements added to stack.

• Maximum capacity is _underlyingStorage.length

• Keep track of “height” of stack using _numElements instance
variable.

a b c x y z w

0
_numElements - 1

T[] _underlyingStorage;

Bottom Top

...
_stack.push(y);
_stack.push(z);
_stack.push(w);

_numElements: 7

Friday, August 19, 2011

Array-based stacks

• In every call to push(o), e.g., _stack.push(q);

• _numElements is incremented.

• o is stored at index _numElements - 1.

a b c x y z w q

0
_numElements - 1

T[] _underlyingStorage;

Bottom Top

_numElements: 8

Friday, August 19, 2011

Array-based stacks
• In every call to peek():

• The element stored at index _numElements
- 1 is saved to a local variable top.

• top is returned.

a b c x y z w q

0
_numElements - 1

T[] _underlyingStorage;

Bottom Top

_numElements: 8

q
top

Friday, August 19, 2011

Array-based stacks
• In every call to pop():

• The element stored at index _numElements
- 1 is saved to a local variable top.

• _numElements is decremented.

• top is returned.

a b c x y z w q

0
_numElements - 1

T[] _underlyingStorage;

Bottom Top

_numElements: 7

q
top

Friday, August 19, 2011

Exceptions

• If a stack has reached its maximum capacity
(i.e., _numElements ==
_underlyingStorage.length) and the user
calls push(o), then the stack will
overflow.

• If a stack is empty (_numElements == 0)
and the user calls pop(), then the stack will
underflow.

Friday, August 19, 2011

Linked list-based stacks
• A stack can also be implemented using a

linked-list of nodes:

a b c

a

Node Node Node

null
b c

int _numElements: 3

_bottom or
_head

Array-
based stack

Linked list-
based stack

T[] _underlyingStorage

_top or
_tail

Friday, August 19, 2011

Linked list-based stacks
• Each call to push(o) adds a new Node to

the _top of the stack (or _tail of the list),
e.g.:

_stack.push(d);

a

Node Node Node

null
b d

_bottom or
_head

Linked list-
based stack

_top or
_tail

Node

c

Friday, August 19, 2011

Linked list-based stacks

• Each call to peek() simply returns the data
referenced by _top (or _tail):

final T top = _stack.peek(); // d

a

Node Node Node

null
b d

_bottom or
_head

Linked list-
based stack

_top or
_tail

Node

c

Friday, August 19, 2011

Linked list-based stacks
• Each call to pop() removes the Node at the

_top of the stack (or _tail of the list) and
returns the data it referenced, e.g.:

final T top = _stack.pop(); // d

a

Node Node Node

null
b c

_bottom or
_head

Linked list-
based stack

_top or
_tail

Friday, August 19, 2011

Linked list-based stacks
• A linked list-based stack ADT could be

implemented by defining a static inner-class Node
and essentially “re-implementing” the
DoublyLinkedList12 functionality.

• But this would be wasteful -- we already have a
functioning DoublyLinkedList12 ADT.

• We can save time and the possibility of human
error by “adapting” the DoublyLinkedList12
ADT to a Stack ADT.

Friday, August 19, 2011

“Adapter” design pattern

• In software engineering, one of the classic “design
patterns” is the adapter.

• An adapter is a class that “maps” from the interface of
one ADT -- the one we’re trying to implement -- into
the interface of another ADT that already exists.

• If we adapt an ADT B to implement another ADT A,
then every method of A must be “converted” into a
related call of B.

• In particular, we can adapt the List12 ADT
(implemented by DoublyLinkedList12) to satisfy the
Stack ADT interface specification...

Friday, August 19, 2011

Stack as adaptation of
linked list

• How to “map” from Stack ADT to List12 ADT:

• Stack constructor instantiates
_dll = new DoublyLinkedList12<T>();

• push(o) calls _dll.addToBack(o)

• pop() calls _dll.removeBack()

• peek() calls _dll.get(_dll.size() - 1)

Friday, August 19, 2011

Queues.

Friday, August 19, 2011

Queues

• Queues are a first-in-first-out (FIFO) data
structure used typically for temporary data
storage.

• Similarly to a train entering a tunnel, the
first car to enter the tunnel is the first
car to exit the tunnel.

• As with stacks, queues find many uses in
systems programming (programming of the
operating system).

Friday, August 19, 2011

Queues for Interprocess Communication

• One of the classical use-cases for queues is for inter-
process communication (IPC).

• Programs sometimes need to send messages to other
programs in order to get work done.

• E.g., to write anything to the terminal or to a file, a
program must send a message to the operating
system requesting that the specified data be written.

Friday, August 19, 2011

Queues for Interprocess Communication

• IPC can take place between a computer program and
the operating system, or between two computer
programs:

• Examples:

• cat program to operating system: “please take this
message [contents of a particular file] and print it to
the screen.”

• ls program to more program: “please take this
message [contents of a directory] and split it into
convenient page-size chunks.”

Friday, August 19, 2011

• In IPC, it is crucial that the messages be received
in the same order that they are sent.

• E.g., if we send the following messages...
sendMsg(“h”);
sendMsg(“e”);
sendMsg(“l”);
sendMsg(“l”);
sendMsg(“o”);

• ...then we expect “hello” to be received, and not
“lehol”!

• We need messaging to be a FIFO process.

Queues for Interprocess Communication

Friday, August 19, 2011

Queues for Interprocess Communication

• Suppose Program A wishes to send a message to
Program B (perhaps running concurrently).

• One way in which we might conceive of implementing
IPC is for A to call a method of B (“procedure call”).

class A { // Program A
 Program _b;
 void someMethod () {
 _b.pleasePrint(“testing”);
 }
}

class B { // Program B
 void pleasePrint (String msg) {
 ... // Process the request
 }
}

Send message

Friday, August 19, 2011

Queues for Interprocess Communication
• Unfortunately, this “procedure call” from A to B is

problematic:

• What if B is currently doing something else? (Remember
that it’s a separate program.) B might need a long time
before it can process A’s message.

• As a consequence, A’s procedure call will “hang”
execution of A.

class A { // Program A
 Program _b;
 void someMethod () {
 _b.pleasePrint(“testing”);
 }
}

class B { // Program B
 void pleasePrint (String msg) {
 ... // Process the request
 }
}

Send message

Implementing IPC using a procedure call
effectively “couples” programs A and B.

Friday, August 19, 2011

Queues for Interprocess Communication

• Message queues offer a way of “decoupling” the
sending of a message (from A) and the receiving/
processing of a message (in B).

• With message queues, two programs A and B that
wish to communicate can instantiate a message
queue between them.

Queue BackFront Program AProgram B

queueAB = new Queue();

_b._queue = queueAB; _a._queue = queueAB;

Friday, August 19, 2011

Queues for Interprocess Communication

o1

_queue.enqueue(o1);

• Whenever A wishes to send a message M to B, it
enqueues the message onto the queue.

Queue BackFront Program AProgram B

Friday, August 19, 2011

Queues for Interprocess Communication

o1

_queue.enqueue(o1);
_queue.enqueue(o2);

o2

• Whenever A wishes to send a message M to B, it
enqueues the message onto the queue.

Queue BackFront Program AProgram B

Friday, August 19, 2011

Queues for Interprocess Communication

o1 o2 o3

• Whenever A wishes to send a message M to B, it
enqueues the message onto the queue.

Queue BackFront Program AProgram B
_queue.enqueue(o1);

_queue.enqueue(o3);
_queue.enqueue(o2);

Friday, August 19, 2011

Queues for Interprocess Communication

• Whenever B wishes to receive/process a message M
from A, it dequeues a message from the queue.

• In accordance with the FIFO principle, the first
message B dequeues is the first message A had
enqueued.

A queue is sometimes
referred to simply as a FIFO.

Queue BackFront Program AProgram B
o1 o2 o3

Friday, August 19, 2011

Queues for Interprocess Communication

o1
o3o2

• Whenever B wishes to receive/process a message M
from A, it dequeues a message from the queue.

• In accordance with the FIFO principle, the first
message B dequeues is the first message A had
enqueued.

_queue.dequeue(); // o1

Queue BackFront Program AProgram B

Friday, August 19, 2011

Queues for Interprocess Communication

o3

• Whenever B wishes to receive/process a message M
from A, it dequeues a message from the queue.

• In accordance with the FIFO principle, the first
message B dequeues is the first message A had
enqueued.

Queue BackFront Program AProgram B

o2

_queue.dequeue(); // o2

Friday, August 19, 2011

Queues for Interprocess Communication

• Whenever B wishes to receive/process a message M
from A, it dequeues a message from the queue.

• In accordance with the FIFO principle, the first
message B dequeues is the first message A had
enqueued.

Queue BackFront Program AProgram B

o3

_queue.dequeue(); // o3

Friday, August 19, 2011

Queues for Interprocess Communication
• The queue as an “intermediary communication medium”

between A and B allows both programs to operate
independently.

• A can send a message to B without waiting for B to finish
processing it.

• B can process messages from A when it is convenient to
receive them.

class A { // Program A
 Queue _queue;
 void someMethod () {
 _queue.enqueue(
 “print: testing”
);
 }
}

class B { // Program B
 void processQueue () {
 ...
 final String msg =
 _queue.dequeue();
 print(msg);
 }
}

Friday, August 19, 2011

Queue ADT

• The interface for a Queue ADT looks as follows:

interface Queue<T> {
 // Adds o to the back of the queue.
 void enqueue (T o);

 // Removes the object at the front of the
 // queue.
 T dequeue () throws NoSuchElementException;
}

Friday, August 19, 2011

Implementing a queue
• A queue can probably be most easily

conceptualized and implemented as a linked list.

• The head of the list is the front of the queue.

• The tail is the back of the queue.

• Calls to enqueue(o) add a new Node to the back.

• Calls to dequeue() remove a Node (and return its
data) from the front.

o3

Node Node Node

null
o2 o1

_front or
_head

Linked list-
based queue

_back
or

_tail
Friday, August 19, 2011

Adapting a
DoublyLinkedList12

• As with the Stack ADT, the Queue ADT also lends
itself to adapting the existing DoublyLinkedList12
ADT to suit its needs:

• Instantiate _dll = new DoublyLinkedList12<T>();

• Calls to enqueue(o): _dll.addToBack(o);

• Calls to dequeue(): return _dll.removeFront();

Friday, August 19, 2011

Array-based queue
• Like stacks, queues too can be implemented using an

array as the underlying storage.

• However, arriving at at an efficient solution is non-trivial.

• Assume following instance variables:

• T[] _underlyingStorage

• int _frontIdx, _backIdx -- indices into
_underlyingStorage of where the front and back
of the queue are located.

Friday, August 19, 2011

Array-based queue
• enqueue(o): Append to the back of the array:

• This is easy:

_backIdx++;
_underlyingStorage[_backIdx] = o;

o1 o2 o3 o4 o5 o6 o7T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6

Friday, August 19, 2011

Array-based queue
• enqueue(o): Append to the back of the array:

• This is easy:

_backIdx++;
_underlyingStorage[_backIdx] = o;

• Example: _queue.enqueue(o8);

o1 o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6 7

O(1) time cost

Friday, August 19, 2011

Array-based queue
• dequeue(): Remove from the front of the array:

• This is harder -- what happens when we
remove o1?

• There are several ways one can attempt to
implement this method...

o1 o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6 7

Friday, August 19, 2011

dequeue() -- Attempt #1

o1 o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6 7

• One possibility is to “shift down” by 1 the entire
queue after the front has been removed:

final T front = _underlyingStorage[0];
for (int i = _frontIdx+1; i <= _backIdx; i++) {
 _underlyingStorage[i-1] = _underlyingStorage[i];
}
_backIdx--; // The back has “moved up” by 1
return front;

Friday, August 19, 2011

dequeue() -- Attempt #1

o1 o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6 7

• One possibility is to “shift down” by 1 the entire
queue after the front has been removed:

final T front = _underlyingStorage[0];
for (int i = _frontIdx+1; i <= _backIdx; i++) {
 _underlyingStorage[i-1] = _underlyingStorage[i];
}
_backIdx--; // The back has “moved up” by 1
return front;

• Example: _queue.dequeue();

o1
front

Friday, August 19, 2011

dequeue() -- Attempt #1

o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6 7

o1
front

• One possibility is to “shift down” by 1 the entire
queue after the front has been removed:

final T front = _underlyingStorage[0];
for (int i = 1; i < _backIdx; i++) {
 _underlyingStorage[i-1] = _underlyingStorage[i];
}
_backIdx--; // The back has “moved up” by 1
return front;

• Example: _queue.dequeue();

O(n) time cost!

_frontIdx never changes -- always 1!

Friday, August 19, 2011

dequeue() -- Attempt #2
• Another possibility is to allocate a huge array for the

_underlyingStorage, and then just keep advancing
_frontIdx by 1 whenever dequeue() is called.

final T front = _underlyingStorage[_frontIdx];
_frontIdx++;
return front;

o1 o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6 7

front

Friday, August 19, 2011

dequeue() -- Attempt #2
• Another possibility is to allocate a huge array for the

_underlyingStorage, and then just keep advancing
_frontIdx by 1 whenever dequeue() is called.

final T front = _underlyingStorage[_frontIdx];
_frontIdx++;
return front;

• Example: _queue.dequeue();

o1 o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6 7

o1
front

Friday, August 19, 2011

dequeue() -- Attempt #2
• Another possibility is to allocate a huge array for the

_underlyingStorage, and then just keep advancing
_frontIdx by 1 whenever dequeue() is called.

final T front = _underlyingStorage[_frontIdx];
_frontIdx++;
return front;

• Example: _queue.dequeue();

o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6 7

O(1) time cost

Friday, August 19, 2011

• Let’s consider this implementation strategy when
enqueue(o) and dequeue() are called many times...

_queue.enqueue(o9);
_queue.dequeue();
_queue.enqueue(o10);
_queue.dequeue();

...

o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6 7 8 9

dequeue() -- Attempt #2

Friday, August 19, 2011

• Let’s consider this implementation strategy when
enqueue(o) and dequeue() are called many times...

_queue.enqueue(o9);
_queue.dequeue();
_queue.enqueue(o10);
_queue.dequeue();

...

o2 o3 o4 o5 o6 o7 o8 o9T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6 7 8 9

dequeue() -- Attempt #2

Friday, August 19, 2011

• Let’s consider this implementation strategy when
enqueue(o) and dequeue() are called many times...

_queue.enqueue(o9);
_queue.dequeue();
_queue.enqueue(o10);
_queue.dequeue();

...

o2 o3 o4 o5 o6 o7 o8 o9T[] _underlyingStorage;

_frontIdx

0 1 2 3 4 5 6 7

_backIdx

8 9

dequeue() -- Attempt #2

Friday, August 19, 2011

• Let’s consider this implementation strategy when
enqueue(o) and dequeue() are called many times...

_queue.enqueue(o9);
_queue.dequeue();
_queue.enqueue(o10);
_queue.dequeue();

...

o3 o4 o5 o6 o7 o8 o9 o10T[] _underlyingStorage;

_frontIdx

0 1 2 3 4 5 6 7

_backIdx

8 9

dequeue() -- Attempt #2

Friday, August 19, 2011

• Let’s consider this implementation strategy when
enqueue(o) and dequeue() are called many times...

_queue.enqueue(o9);
_queue.dequeue();
_queue.enqueue(o10);
_queue.dequeue();

...

o3 o4 o5 o6 o7 o8 o9 o10T[] _underlyingStorage;

_frontIdx

0 1 2 3 4 5 6 7

_backIdx

8 9

dequeue() -- Attempt #2

Friday, August 19, 2011

• Let’s consider this implementation strategy when
enqueue(o) and dequeue() are called many times...

_queue.enqueue(o9);
_queue.dequeue();
_queue.enqueue(o10);
_queue.dequeue();

o4 o5 o6 o7 o8 o9 o10T[] _underlyingStorage;

_frontIdx

0 1 2 3 4 5 6 7

_backIdx

8 9

dequeue() -- Attempt #2

Friday, August 19, 2011

• This implementation of dequeue() is elegant and
efficient.

• The queue keeps “moving” to the right.

• Even though the length of the queue may be
small, the array would have to be of infinite length
to accommodate the eternal “sliding down”.

o4 o5 o6 o7 o8 o9 o10T[] _underlyingStorage;

_frontIdx

0 1 2 3 4 5 6 7

_backIdx

8 9

dequeue() -- Attempt #2

Friday, August 19, 2011

• Let’s try one more time...

• Let’s assume that the maximum length of the queue is
bounded, i.e., it will never exceed some MAX_LENGTH.

• Note -- in general, MAX_LENGTH and
_underlyingStorage could be different.

• We can simulate an “infinite array” by implementing a
ring buffer.

• In a ring buffer, the back of the array is connected
to the front of the array by “bending the array into
a circle”.

dequeue() -- Attempt #3

Friday, August 19, 2011

• Example: T[] _ringBuffer = (T[]) new Object[8];

• In a ring buffer, the array indices 7 and 0 are adjacent.

• The index “before” 0 is 7.

• The index “after” 7 is 0.

dequeue() -- Attempt #3

a b c d e f g h

0 1 2 3 4 5 6 7

0

1

2

34

5

6

7
a

b

c
de

f

g
h

“Bend” into a circle

Friday, August 19, 2011

• A ring buffer is a convenient programming abstraction.

• With ring buffers, when we wish to “iterate around” the array, we can use an
index variable currentIdx.

• Each time we wish to retrieve the “next” element, we return _ringBuffer
[currentIdx];

• We then must “increment” currentIdx.

• If currentIdx < 7, then: currentIdx++;

• If currentIdx == 7, then: currentIdx = 0;

dequeue() -- Attempt #3

a b c d e f g h

0 1 2 3 4 5 6 7

0

1

2

34

5

6

7
a

b

c
de

f

g
h

“Bend” into a circle

Friday, August 19, 2011

• Similar logic applies to iterating “backwards”:

• Each time we wish to retrieve the “previous” element, we return
_ringBuffer[currentIdx];

• We then must “decrement” currentIdx.

• If currentIdx > 0, then: currentIdx--;

• If currentIdx == 0, then: currentIdx = 7;

dequeue() -- Attempt #3

a b c d e f g h

0 1 2 3 4 5 6 7

0

1

2

34

5

6

7
a

b

c
de

f

g
h

“Bend” into a circle

Friday, August 19, 2011

• Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

• Consider the queue below (initially _frontIdx = 2 and _backIdx = 4).

• We can call enqueue and dequeue repeatedly -- the queue will appear
to “slide around” the ring buffer.

• As long as dequeue() is called frequently enough (compared to
enqueue(o)), the ring buffer will never get full.

dequeue() -- Attempt #3

0

1

2

34

5

6

7

c
de

_frontIdx

_backIdx

enqueue(f);
enqueue(g);
dequeue();
enqueue(h);
enqueue(i);
dequeue();

Friday, August 19, 2011

• Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

• Consider the queue below (initially _frontIdx = 2 and _backIdx = 4).

• We can call enqueue and dequeue repeatedly -- the queue will appear
to “slide around” the ring buffer.

• As long as dequeue() is called frequently enough (compared to
enqueue(o)), the ring buffer will never get full.

dequeue() -- Attempt #3

0

1

2

34

5

6

7

c
de

_frontIdx_backIdx

enqueue(f);
enqueue(g);
dequeue();
enqueue(h);
enqueue(i);
dequeue();

f

Friday, August 19, 2011

• Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

• Consider the queue below (initially _frontIdx = 2 and _backIdx = 4).

• We can call enqueue and dequeue repeatedly -- the queue will appear
to “slide around” the ring buffer.

• As long as dequeue() is called frequently enough (compared to
enqueue(o)), the ring buffer will never get full.

dequeue() -- Attempt #3

0

1

2

34

5

6

7

c
de

_frontIdx

_backIdx

enqueue(f);
enqueue(g);
dequeue();
enqueue(h);
enqueue(i);
dequeue();

f

g

Friday, August 19, 2011

• Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

• Consider the queue below (initially _frontIdx = 2 and _backIdx = 4).

• We can call enqueue and dequeue repeatedly -- the queue will appear
to “slide around” the ring buffer.

• As long as dequeue() is called frequently enough (compared to
enqueue(o)), the ring buffer will never get full.

dequeue() -- Attempt #3

0

1

2

34

5

6

7

c
de

_frontIdx

_backIdx

enqueue(f);
enqueue(g);
dequeue();
enqueue(h);
enqueue(i);
dequeue();

f

g

Friday, August 19, 2011

• Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

• Consider the queue below (initially _frontIdx = 2 and _backIdx = 4).

• We can call enqueue and dequeue repeatedly -- the queue will appear
to “slide around” the ring buffer.

• As long as dequeue() is called frequently enough (compared to
enqueue(o)), the ring buffer will never get full.

dequeue() -- Attempt #3

0

1

2

34

5

6

7

de

_frontIdx

_backIdx
enqueue(f);
enqueue(g);
dequeue();
enqueue(h);
enqueue(i);
dequeue();

f

g
h

Friday, August 19, 2011

• Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

• Consider the queue below (initially _frontIdx = 2 and _backIdx = 4).

• We can call enqueue and dequeue repeatedly -- the queue will appear
to “slide around” the ring buffer.

• As long as dequeue() is called frequently enough (compared to
enqueue(o)), the ring buffer will never get full.

dequeue() -- Attempt #3

0

1

2

34

5

6

7

de

_frontIdx

_backIdx
enqueue(f);
enqueue(g);
dequeue();
enqueue(h);
enqueue(i);
dequeue();

f

g
h i

Friday, August 19, 2011

• Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

• Consider the queue below (initially _frontIdx = 2 and _backIdx = 4).

• We can call enqueue and dequeue repeatedly -- the queue will appear
to “slide around” the ring buffer.

• As long as dequeue() is called frequently enough (compared to
enqueue(o)), the ring buffer will never get full.

dequeue() -- Attempt #3

0

1

2

34

5

6

7

de

_frontIdx

_backIdx
enqueue(f);
enqueue(g);
dequeue();
enqueue(h);
enqueue(i);
dequeue();

f

g
h i

Friday, August 19, 2011

• Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

• Consider the queue below (initially _frontIdx = 2 and _backIdx = 4).

• We can call enqueue and dequeue repeatedly -- the queue will appear
to “slide around” the ring buffer.

• As long as dequeue() is called frequently enough (compared to
enqueue(o)), the ring buffer will never get full.

dequeue() -- Attempt #3

0

1

2

34

5

6

7

e

_frontIdx

_backIdx
enqueue(f);
enqueue(g);
dequeue();
enqueue(h);
enqueue(i);
dequeue();

f

g
h i

Friday, August 19, 2011

• Using a ring buffer as the underlying storage, a queue can be
implemented so that both enqueue(o) and dequeue() have
time cost O(1).

• The disadvantage compared to a linked list-based
implementation is that the maximum length of the queue
must be known in advance.

• When the queue is “full” and the user calls enqueue(o),
then either:

• The queue will block -- hang until some other
program/thread calls dequeue; or

• Throw an exception.

• With linked lists, the queue can grow arbitrarily long.

dequeue() -- Attempt #3

Friday, August 19, 2011

