
CSE 12:
Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Ten
23 July 2012

Monday, July 23, 12

Linear data structures:
asymptotic time costs

• Let’s review the “score card” of the ADTs
we’ve covered so far.

• Let’s consider three fundamental operations:

• void add (T o);

• void remove (T o);

• T find (T o);
Search for an element in the container that
equals o and returns it; if no such object
exists, then returns null.

Monday, July 23, 12

Array-list and linked-list
scorecard

Array-list Linked-list

add(o) O(1) O(1)

find(o) O(n) O(n)

remove(o) O(n) O(n)

Adding is fast.

Finding is slow.

Removing is slow.

Monday, July 23, 12

Array-list and linked-list
scorecard

• There are many occasions where the user will add new
data relatively rarely, but want to find data already in the
data structure relatively frequently.

• In order to improve the asymptotic time cost of the
find(o) and remove(o) operations, we will make use of
order relationships between data elements.

• Once we’ve found an element within a data
structure, it is typically easy for the data structure to
remove it.

Monday, July 23, 12

Why find something?

• It may strike some as odd that an ADT would
support the method T find (T o).

• After all, if the user knows the object o he/she is
looking for, then why call find at all?

• Answer: sometimes the user knows part of the
information about an object o, but does not have
the whole record.

• This illustrates the difference between a record’s
key and its value.

Monday, July 23, 12

Keys and values
• The part of the Student object that the user always knows

is called the key (e.g., student ID number at Student Health).

• The rest of the Student record is called the value.

class Student {
 String _studentID;
 String _firstName, _lastName;
 String _address;

 Student (String studentID) {
 _studentID = studentID;
 }

 Student (String studentID, String firstName, String lastName,
 String address) {
 _studentID = studentID;
 _firstName = firstName;
 _lastName = lastName;
 _address = address;
 }
}

Key

Value

Monday, July 23, 12

Keys and values

• The user may store many Student objects inside a
List12 container, e.g.:
list.add(new Student(“A123”, “Bill”, “Carter”, “123 Main St”));
list.add(new Student(“A213”, “Jimmy”, “Clinton”, “124 Main St”));
...
list.add(new Student(“B092”, “Hillary”, “Nixon”, “125 Main St”));

• Later, the user may wish to find a particular Student
object using just the key, e.g., the student ID:

final Student cse12Student = list.find(new Student(“A123”));

Student initialized
with just the key.

Student containing both
the key and value.

Monday, July 23, 12

Finding a particular key
• Given a request to find a particular key, and given that

keys often have an order relation defined between them,
it seems silly to search through the container as if the
keys were all unrelated.

• Example: Suppose we are searching for the student ID
“C237”. Do we really need to start at the very beginning?

A101 B972 D192
A102 C092 ...
A125 C100
A192 C200
A204 C203
B135 C237
B193 C292

Search
No -- the natural order among keys
imposes structure on the “search
problem” that lets us find a
particular key much more quickly.

Monday, July 23, 12

Binary order relations

• An example of a binary order relationship
is the Java < operator, e.g.:

int a = 3, b = 4;
if (a < b) {
 ...
}

• However, the < operator is only valid on
primitive numeric variables (int, float,
double, etc.).

Monday, July 23, 12

Binary order relations
• More generally, two Java Objects can be compared if

they are Comparable, using the compareTo method:
int compareTo (T o);

• o1.compareTo(o2) is:

• < 0 if o1 is “less than” o2
• == 0 if o1 is “equal to” o2
• > 0 if o1 is “greater than” o2

• Classes that implement the compareTo(o) method
can implement the Comparable<T> interface.

Monday, July 23, 12

Comparable<T>

• Example:

class Student implements Comparable<Student> {
 ...
 int compareTo (T other) {
 return _studentID.compareTo(
 other._studentID
);
 }
}

In this particular case, we can just
delegate to the

String.compareTo(o) method, since
String implements

Comparable<String>.

Monday, July 23, 12

Faster search using
recursion

Monday, July 23, 12

Searching a sorted list
• How will defining this “ordering relation” using

Comparable<T> help us to find a key more quickly?

• Let’s consider a simpler example in which we wish
to find an integer within a sorted list of numbers.

• We will implement a method

int search (int[] numbers, int targetNum,
 int startIdx, int endIdx);

which will search through an array of numbers,
starting at the startIdx and ending at the endIdx,
looking for the targetNum.

Monday, July 23, 12

Searching a sorted list
• Consider the following example:

search(numbers, targetNum, startIdx, endIdx):

where

int targetNum = 79;

int startIdx = 0;
int endIdx = 15;

int[] numbers = {
 16, 26, 31, 40, 43, 45, 51, 55, 58, 67, 69, 73, 79, 87, 88

};

• What is the optimal search strategy given that
numbers is already sorted?

Monday, July 23, 12

Binary search
• The optimal search strategy (minimum time cost) for

a list of sorted elements is binary search.

• The search is binary because we repeatedly divide
the list into 2 pieces.

16, 26, 31, 40, 43, 45, 51, 55, 58, 67, 69, 73, 79, 87, 88

• Search algorithm:
Pick a guessIdx = (startIdx + endIdx) / 2;
if (numbers[guessIdx] == targetNum) {
 return guessIdx;
} else if (numbers[guessIdx] < targetNum) {
 Search the “right half” of the list for targetNum.
} else {
 Search the “left half” of the list for targetNum.
}

Monday, July 23, 12

Binary search

16, 26, 31, 40, 43, 45, 51, 55, 58, 67, 69, 73, 79, 87, 88

• Search algorithm:
Pick a guessIdx = (startIdx + endIdx) / 2;
if (numbers[guessIdx] == targetNum) {
 return guessIdx;
} else if (numbers[guessIdx] < targetNum) {
 Search the “right half” of the list for targetNum.
} else {
 Search the “left half” of the list for targetNum.
}

• Let’s look for targetNum=79.

Monday, July 23, 12

Binary search

16, 26, 31, 40, 43, 45, 51, 55, 58, 67, 69, 73, 79, 87, 88

• Let’s look for targetNum=79.

• Search algorithm:
Pick a guessIdx = (startIdx + endIdx) / 2;
if (numbers[guessIdx] == targetNum) {
 return guessIdx;
} else if (numbers[guessIdx] < targetNum) {
 Search the “right half” of the list for targetNum.
} else {
 Search the “left half” of the list for targetNum.
}

Monday, July 23, 12

Binary search

16, 26, 31, 40, 43, 45, 51, 55, 58, 67, 69, 73, 79, 87, 88

• Let’s look for targetNum=79.

• Search algorithm:
Pick a guessIdx = (startIdx + endIdx) / 2;
if (numbers[guessIdx] == targetNum) {
 return guessIdx;
} else if (numbers[guessIdx] < targetNum) {
 Search the “right half” of the list for targetNum.
} else {
 Search the “left half” of the list for targetNum.
}

Monday, July 23, 12

Binary search

16, 26, 31, 40, 43, 45, 51, 55, 58, 67, 69, 73, 79, 87, 88

• Let’s look for targetNum=79.

• Search algorithm:
Pick a guessIdx = (startIdx + endIdx) / 2;
if (numbers[guessIdx] == targetNum) {
 return guessIdx;
} else if (numbers[guessIdx] < targetNum) {
 Search the “right half” of the list for targetNum.
} else {
 Search the “left half” of the list for targetNum.
}

Monday, July 23, 12

Binary search

16, 26, 31, 40, 43, 45, 51, 55, 58, 67, 69, 73, 79, 87, 88

• Let’s look for targetNum=79.

• Search algorithm:
Pick a guessIdx = (startIdx + endIdx) / 2;
if (numbers[guessIdx] == targetNum) {
 return guessIdx;
} else if (numbers[guessIdx] < targetNum) {
 Search the “right half” of the list for targetNum.
} else {
 Search the “left half” of the list for targetNum.
}

Monday, July 23, 12

Binary search

16, 26, 31, 40, 43, 45, 51, 55, 58, 67, 69, 73, 79, 87, 88

• Let’s look for targetNum=79.

• Search algorithm:
Pick a guessIdx = (startIdx + endIdx) / 2;
if (numbers[guessIdx] == targetNum) {
 return guessIdx;
} else if (numbers[guessIdx] < targetNum) {
 Search the “right half” of the list for targetNum.
} else {
 Search the “left half” of the list for targetNum.
}

Monday, July 23, 12

Binary search

16, 26, 31, 40, 43, 45, 51, 55, 58, 67, 69, 73, 79, 87, 88

Done in 4 guesses!

• Let’s look for targetNum=79.

• Search algorithm:
Pick a guessIdx = (startIdx + endIdx) / 2;
if (numbers[guessIdx] == targetNum) {
 return guessIdx;
} else if (numbers[guessIdx] < targetNum) {
 Search the “right half” of the list for targetNum.
} else {
 Search the “left half” of the list for targetNum.
}

Monday, July 23, 12

Binary search and recursion
• Binary search is a classic example of a recursive algorithm:

• The algorithm makes repeated calls to itself to get its
work done, e.g.:
“Search algorithm:
 ...
 Search the “right half” of the list for targetNum.
”

• Each recursive call operates on a smaller problem than
the original (e.g., it searches only half the list).

• Eventually, the algorithm operates on a trivial input
size (e.g., a list of 1 element) and terminates.

Monday, July 23, 12

Recursive binary search

Base case

Recursive part

• Let’s return to our example of searching through an
array numbers of sorted integers for a particular
targetNum.

• Search algorithm:

// Assume targetNum is always somewhere inside numbers
int search (int[] numbers, int targetNum, int startIdx, int endIdx) {
 int guessIdx = (startIdx + endIdx) / 2;
 if (numbers[guessIdx] == targetNum) {
 return guessIdx;
 } else if (numbers[guessIdx] < targetNum) {
 return search(numbers, targetNum, guessIdx+1, endIdx);
 } else {
 return search(numbers, targetNum, startIdx, guessIdx-1);
 }
}

Monday, July 23, 12

Binary search and recursion
• The worst-case time cost of binary search depends on

how many times the list can be divided in half.

• int length = endIdx - startIdx + 1; // 16

 16
 8
 4
 2
 1

divide in half

divide in half

divide in half

divide in half

Monday, July 23, 12

Binary search and recursion
• The worst-case time cost of binary search depends on

how many times the list can be divided in half.

• int length = endIdx - startIdx + 1; // 16

 16
 8
 4
 2
 1

• If the list has n elements, then binary search has a worst-
case time cost of O(log n).

• Huge improvement over O(n).

divide in half

divide in half

divide in half

divide in half

log216 = 4 times

Monday, July 23, 12

Binary search and objects
• What if we want to execute binary search on a list

of objects?

• This is easy if the objects are Comparable.

• Search algorithm (to find object o):
Pick a guessIdx = (startIdx + endIdx) / 2;
if (objects[guessIdx].compareTo(o) == 0) {
 return guessIdx;
} else if (objects[guessIdx].compareTo(o) < 0) {
 Search the “right half” of the list for targetNum.
} else {
 Search the “left half” of the list for targetNum.
}

Monday, July 23, 12

Binary search and objects
• What if we want to execute binary search on a list

of objects?

• This is easy if the objects are Comparable.

• Search algorithm (to find object o):
Pick a guessIdx = (startIdx + endIdx) / 2;
if (objects[guessIdx].compareTo(o) == 0) {
 return guessIdx;
} else if (objects[guessIdx].compareTo(o) < 0) {
 Search the “right half” of the list for targetNum.
} else {
 Search the “left half” of the list for targetNum.
}

A
lb

er
t

Be
rt

ha

C
he

rr
y

D
or

is

Eg
be

rt

Fr
an

kl
in

G
er

tr
ud

e

H
um

ph
re

y

M
o

N
an

cy

O
liv

er

Pr
is

ci
lla

W
al

ly

X
av

ie
r

Yu
su

f

Z
ac

ha
ry

o=Priscilla

Monday, July 23, 12

Binary search and objects
• What if we want to execute binary search on a list

of objects?

• This is easy if the objects are Comparable.

• Search algorithm (to find object o):
Pick a guessIdx = (startIdx + endIdx) / 2;
if (objects[guessIdx].compareTo(o) == 0) {
 return guessIdx;
} else if (objects[guessIdx].compareTo(o) < 0) {
 Search the “right half” of the list for targetNum.
} else {
 Search the “left half” of the list for targetNum.
}

A
lb

er
t

Be
rt

ha

C
he

rr
y

D
or

is

Eg
be

rt

Fr
an

kl
in

G
er

tr
ud

e

H
um

ph
re

y

M
o

N
an

cy

O
liv

er

Pr
is

ci
lla

W
al

ly

X
av

ie
r

Yu
su

f

Z
ac

ha
ry

o=Priscilla

Monday, July 23, 12

Binary search and objects
• What if we want to execute binary search on a list

of objects?

• This is easy if the objects are Comparable.

• Search algorithm (to find object o):
Pick a guessIdx = (startIdx + endIdx) / 2;
if (objects[guessIdx].compareTo(o) == 0) {
 return guessIdx;
} else if (objects[guessIdx].compareTo(o) < 0) {
 Search the “right half” of the list for targetNum.
} else {
 Search the “left half” of the list for targetNum.
}

A
lb

er
t

Be
rt

ha

C
he

rr
y

D
or

is

Eg
be

rt

Fr
an

kl
in

G
er

tr
ud

e

H
um

ph
re

y

M
o

N
an

cy

O
liv

er

Pr
is

ci
lla

W
al

ly

X
av

ie
r

Yu
su

f

Z
ac

ha
ry

o=Priscilla

Monday, July 23, 12

Binary search and objects
• What if we want to execute binary search on a list

of objects?

• This is easy if the objects are Comparable.

• Search algorithm (to find object o):
Pick a guessIdx = (startIdx + endIdx) / 2;
if (objects[guessIdx].compareTo(o) == 0) {
 return guessIdx;
} else if (objects[guessIdx].compareTo(o) < 0) {
 Search the “right half” of the list for targetNum.
} else {
 Search the “left half” of the list for targetNum.
}

A
lb

er
t

Be
rt

ha

C
he

rr
y

D
or

is

Eg
be

rt

Fr
an

kl
in

G
er

tr
ud

e

H
um

ph
re

y

M
o

N
an

cy

O
liv

er

Pr
is

ci
lla

W
al

ly

X
av

ie
r

Yu
su

f

Z
ac

ha
ry

o=Priscilla

Monday, July 23, 12

Binary search and objects
• What if we want to execute binary search on a list

of objects?

• This is easy if the objects are Comparable.

• Search algorithm (to find object o):
Pick a guessIdx = (startIdx + endIdx) / 2;
if (objects[guessIdx].compareTo(o) == 0) {
 return guessIdx;
} else if (objects[guessIdx].compareTo(o) < 0) {
 Search the “right half” of the list for targetNum.
} else {
 Search the “left half” of the list for targetNum.
}

A
lb

er
t

Be
rt

ha

C
he

rr
y

D
or

is

Eg
be

rt

Fr
an

kl
in

G
er

tr
ud

e

H
um

ph
re

y

M
o

N
an

cy

O
liv

er

Pr
is

ci
lla

W
al

ly

X
av

ie
r

Yu
su

f

Z
ac

ha
ry

o=Priscilla

Done

Monday, July 23, 12

Sorting and recursion

• Recall, however, that binary search requires the
list to have been already sorted.

• How was this accomplished?

• It turns out that the fastest sorting algorithms
are implemented using recursion:

• For instance, the MergeSort algorithm (next
week) successively divides a list of ordered
elements into two halves, sorts them
separately, and then combines the results.

Monday, July 23, 12

Data structures and recursion
• Even though a sorted list of data is useful, what

happens if we want to add more data into the list?
How do we keep the data in sorted order?

• Using a list in these cases will be inefficient.

• More efficient is a tree-based data structure.

• Trees are non-linear data structures because each
element may be adjacent to more than 2 other
elements.

• Trees are recursive data structures -- each “branch”
of a tree forms a “tree” in itself.

Monday, July 23, 12

Binary Trees

Monday, July 23, 12

Trees
• A tree is an interconnected set of nodes that are organized

in a hierarchy.

• There is one node labeled the root of the tree.

• Every node except the root has exactly 1 parent node.

• Each node may have 0 or more child nodes (“children”).

• Cycles are prohibited -- only one path may exist
between any pair of nodes.

• Parents and children are connected by edges.
Root node Empty tree

Example trees
Monday, July 23, 12

Trees

• A node with no children is called a leaf.

• A node with at least one child is called an internal node.

Internal nodes

Leaf nodes

Monday, July 23, 12

Depth, height, and level

• Depth (iterative definition):

• The depth of a node n is the number
of edges between n and the root.

• The root has depth 0.

Depth

0

1

2

Monday, July 23, 12

Depth, height, and level

• Depth (recursive definition):

• The depth of a node n is 0 for the
root; or

• 1 + the depth of n’s parent node.

Base case

Recursive part

Depth

0

1

2

Monday, July 23, 12

Depth, height, and level

• The height of a tree T is the
maximum depth of any
node in the tree.

• Equivalent to length of
longest path from the
root to any leaf.

• A level of the tree consists
of all the nodes at a
particular depth.

Depth

0

1

2
Height

= 2

Level 1

Monday, July 23, 12

Sub-trees
• Each node in a tree is the root of its own sub-tree.

• The gray boxes below show all possible sub-
trees.

Monday, July 23, 12

Binary trees

• A binary tree is a tree in which every node
has at most 2 children.

Examples of binary trees Not a binary tree

Monday, July 23, 12

• A binary tree is complete if every level of the tree
is completely filled except possibly the last and the
last level is (partially) filled from left to right.

Complete

Binary trees

Complete Not complete

Monday, July 23, 12

Binary tree properties

• A binary tree of height h is full if every node at depth
d < h has 2 children.

Examples of full binary trees Not a full binary tree

Monday, July 23, 12

Binary tree properties

• A full binary tree with height h has 2h leaf nodes and
2h+1 -1 nodes in total.

• Conversely, a full binary tree with n nodes total has
height log2(n+1)-1.

Monday, July 23, 12

Binary tree properties
• More generally, a binary tree T (not necessarily full)

with n nodes has:

• Minimum height log2(n+1) -1 (when T is full).

• Maximum height n-1 (when T is just a “chain” of
nodes in which no node has more than 1 child).

• Why important?

• The time cost of important tree operations such as
find(o) depend on the average/maximum height of
an arbitrary node in the tree.

Monday, July 23, 12

Tree nodes

• Like nodes in a linked list, nodes in a tree
contain a data element (otherwise, trees
would be useless for ADTs).

• However, nodes in a tree contain more
than 2 “links” (edges) to other nodes.

• One link to parent node.

• One link to each child node.

Monday, July 23, 12

Node class for general trees
• From this description, we can create a Node

class for use in general trees (not for P3!):

class Node<T> {
 Node<T> _parent; // link to parent node
 Node<T>[] _children; // links to children
 int _numChildren;
 T _data; // data element the node stores
}

• Alternatively, we can used a linked list to manage
the child Nodes:

class Node<T> {
 Node<T> _parent; // link to parent node
 LinkedList<T> _children; // links to children
 T _data; // data element the node stores
}

Monday, July 23, 12

Node class for binary trees
• From binary trees, we can define a Node more simply:

class Node<T> {
 Node<T> _parent;
 Node<T> _leftChild, _rightChild;
 T _data;
}

• We can then begin creating Nodes and assembling a tree:

final Node<String> root = new Node<String>();
root._leftChild = new Node<String>();
root._rightChild = new Node<String>();
root._rightChild._leftChild = new Node<String>();

Defined to be null if child does not exist.

Monday, July 23, 12

Node class for binary trees
• From binary trees, we can define a Node more simply:

class Node<T> {
 Node<T> _parent;
 Node<T> _leftChild, _rightChild;
 T _data;
}

• We can then begin creating Nodes and assembling a tree:

final Node<String> root = new Node<String>();
root._leftChild = new Node<String>();
root._rightChild = new Node<String>();
root._rightChild._leftChild = new Node<String>();

Monday, July 23, 12

Node class for binary trees
• From binary trees, we can define a Node more simply:

class Node<T> {
 Node<T> _parent;
 Node<T> _leftChild, _rightChild;
 T _data;
}

• We can then begin creating Nodes and assembling a tree:

final Node<String> root = new Node<String>();
root._leftChild = new Node<String>();
root._rightChild = new Node<String>();
root._rightChild._leftChild = new Node<String>();

Monday, July 23, 12

Node class for binary trees
• From binary trees, we can define a Node more simply:

class Node<T> {
 Node<T> _parent;
 Node<T> _leftChild, _rightChild;
 T _data;
}

• We can then begin creating Nodes and assembling a tree:

final Node<String> root = new Node<String>();
root._leftChild = new Node<String>();
root._rightChild = new Node<String>();
root._rightChild._leftChild = new Node<String>();

Monday, July 23, 12

Node class for binary trees
• From binary trees, we can define a Node more simply:

class Node<T> {
 Node<T> _parent;
 Node<T> _leftChild, _rightChild;
 T _data;
}

• We can then begin creating Nodes and assembling a tree:

final Node<String> root = new Node<String>();
root._leftChild = new Node<String>();
root._rightChild = new Node<String>();
root._rightChild._leftChild = new Node<String>();

Monday, July 23, 12

Tree operations
• We will consider two fundamental operations:

• add (o, parent, leftOrRight) -- add a new node
(containing the object o) as the leftOrRight child of the
specified parent.

• find (o) -- find and return the Node containing data o.

• Note that these operations will be used internally by ADTs we
develop based on trees.

• This is why we find and return the node instead of the data
contained inside the node.

• They will not be exposed to the user of, say, the Heap ADT,
which is built using a binary tree.

Monday, July 23, 12

Adding a node

• Given the parent node, it is straightforward
to add a new node that is either the left or
right child of the parent:

void add (T o, Node<T> parent,
 boolean isLeftChild) {
 final Node<T> node = new Node<T>();
 node._data = o;
 if (isLeftChild) {
 parent._leftChild = node;
 } else {
 parent._rightChild = node;
 }
}

Monday, July 23, 12

Finding a node
• Finding a node in a binary tree is best implemented

using recursion. We’ll let root represent the root of
the sub-tree we are currently searching.
Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (root._leftChild != null &&
 (node = find(root._leftChild, o)) != null) {
 return node;
 } else if (root._rightChild != null &&
 (node = find(root._rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

a

b c

e

f

Monday, July 23, 12

Finding a node
• Finding a node in a binary tree is best implemented

using recursion. We’ll let root represent the root of
the sub-tree we are currently searching.
Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (root._leftChild != null &&
 (node = find(root._leftChild, o)) != null) {
 return node;
 } else if (root._rightChild != null &&
 (node = find(root._rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

Combined assignment to
node and comparison to null.
This is compact notation, but
it sometimes can also yield
more readable code.

Monday, July 23, 12

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (root._leftChild != null &&
 (node = find(root._leftChild, o)) != null) {
 return node;
 } else if (root._rightChild != null &&
 (node = find(root._rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

a

b c

e

f

root: a

No

Monday, July 23, 12

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (root._leftChild != null &&
 (node = find(root._leftChild, o)) != null) {
 return node;
 } else if (root._rightChild != null &&
 (node = find(root._rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: a
a

b c

e

f

Monday, July 23, 12

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (root._leftChild != null &&
 (node = find(root._leftChild, o)) != null) {
 return node;
 } else if (root._rightChild != null &&
 (node = find(root._rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: b

No

a

b c

e

f

Monday, July 23, 12

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (root._leftChild != null &&
 (node = find(root._leftChild, o)) != null) {
 return node;
 } else if (root._rightChild != null &&
 (node = find(root._rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: b
a

b c

e

f

Monday, July 23, 12

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (root._leftChild != null &&
 (node = find(root._leftChild, o)) != null) {
 return node;
 } else if (root._rightChild != null &&
 (node = find(root._rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: b
a

b c

e

f

Monday, July 23, 12

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (root._leftChild != null &&
 (node = find(root._leftChild, o)) != null) {
 return node;
 } else if (root._rightChild != null &&
 (node = find(root._rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: b
a

b c

e

f

Monday, July 23, 12

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (root._leftChild != null &&
 (node = find(root._leftChild, o)) != null) {
 return node;
 } else if (root._rightChild != null &&
 (node = find(root._rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: a
a

b c

e

f

Monday, July 23, 12

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (root._leftChild != null &&
 (node = find(root._leftChild, o)) != null) {
 return node;
 } else if (root._rightChild != null &&
 (node = find(root._rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: c
a

b c

e

f

No

Monday, July 23, 12

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (root._leftChild != null &&
 (node = find(root._leftChild, o)) != null) {
 return node;
 } else if (root._rightChild != null &&
 (node = find(root._rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: c
a

b c

e

f

Monday, July 23, 12

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (root._leftChild != null &&
 (node = find(root._leftChild, o)) != null) {
 return node;
 } else if (root._rightChild != null &&
 (node = find(root._rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: e
a

b c

e

f

YES!!!!!!!!!!!!!!!!!!!!!!!!!!!

Monday, July 23, 12

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (root._leftChild != null &&
 (node = find(root._leftChild, o)) != null) {
 return node;
 } else if (root._rightChild != null &&
 (node = find(root._rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: e
a

b c

e

f

The returned node will “propagate
back up” the recursive calls.

Monday, July 23, 12

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (root._leftChild != null &&
 (node = find(root._leftChild, o)) != null) {
 return node;
 } else if (root._rightChild != null &&
 (node = find(root._rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: c
a

b c

e

f

Monday, July 23, 12

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (root._leftChild != null &&
 (node = find(root._leftChild, o)) != null) {
 return node;
 } else if (root._rightChild != null &&
 (node = find(root._rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

root: a
a

b c

e

f

Monday, July 23, 12

Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
 if (root._data.equals(o)) {
 return root;
 }
 Node<T> node;
 if (root._leftChild != null &&
 (node = find(root._leftChild, o)) != null) {
 return node;
 } else if (root._rightChild != null &&
 (node = find(root._rightChild, o)) != null) {
 return node;
 } else {
 return null;
 }
}

a

b c

e

f

Done!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!

Monday, July 23, 12

Array-based binary
trees.

Monday, July 23, 12

Array-based binary trees
• Just as lists can be implemented

by either a linked chain of
Nodes or an array, a binary tree
can be implemented as a tree
of Nodes or an array as well.

• Each “node” in the tree will be
assigned a unique index at
which its data should be
stored.

• Given the index of a particular
“node”, the index of its parent,
and the indices of its children,
can be easily computed.

a b c d e f g

0 1 2 3 4 5 6

a

b c

d e f g

Idx 0

Idx 1 Idx 2

Idx 3 Idx 4 Idx 5 Idx 6

Monday, July 23, 12

Array-based binary trees
• The index(n) of a node n with

parent p is:

• 0 if n is the root node.

• 2*index(p)+1 if n is left child of p.

• 2*index(p)+2 if n is right child.

• The parentIndex(idx) of a node
stored at idx is (idx-1)/2.

• Examples:
index(c) = 2*index(a)+2 = 2*0+2 =1
parentIndex(4) = (4-1)/2 = 1.5 = 1.

a b c d e f g

0 1 2 3 4 5 6

a

b c

d e f g

Idx 0

Idx 1 Idx 2

Idx 3 Idx 4 Idx 5 Idx 6

Monday, July 23, 12

Array-based binary trees

• Note that this array-based representation applies
only to complete binary trees.

• A binary tree is complete if every level of the tree
is completely filled except possibly the last and the
last level is (partially) filled from left to right.

OK OK Not OK

Monday, July 23, 12

Array-based binary trees

• Even though the data are
being stored in a regular
Java array, their locations in
the array still encode a tree
structure among them.

• This means that binary
tree-based algorithms we
develop can still offer
time-cost advantages
over linear lists.

a b c d e f g

0 1 2 3 4 5 6

a

b c

d e f g

Idx 0

Idx 1 Idx 2

Idx 3 Idx 4 Idx 5 Idx 6

Monday, July 23, 12

Adding a node

a b c d

0 1 2 3 4 5 6

a

b c

d

Idx 0

Idx 1 Idx 2

Idx 3

_numNodes: 4

• Given that the binary tree must
be complete, it is only valid to add
a node n to be the next child on
the last level of the tree.

• The index into the array of where
this “next child” should be stored
is always just _numNodes, where
_numNodes is the current number
of nodes in the tree.

Monday, July 23, 12

Adding a node

a b c d e

0 1 2 3 4 5 6

a

b c

d e

Idx 0

Idx 1 Idx 2

Idx 3 Idx 4

_numNodes: 5

• Given that the binary tree must
be complete, it is only valid to add
a node n to be the next child on
the last level of the tree.

• The index into the array of where
this “next child” should be stored
is always just _numNodes, where
_numNodes is the current number
of nodes in the tree.

Monday, July 23, 12

Removing a node

• Similarly, it is only valid to
remove the right-most child
of the last level of the tree.

• All we must do is
decrement _numNodes to
indicate that the “slot” in
the array of the removed
node is no longer valid.

a b c d e

0 1 2 3 4 5 6

a

b c

d e

Idx 0

Idx 1 Idx 2

Idx 3 Idx 4

_numNodes: 5

Monday, July 23, 12

Removing a node

• Similarly, it is only valid to
remove the right-most child
of the last level of the tree.

• All we must do is
decrement _numNodes to
indicate that the “slot” in
the array of the removed
node is no longer valid.

a b c d

0 1 2 3 4 5 6

a

b c

d

Idx 0

Idx 1 Idx 2

Idx 3

_numNodes: 4

Monday, July 23, 12

Finding a node
• To find the index of a node n whose data element

equals o:
int find (int rootIdx, T o) {
 if (_nodeArray[rootIdx].equals(o)) {
 return rootIdx;
 }

 int idx;
 if (leftChild(rootIdx) < _numNodes &&
 (idx = find(leftChild(rootIdx), o)) >= 0) {
 return idx;
 } else if (rightChild(rootIdx) < _numNodes &&
 (idx = find(rightChild(rootIdx), o)) >= 0) {
 return idx;
 } else {
 return -1;
 }
}

Make sure each child exists before recursing!

Helper methods to determine
index of left and right child nodes.

Monday, July 23, 12

Binary trees to
accelerate search.

Monday, July 23, 12

Binary trees to
accelerate search

• We have now constructed considerable
“infrastructure” for building binary trees, using
either “linked nodes” or a Java array for the tree’s
underlying storage.

• Trees are useful in their own right for representing
hierarchical structures, e.g., genealogical data.

• However, for the moment we are interested in how
they can store and accelerate search of data on which
an ordering relation is defined.

Monday, July 23, 12

Binary trees to
accelerate search

• Heaps and binary search trees are two ADTs based
on binary trees that accelerate search.

• A heap offers fast access to the largest element in a
collection of related objects.

• O(1) worst-case time cost for findLargest.

• O(log n) worst-case time cost for removeLargest.

• O(log n) worst-case time cost for add.

• O(n) worst-case time-cost for find and remove.

Monday, July 23, 12

Binary trees to
accelerate search

• A binary search tree (BST) offers:

• O(log n) average-case time cost for add, find,
remove, and findLargest.

• O(n) worst-case time cost for add, find, remove, and
findLargest.

• AVL trees and red-black trees are more complicated,
but they offer:

• O(log n) worst-case time cost for add, find, remove,
and findLargest.

Monday, July 23, 12

Why findLargest?
• Why would we want to find the

largest data element stored in a
container?

• The findLargest method is
required by priority queues.

• A priority queue is a queue in
which elements are dequeued
not in FIFO order, but instead
in order of highest-to-lowest
priority.

• A priority queue is typically
implemented using a heap.

Highest
priority person

Taken from Paul Kube’s slides.

Monday, July 23, 12

Heaps.

Monday, July 23, 12

Heaps
• A max-heap is an ADT for storing data so that the largest

element (according to some binary order relation) can
always be found and removed quickly.

• A min-heap is defined analogously for the smallest element.

• Internally, a heap is a complete binary tree which satisfies the
heap condition:

• The root of every sub-tree is no smaller than any node in
the sub-tree. (For max-heap).

• The root of every sub-tree is no larger than any node in
the sub-tree. (For min-heap).

• This ensures that, to implement findLargest/findSmallest,
we can always just return the root node of the tree.

Monday, July 23, 12

Heaps
• A max-heap has the following interface:

// All operations must preserve the heap condition.
interface MaxHeap {
 // Adds o to the heap.
 void add (T o);
 // Removes the node whose data element equals o.
 void remove (T o);
 // Removes and returns the largest node in the heap.
 T removeLargest ();
 // Returns the largest node in the heap.
 T findLargest ();
 // Finds and returns the node whose data element
 // equals o.
 T find (T o);
 // Returns the number of data stored in the heap.
 int size ();
}

Monday, July 23, 12

Implementing heaps

• Since heaps are anyway a complete binary
tree, it is convenient and efficient to
implement them using an array.

• They can also be implemented using
Node objects, but this is awkward.

• The challenge when implementing a heap is
to preserve the heap property upon every
mutation to the heap (add/remove).

Monday, July 23, 12

Adding a node to a heap
• In order to add a new element o to a max-heap while

preserving the heap condition, we execute the following
procedure:

• Add a new node n containing o to the last level of the
tree (ensure completeness of the tree).

• This may violate the tree’s heap condition because o may
be larger than one of its parents.

• We then “fix” the heap by “swapping” node n with its
parent p.

• We repeat this process -- known as bubbling up -- as
many times as necessary until the tree is a heap again.

Monday, July 23, 12

Adding a node to a heap
• Consider the max-heap to the

right. (Notice that it satisfies
the heap condition). 5

4 2

3 1

Monday, July 23, 12

Adding a node to a heap
• Consider the max-heap to the

right. (Notice that it satisfies
the heap condition).

• Suppose we add value 8 to the
bottom-level of the heap.

• The tree no longer satisfies
the heap condition.

5

4 2

3 1 8

2 is smaller than one of the
nodes in its sub-tree!

Monday, July 23, 12

Adding a node to a heap
• Consider the max-heap to the

right. (Notice that it satisfies
the heap condition).

• Suppose we add value 8 to the
bottom-level of the heap.

• The tree no longer satisfies
the heap condition.

• We have to “bubble up” the
8 we just added to restore
the heap condition.

5

4 2

3 1 8

Monday, July 23, 12

Adding a node to a heap
• Consider the max-heap to the

right. (Notice that it satisfies
the heap condition).

• Suppose we add value 8 to the
bottom-level of the heap.

• The tree no longer satisfies
the heap condition.

• We have to “bubble up” the
8 we just added to restore
the heap condition.

5

4

3 1 2

8

Not done yet -- 5 is still
smaller than 8.

Monday, July 23, 12

Adding a node to a heap
• Consider the max-heap to the

right. (Notice that it satisfies
the heap condition).

• Suppose we add value 8 to the
bottom-level of the heap.

• The tree no longer satisfies
the heap condition.

• We have to “bubble up” the
8 we just added to restore
the heap condition.

8

4

3 1 2

5

Now it is a heap again!

Monday, July 23, 12

Adding a node to a heap
• Consider the max-heap to the

right. (Notice that it satisfies
the heap condition).

• Suppose we add value 8 to the
bottom-level of the heap.

• The tree no longer satisfies
the heap condition.

• We have to “bubble up” the
8 we just added to restore
the heap condition.

• Done!

8

4

3 1 2

5

Monday, July 23, 12

Adding a node to a heap

• We can implement the add(o) method as:
void add (T o) {
 _nodeArray[_numNodes] = o;
 _numNodes++;
 bubbleUp(_numNodes - 1);
}

• We must then also implement bubbleUp(idx):
void bubbleUp (int idx) {
 If node at idx is “larger” than its parent:
 Swap data in the node and its parent;
 Recursively bubbleUp(parentIdx(idx));
}

Monday, July 23, 12

Adding a node to a heap

• Alternatively, we can write an iterative version of
bubbleUp(idx):

void bubbleUp (int idx) {
 While node at idx is “larger” than its parent:
 Swap data in the node and its parent;
 Set idx to be parentIdx(idx);
}

Monday, July 23, 12

Next lecture

• Finding and removing elements.

• “Trickling down” a node.

Monday, July 23, 12

