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Linear data structures: 
asymptotic time costs

• Let’s review the “score card” of the ADTs 
we’ve covered so far.

• Let’s consider three fundamental operations:

• void add (T o);

• void remove (T o);

• T find (T o);
Search for an element in the container that 
equals o and returns it; if no such object 
exists, then returns null.

Monday, July 23, 12



Array-list and linked-list 
scorecard

Array-list Linked-list

add(o) O(1) O(1)

find(o) O(n) O(n)

remove(o) O(n) O(n)

Adding is fast.

Finding is slow.

Removing is slow.
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Array-list and linked-list 
scorecard

• There are many occasions where the user will add new 
data relatively rarely, but want to find data already in the 
data structure relatively frequently.

• In order to improve the asymptotic time cost of the 
find(o) and remove(o) operations, we will make use of 
order relationships between data elements.

• Once we’ve found an element within a data 
structure, it is typically easy for the data structure to 
remove it. 
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Why find something?

• It may strike some as odd that an ADT would 
support the method T find (T o).

• After all, if the user knows the object o he/she is 
looking for, then why call find at all?

• Answer: sometimes the user knows part of the 
information about an object o, but does not have 
the whole record.

• This illustrates the difference between a record’s 
key and its value.
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Keys and values
• The part of the Student object that the user always knows 

is called the key (e.g., student ID number at Student Health).

• The rest of the Student record is called the value. 

class Student {
  String _studentID;
  String _firstName, _lastName;
  String _address;

  Student (String studentID) {
    _studentID = studentID;
  }

  Student (String studentID, String firstName, String lastName,
           String address) {
    _studentID = studentID;
    _firstName = firstName;
    _lastName = lastName;
    _address = address;
  }
}

Key

Value
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Keys and values

• The user may store many Student objects inside a 
List12 container, e.g.:
list.add(new Student(“A123”, “Bill”, “Carter”, “123 Main St”));
list.add(new Student(“A213”, “Jimmy”, “Clinton”, “124 Main St”));
...
list.add(new Student(“B092”, “Hillary”, “Nixon”, “125 Main St”));

• Later, the user may wish to find a particular Student 
object using just the key, e.g., the student ID:

final Student cse12Student = list.find(new Student(“A123”));

Student initialized 
with just the key.

Student containing both 
the key and value.
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Finding a particular key
• Given a request to find a particular key, and given that 

keys often have an order relation defined between them, 
it seems silly to search through the container as if the 
keys were all unrelated.

• Example: Suppose we are searching for the student ID 
“C237”. Do we really need to start at the very beginning?

A101 B972 D192
A102 C092 ...
A125 C100
A192 C200
A204 C203
B135 C237
B193 C292

Search
No -- the natural order among keys 
imposes structure on the “search 
problem” that lets us find a 
particular key much more quickly.
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Binary order relations

• An example of a binary order relationship 
is the Java < operator, e.g.:

int  a = 3, b = 4;
if (a < b) {
  ...
}

• However, the < operator is only valid on 
primitive numeric variables (int, float, 
double, etc.).
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Binary order relations
• More generally, two Java Objects can be compared if 

they are Comparable, using the compareTo method:
int compareTo (T o);

• o1.compareTo(o2) is:

• < 0 if o1 is “less than” o2
• == 0 if o1 is “equal to” o2
• > 0 if o1 is “greater than” o2

• Classes that implement the compareTo(o) method 
can implement the Comparable<T> interface.
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Comparable<T>

• Example:

class Student implements Comparable<Student> {
  ...
  int compareTo (T other) {
    return _studentID.compareTo(
      other._studentID
    );
  }
}

In this particular case, we can just 
delegate to the 

String.compareTo(o) method, since 
String implements 

Comparable<String>.
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Faster search using 
recursion
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Searching a sorted list
• How will defining this “ordering relation” using 

Comparable<T> help us to find a key more quickly?

• Let’s consider a simpler example in which we wish 
to find an integer within a sorted list of numbers.

• We will implement a method

int search (int[] numbers, int targetNum,
            int startIdx, int endIdx);

which will search through an array of numbers, 
starting at the startIdx and ending at the endIdx, 
looking for the targetNum.
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Searching a sorted list
• Consider the following example:

search(numbers, targetNum, startIdx, endIdx):

where

int targetNum = 79;

int startIdx = 0;
int endIdx = 15;

int[] numbers = {
  16, 26, 31, 40, 43, 45, 51, 55, 58, 67, 69, 73, 79, 87, 88

};

• What is the optimal search strategy given that 
numbers is already sorted?
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Binary search
• The optimal search strategy (minimum time cost) for 

a list of sorted elements is binary search.

• The search is binary because we repeatedly divide 
the list into 2 pieces.

16, 26, 31, 40, 43, 45, 51, 55, 58, 67, 69, 73, 79, 87, 88

• Search algorithm:
Pick a guessIdx = (startIdx + endIdx) / 2;
if (numbers[guessIdx] == targetNum) {
  return guessIdx;
} else if (numbers[guessIdx] < targetNum) {
  Search the “right half” of the list for targetNum.
} else {
  Search the “left half” of the list for targetNum.
}
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Binary search

16, 26, 31, 40, 43, 45, 51, 55, 58, 67, 69, 73, 79, 87, 88

• Search algorithm:
Pick a guessIdx = (startIdx + endIdx) / 2;
if (numbers[guessIdx] == targetNum) {
  return guessIdx;
} else if (numbers[guessIdx] < targetNum) {
  Search the “right half” of the list for targetNum.
} else {
  Search the “left half” of the list for targetNum.
}

• Let’s look for targetNum=79.
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Binary search

16, 26, 31, 40, 43, 45, 51, 55, 58, 67, 69, 73, 79, 87, 88

Done in 4 guesses! 

• Let’s look for targetNum=79.

• Search algorithm:
Pick a guessIdx = (startIdx + endIdx) / 2;
if (numbers[guessIdx] == targetNum) {
  return guessIdx;
} else if (numbers[guessIdx] < targetNum) {
  Search the “right half” of the list for targetNum.
} else {
  Search the “left half” of the list for targetNum.
}
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Binary search and recursion
• Binary search is a classic example of a recursive algorithm:

• The algorithm makes repeated calls to itself to get its 
work done, e.g.:
“Search algorithm:
  ...
  Search the “right half” of the list for targetNum.
”

• Each recursive call operates on a smaller problem than 
the original (e.g., it searches only half the list).

• Eventually, the algorithm operates on a trivial input 
size (e.g., a list of 1 element) and terminates.
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Recursive binary search

Base case

Recursive part

• Let’s return to our example of searching through an 
array numbers of sorted integers for a particular 
targetNum.

• Search algorithm:

// Assume targetNum is always somewhere inside numbers
int search (int[] numbers, int targetNum, int startIdx, int endIdx) {
  int guessIdx = (startIdx + endIdx) / 2;
  if (numbers[guessIdx] == targetNum) {
    return guessIdx;
  } else if (numbers[guessIdx] < targetNum) {
    return search(numbers, targetNum, guessIdx+1, endIdx);
  } else {
    return search(numbers, targetNum, startIdx, guessIdx-1);
  }
}
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Binary search and recursion
• The worst-case time cost of binary search depends on 

how many times the list can be divided in half.

• int length = endIdx - startIdx + 1;  // 16

    16
    8
    4
    2
    1

divide in half

divide in half

divide in half

divide in half
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Binary search and recursion
• The worst-case time cost of binary search depends on 

how many times the list can be divided in half.

• int length = endIdx - startIdx + 1;  // 16

    16
    8
    4
    2
    1

• If the list has n elements, then binary search has a worst-
case time cost of O(log n).

• Huge improvement over O(n).

divide in half

divide in half

divide in half

divide in half

log216 = 4 times
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Binary search and objects
• What if we want to execute binary search on a list 

of objects?

• This is easy if the objects are Comparable.

• Search algorithm (to find object o):
Pick a guessIdx = (startIdx + endIdx) / 2;
if (objects[guessIdx].compareTo(o) == 0) {
  return guessIdx;
} else if (objects[guessIdx].compareTo(o) < 0) {
  Search the “right half” of the list for targetNum.
} else {
  Search the “left half” of the list for targetNum.
}
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Binary search and objects
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Binary search and objects
• What if we want to execute binary search on a list 

of objects?

• This is easy if the objects are Comparable.

• Search algorithm (to find object o):
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Binary search and objects
• What if we want to execute binary search on a list 

of objects?

• This is easy if the objects are Comparable.

• Search algorithm (to find object o):
Pick a guessIdx = (startIdx + endIdx) / 2;
if (objects[guessIdx].compareTo(o) == 0) {
  return guessIdx;
} else if (objects[guessIdx].compareTo(o) < 0) {
  Search the “right half” of the list for targetNum.
} else {
  Search the “left half” of the list for targetNum.
}
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Sorting and recursion

• Recall, however, that binary search requires the 
list to have been already sorted.

• How was this accomplished?

• It turns out that the fastest sorting algorithms 
are implemented using recursion:

• For instance, the MergeSort algorithm (next 
week) successively divides a list of ordered 
elements into two halves, sorts them 
separately, and then combines the results.
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Data structures and recursion
• Even though a sorted list of data is useful, what 

happens if we want to add more data into the list? 
How do we keep the data in sorted order?

• Using a list in these cases will be inefficient.

• More efficient is a tree-based data structure.

• Trees are non-linear data structures because each 
element may be adjacent to more than 2 other 
elements.

• Trees are recursive data structures -- each “branch” 
of a tree forms a “tree” in itself.
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Binary Trees
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Trees
• A tree is an interconnected set of nodes that are organized 

in a hierarchy.

• There is one node labeled the root of the tree.

• Every node except the root has exactly 1 parent node.

• Each node may have 0 or more child nodes (“children”).

• Cycles are prohibited -- only one path may exist 
between any pair of nodes.

• Parents and children are connected by edges.
Root node Empty tree

Example trees
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Trees

• A node with no children is called a leaf.

• A node with at least one child is called an internal node.

Internal nodes

Leaf nodes
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Depth, height, and level

• Depth (iterative definition):

• The depth of a node n is the number 
of edges between n and the root.

• The root has depth 0.

Depth

0

1

2
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Depth, height, and level

• Depth (recursive definition):

• The depth of a node n is 0 for the 
root; or

• 1 + the depth of n’s parent node.

Base case

Recursive part

Depth

0

1

2
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Depth, height, and level

• The height of a tree T is the 
maximum depth of any 
node in the tree.

• Equivalent to length of 
longest path from the 
root to any leaf.

• A level of the tree consists 
of all the nodes at a 
particular depth.

Depth

0

1

2
Height 

= 2

Level 1
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Sub-trees
• Each node in a tree is the root of its own sub-tree.

• The gray boxes below show all possible sub-
trees.
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Binary trees

• A binary tree is a tree in which every node 
has at most 2 children.

Examples of binary trees Not a binary tree
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• A binary tree is complete if every level of the tree 
is completely filled except possibly the last and the 
last level is (partially) filled from left to right.

Complete

Binary trees

Complete Not complete
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Binary tree properties

• A binary tree of height h is full if every node at depth 
d < h has 2 children.

Examples of full binary trees Not a full binary tree

Monday, July 23, 12



Binary tree properties

• A full binary tree with height h has 2h leaf nodes and 
2h+1 -1 nodes in total.

• Conversely, a full binary tree with n nodes total has 
height log2(n+1)-1.
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Binary tree properties
• More generally, a binary tree T (not necessarily full) 

with n nodes has:

• Minimum height log2(n+1) -1 (when T is full).

• Maximum height n-1 (when T is just a “chain” of 
nodes in which no node has more than 1 child).

• Why important?

• The time cost of important tree operations such as 
find(o) depend on the average/maximum height of 
an arbitrary node in the tree.
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Tree nodes

• Like nodes in a linked list, nodes in a tree 
contain a data element (otherwise, trees 
would be useless for ADTs).

• However, nodes in a tree contain more 
than 2 “links” (edges) to other nodes.

• One link to parent node.

• One link to each child node.
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Node class for general trees
• From this description, we can create a Node 

class for use in general trees (not for P3!):

class Node<T> {
  Node<T> _parent;  // link to parent node
  Node<T>[] _children;  // links to children
  int _numChildren;
  T _data;  // data element the node stores
}

• Alternatively, we can used a linked list to manage 
the child Nodes:

class Node<T> {
  Node<T> _parent;  // link to parent node
  LinkedList<T> _children;  // links to children
  T _data;  // data element the node stores
}
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Node class for binary trees
• From binary trees, we can define a Node more simply:

class Node<T> {
  Node<T> _parent;
  Node<T> _leftChild, _rightChild;
  T _data;
}

• We can then begin creating Nodes and assembling a tree:

final Node<String> root = new Node<String>();
root._leftChild = new Node<String>();
root._rightChild = new Node<String>();
root._rightChild._leftChild = new Node<String>();

Defined to be null if child does not exist.
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Tree operations
• We will consider two fundamental operations:

• add (o, parent, leftOrRight) -- add a new node 
(containing the object o) as the leftOrRight child of the 
specified parent.

• find (o) -- find and return the Node containing data o.

• Note that these operations will be used internally by ADTs we 
develop based on trees.

• This is why we find and return the node instead of the data 
contained inside the node.

• They will not be exposed to the user of, say, the Heap ADT, 
which is built using a binary tree.
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Adding a node

• Given the parent node, it is straightforward 
to add a new node that is either the left or 
right child of the parent:

void add (T o, Node<T> parent,
          boolean isLeftChild) {
  final Node<T> node = new Node<T>();
  node._data = o;
  if (isLeftChild) {
    parent._leftChild = node;
  } else {
    parent._rightChild = node;
  }
}
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Finding a node
• Finding a node in a binary tree is best implemented 

using recursion. We’ll let root represent the root of 
the sub-tree we are currently searching.
Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (root._leftChild != null &&
      (node = find(root._leftChild, o)) != null) {
    return node;
  } else if (root._rightChild != null &&
      (node = find(root._rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

a

b c

e

f
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Finding a node
• Finding a node in a binary tree is best implemented 

using recursion. We’ll let root represent the root of 
the sub-tree we are currently searching.
Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (root._leftChild != null &&
      (node = find(root._leftChild, o)) != null) {
    return node;
  } else if (root._rightChild != null &&
      (node = find(root._rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

Combined assignment to 
node and comparison to null. 
This is compact notation, but 
it sometimes can also yield 
more readable code.
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (root._leftChild != null &&
      (node = find(root._leftChild, o)) != null) {
    return node;
  } else if (root._rightChild != null &&
      (node = find(root._rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

a

b c

e

f

root: a

No
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (root._leftChild != null &&
      (node = find(root._leftChild, o)) != null) {
    return node;
  } else if (root._rightChild != null &&
      (node = find(root._rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: a
a

b c

e

f
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (root._leftChild != null &&
      (node = find(root._leftChild, o)) != null) {
    return node;
  } else if (root._rightChild != null &&
      (node = find(root._rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: b

No

a

b c

e

f
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (root._leftChild != null &&
      (node = find(root._leftChild, o)) != null) {
    return node;
  } else if (root._rightChild != null &&
      (node = find(root._rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: b
a

b c

e

f
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (root._leftChild != null &&
      (node = find(root._leftChild, o)) != null) {
    return node;
  } else if (root._rightChild != null &&
      (node = find(root._rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: b
a

b c

e

f
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (root._leftChild != null &&
      (node = find(root._leftChild, o)) != null) {
    return node;
  } else if (root._rightChild != null &&
      (node = find(root._rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: b
a

b c

e

f
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (root._leftChild != null &&
      (node = find(root._leftChild, o)) != null) {
    return node;
  } else if (root._rightChild != null &&
      (node = find(root._rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: a
a

b c

e

f
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (root._leftChild != null &&
      (node = find(root._leftChild, o)) != null) {
    return node;
  } else if (root._rightChild != null &&
      (node = find(root._rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: c
a

b c

e

f

No
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (root._leftChild != null &&
      (node = find(root._leftChild, o)) != null) {
    return node;
  } else if (root._rightChild != null &&
      (node = find(root._rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: c
a

b c

e

f
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (root._leftChild != null &&
      (node = find(root._leftChild, o)) != null) {
    return node;
  } else if (root._rightChild != null &&
      (node = find(root._rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: e
a

b c

e

f

YES!!!!!!!!!!!!!!!!!!!!!!!!!!!

Monday, July 23, 12



Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (root._leftChild != null &&
      (node = find(root._leftChild, o)) != null) {
    return node;
  } else if (root._rightChild != null &&
      (node = find(root._rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: e
a

b c

e

f

The returned node will “propagate 
back up” the recursive calls.

Monday, July 23, 12



Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (root._leftChild != null &&
      (node = find(root._leftChild, o)) != null) {
    return node;
  } else if (root._rightChild != null &&
      (node = find(root._rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: c
a

b c

e

f
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (root._leftChild != null &&
      (node = find(root._leftChild, o)) != null) {
    return node;
  } else if (root._rightChild != null &&
      (node = find(root._rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

root: a
a

b c

e

f
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Finding a node
• Watch how the method works for find(a, “e”):

Node<T> find (Node<T> root, T o) {
  if (root._data.equals(o)) {
    return root;
  }
  Node<T> node;
  if (root._leftChild != null &&
      (node = find(root._leftChild, o)) != null) {
    return node;
  } else if (root._rightChild != null &&
      (node = find(root._rightChild, o)) != null) {
    return node;
  } else {
    return null;
  }
}

a

b c

e

f

Done!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
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Array-based binary 
trees.
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Array-based binary trees
• Just as lists can be implemented 

by either a linked chain of 
Nodes or an array, a binary tree 
can be implemented as a tree 
of Nodes or an array as well.

• Each “node” in the tree will be 
assigned a unique index at 
which its data should be 
stored.

• Given the index of a particular 
“node”, the index of its parent, 
and the indices of its children, 
can be easily computed.

a b c d e f g

0 1 2 3 4 5 6

a

b c

d e f g

Idx 0

Idx 1 Idx 2

Idx 3 Idx 4 Idx 5 Idx 6
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Array-based binary trees
• The index(n) of a node n with 

parent p is:

• 0 if n is the root node.

• 2*index(p)+1 if n is left child of p.

• 2*index(p)+2 if n is right child.

• The parentIndex(idx) of a node 
stored at idx is (idx-1)/2.

• Examples:
index(c) = 2*index(a)+2 = 2*0+2 =1
parentIndex(4) = (4-1)/2 = 1.5 = 1.

a b c d e f g

0 1 2 3 4 5 6

a

b c

d e f g

Idx 0

Idx 1 Idx 2

Idx 3 Idx 4 Idx 5 Idx 6
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Array-based binary trees

• Note that this array-based representation applies 
only to complete binary trees.

• A binary tree is complete if every level of the tree 
is completely filled except possibly the last and the 
last level is (partially) filled from left to right.

OK OK Not OK

Monday, July 23, 12



Array-based binary trees

• Even though the data are 
being stored in a regular 
Java array, their locations in 
the array still encode a tree 
structure among them.

• This means that binary 
tree-based algorithms we 
develop can still offer 
time-cost advantages 
over linear lists.

a b c d e f g

0 1 2 3 4 5 6

a

b c

d e f g

Idx 0

Idx 1 Idx 2

Idx 3 Idx 4 Idx 5 Idx 6

Monday, July 23, 12



Adding a node

a b c d

0 1 2 3 4 5 6

a

b c

d

Idx 0

Idx 1 Idx 2

Idx 3

_numNodes: 4

• Given that the binary tree must 
be complete, it is only valid to add 
a node n to be the next child on 
the last level of the tree.

• The index into the array of where 
this “next child” should be stored 
is always just _numNodes, where 
_numNodes is the current number 
of nodes in the tree.
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Adding a node

a b c d e

0 1 2 3 4 5 6

a

b c

d e

Idx 0

Idx 1 Idx 2

Idx 3 Idx 4

_numNodes: 5

• Given that the binary tree must 
be complete, it is only valid to add 
a node n to be the next child on 
the last level of the tree.

• The index into the array of where 
this “next child” should be stored 
is always just _numNodes, where 
_numNodes is the current number 
of nodes in the tree.
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Removing a node

• Similarly, it is only valid to 
remove the right-most child 
of the last level of the tree.

• All we must do is 
decrement _numNodes to 
indicate that the “slot” in 
the array of the removed 
node is no longer valid.

a b c d e

0 1 2 3 4 5 6

a

b c

d e

Idx 0

Idx 1 Idx 2

Idx 3 Idx 4

_numNodes: 5
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Removing a node

• Similarly, it is only valid to 
remove the right-most child 
of the last level of the tree.

• All we must do is 
decrement _numNodes to 
indicate that the “slot” in 
the array of the removed 
node is no longer valid.

a b c d

0 1 2 3 4 5 6

a

b c

d

Idx 0

Idx 1 Idx 2

Idx 3

_numNodes: 4
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Finding a node
• To find the index of a node n whose data element 

equals o:
int find (int rootIdx, T o) {
  if (_nodeArray[rootIdx].equals(o)) {
    return rootIdx;
  }

  int idx;
  if (leftChild(rootIdx) < _numNodes &&
      (idx = find(leftChild(rootIdx), o)) >= 0) {
    return idx;
  } else if (rightChild(rootIdx) < _numNodes &&
      (idx = find(rightChild(rootIdx), o)) >= 0) {
    return idx;
  } else {
    return -1;
  }
}

Make sure each child exists before recursing!

Helper methods to determine 
index of left and right child nodes.
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Binary trees to 
accelerate search.
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Binary trees to 
accelerate search

• We have now constructed considerable 
“infrastructure” for building binary trees, using 
either “linked nodes” or a Java array for the tree’s 
underlying storage.

• Trees are useful in their own right for representing 
hierarchical structures, e.g., genealogical data.

• However, for the moment we are interested in how 
they can store and accelerate search of data on which 
an ordering relation is defined. 
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Binary trees to 
accelerate search

• Heaps and binary search trees are two ADTs based 
on binary trees that accelerate search.

• A heap offers fast access to the largest element in a 
collection of related objects.

• O(1) worst-case time cost for findLargest.

• O(log n) worst-case time cost for removeLargest.

• O(log n) worst-case time cost for add.

• O(n) worst-case time-cost for find and remove.
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Binary trees to 
accelerate search

• A binary search tree (BST) offers:

• O(log n) average-case time cost for add, find, 
remove, and findLargest.

• O(n) worst-case time cost for add, find, remove, and 
findLargest.

• AVL trees and red-black trees are more complicated, 
but they offer:

• O(log n) worst-case time cost for add, find, remove, 
and findLargest.
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Why findLargest?
• Why would we want to find the 

largest data element stored in a 
container?

• The findLargest method is 
required by priority queues.

• A priority queue is a queue in 
which elements are dequeued 
not in FIFO order, but instead 
in order of highest-to-lowest 
priority.

• A priority queue is typically 
implemented using a heap.

Highest 
priority person

Taken from Paul Kube’s slides.
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Heaps.
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Heaps
• A max-heap is an ADT for storing data so that the largest 

element (according to some binary order relation) can 
always be found and removed quickly.

• A min-heap is defined analogously for the smallest element.

• Internally, a heap is a complete binary tree which satisfies the 
heap condition:

• The root of every sub-tree is no smaller than any node in 
the sub-tree. (For max-heap).

• The root of every sub-tree is no larger than any node in 
the sub-tree. (For min-heap).

• This ensures that, to implement findLargest/findSmallest,
we can always just return the root node of the tree.
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Heaps
• A max-heap has the following interface:

// All operations must preserve the heap condition.
interface MaxHeap {
  // Adds o to the heap.
  void add (T o);
  // Removes the node whose data element equals o.
  void remove (T o);
  // Removes and returns the largest node in the heap.
  T removeLargest ();
  // Returns the largest node in the heap.
  T findLargest ();
  // Finds and returns the node whose data element
  // equals o.
  T find (T o);
  // Returns the number of data stored in the heap.
  int size ();
}
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Implementing heaps

• Since heaps are anyway a complete binary 
tree, it is convenient and efficient to 
implement them using an array.

• They can also be implemented using 
Node objects, but this is awkward.

• The challenge when implementing a heap is 
to preserve the heap property upon every 
mutation to the heap (add/remove).
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Adding a node to a heap
• In order to add a new element o to a max-heap while 

preserving the heap condition, we execute the following 
procedure:

• Add a new node n containing o to the last level of the 
tree (ensure completeness of the tree).

• This may violate the tree’s heap condition because o may 
be larger than one of its parents.

• We then “fix” the heap by “swapping” node n with its 
parent p.

• We repeat this process -- known as bubbling up -- as 
many times as necessary until the tree is a heap again.
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Adding a node to a heap
• Consider the max-heap to the 

right. (Notice that it satisfies 
the heap condition). 5

4 2

3 1
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Adding a node to a heap
• Consider the max-heap to the 

right. (Notice that it satisfies 
the heap condition).

• Suppose we add value 8 to the 
bottom-level of the heap.

• The tree no longer satisfies 
the heap condition.

5

4 2

3 1 8

2 is smaller than one of the 
nodes in its sub-tree!
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Adding a node to a heap
• Consider the max-heap to the 

right. (Notice that it satisfies 
the heap condition).

• Suppose we add value 8 to the 
bottom-level of the heap.

• The tree no longer satisfies 
the heap condition.

• We have to “bubble up” the 
8 we just added to restore 
the heap condition.

5

4 2

3 1 8
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Adding a node to a heap
• Consider the max-heap to the 

right. (Notice that it satisfies 
the heap condition).

• Suppose we add value 8 to the 
bottom-level of the heap.

• The tree no longer satisfies 
the heap condition.

• We have to “bubble up” the 
8 we just added to restore 
the heap condition.

5

4

3 1 2

8

Not done yet -- 5 is still 
smaller than 8.
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Adding a node to a heap
• Consider the max-heap to the 

right. (Notice that it satisfies 
the heap condition).

• Suppose we add value 8 to the 
bottom-level of the heap.

• The tree no longer satisfies 
the heap condition.

• We have to “bubble up” the 
8 we just added to restore 
the heap condition.

8

4

3 1 2

5

Now it is a heap again!
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Adding a node to a heap
• Consider the max-heap to the 

right. (Notice that it satisfies 
the heap condition).

• Suppose we add value 8 to the 
bottom-level of the heap.

• The tree no longer satisfies 
the heap condition.

• We have to “bubble up” the 
8 we just added to restore 
the heap condition.

• Done!

8

4

3 1 2

5
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Adding a node to a heap

• We can implement the add(o) method as:
void add (T o) {
  _nodeArray[_numNodes] = o;
  _numNodes++;
  bubbleUp(_numNodes - 1);
}

• We must then also implement bubbleUp(idx):
void bubbleUp (int idx) {
  If node at idx is “larger” than its parent:
    Swap data in the node and its parent;
    Recursively bubbleUp(parentIdx(idx));
}
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Adding a node to a heap

• Alternatively, we can write an iterative version of 
bubbleUp(idx):

void bubbleUp (int idx) {
  While node at idx is “larger” than its parent:
    Swap data in the node and its parent;
    Set idx to be parentIdx(idx);
}
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Next lecture

• Finding and removing elements.

• “Trickling down” a node.
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