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Heaps, continued.
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Review from last lecture
• A heap is a complete binary tree whose last 

level of nodes is filled left-to-right and which 
satisfies the heap condition.

• Heap condition:

• The root of every sub-tree is no smaller than 
any node in the sub-tree. (For max-heap).

• The heap condition ensures that the largest 
element is always stored at the root:

• O(1) time-cost for findLargest

• O(log n) time-cost for removeLargest
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Adding to a heap

5

4 2

3 1

• To add a new object o to the heap:

• Create a new node n containing o, 
and add n to the last level of the 
tree (at the left-most position).

• This may violate the heap 
condition.

• Repeatedly “bubble up” n towards 
the root whenever n > parent(n).
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Adding to a heap

8

4 5

3 1 2

• To add a new object o to the heap:

• Create a new node n containing o, 
and add n to the last level of the 
tree (at the left-most position).

• This may violate the heap 
condition.

• Repeatedly “bubble up” n towards 
the root whenever n > parent(n).

The tree is now a valid 
heap again.
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Removing the largest 
element from a heap

• The largest element is always stored at the top of the heap.

• Hence, just remove the root.

• We must then replace it with something.

• Remove the last node n in the heap (right-most child of 
last level) and make it the new root of the tree.

• This may violate the heap condition.

• We will then have to recursively swap n with one of 
its children (i.e., back down the tree) until the heap 
condition is restored. This is called “trickling down”.
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Removing the largest 
element from a heap

void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  If node at index is less than one of its children:
    Swap node with the largest child node.
    trickleDown(largestChild(index));
}

or
void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the largest child node.
    index = largestChild(index);
}

Iterative 
implementation

Recursive 
implementation
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Removing the largest 
element from a heap

5 3
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void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the largest child node.
    index = largestChild(index);
}

2
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  _nodeArray[0] = _nodeArray[_numNodes - 1];
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Removing the largest 
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void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the largest child node.
    index = largestChild(index);
}
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Removing the largest 
element from a heap
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void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the largest child node.
    index = largestChild(index);
}

True
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Removing the largest 
element from a heap
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void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the largest child node.
    index = largestChild(index);
}
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void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the largest child node.
    index = largestChild(index);
}
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Removing the largest 
element from a heap
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void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the largest child node.
    index = largestChild(index);
}

True

Wednesday, July 25, 12



Removing the largest 
element from a heap

4 3

3 2

5

void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the largest child node.
    index = largestChild(index);
}

It’s crucial we swap with 
the larger child to maintain 

the heap condition.
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Removing the largest 
element from a heap
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void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the largest child node.
    index = largestChild(index);
}
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Removing the largest 
element from a heap
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void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the largest child node.
    index = largestChild(index);
}

False
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Removing the largest 
element from a heap
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5

void removeLargest () {
  _nodeArray[0] = _nodeArray[_numNodes - 1];
  _numNodes--;
  trickleDown(0);
}

void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the largest child node.
    index = largestChild(index);
}

Done.
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Finding an arbitrary node

• Heaps offer fast access to the largest node in the heap.

• However, despite their binary tree representation, they 
offer no advantage over simple lists in terms of finding 
an arbitrary element.

• If the element o that the user wishes to find is not 
the largest, then o could be anywhere in the heap.

• This contrasts with binary search trees (more later).

• Hence, to find an object o within a heap, we must 
search through the entire heap.
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Finding an arbitrary node
public T find (T o) {
  final int index = findNode(0, o);
  if (index < 0) {
    throw new NoSuchElementException();
  }
  return _nodeArray[index];
}

private int findNode (int rootIdx, T o) {
  if (_nodeArray[rootIdx].equals(o)) {
    return rootIdx;
  }

  int idx;
  if (leftChild(rootIdx) < _numNodes &&
      (idx = find(leftChild(rootIdx), o)) >= 0) {
    return idx;
  } else if (rightChild(rootIdx) < _numNodes &&
      (idx = find(rightChild(rootIdx), o)) >= 0) {
    return idx;
  } else {
    return -1;
  }
}

We could implement findNode 
by recursively searching 
through the entire tree.
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Finding an arbitrary node

int findNode (T o) {
  for (int i = 0; i < _numNodes; i++) {
    if (_nodeArray[i].equals(o)) {
      return i;
    }
  }
}

But this is much easier (and slightly faster too).

• This is one of the conveniences of 
representing the tree as an array.

• Only possible for complete trees in 
which there are no “holes” in the 
array (i.e., missing child nodes).
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Removing an arbitrary node

• Removing an arbitrary node requires that we first 
find the node n to be removed.

• We can use the findNode(o) method we just 
constructed.

• Once found, we can swap the last node in the heap 
(right-most child of last level) with n.

• Then we just trickleDown that node and we’re 
done, right?
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Removing an arbitrary node

Wrong.

• Removing an arbitrary node requires that we first 
find the node n to be removed.

• We can use the findNode(o) method we just 
constructed.

• Once found, we can swap the last node in the heap 
(right-most child of last level) with n.

• Then we just trickleDown that node and we’re 
done, right?
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Removing an arbitrary node
• The above procedure worked for removeLargest() 

because we always started from the top (root) of 
the heap.

• By trickling down from the top, we guarantee that 
every sub-tree (starting from the very top) is a 
valid heap.

• When removing an arbitrary node, the trickleDown 
process will “fix” the sub-tree rooted at n, but not 
necessarily the whole tree.

• What’s an example heap in which this problem 
would arise?
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Removing an arbitrary node

5 8

4 1

9

7 8

3 6...

• Suppose we wish to remove the node containing 4.

• If we just replace it with the “last” node (6)...

Valid heap.
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Removing an arbitrary node

5 8

6 1

9

7 8

3 ...

• ...then the trickleDown() method will do nothing (6 
is already bigger than its children).

• Moreover, 6 is now bigger than its parent -- a violation 
of the heap condition.

Invalid heap.
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Removing an arbitrary node
• In a correct implementation of remove(o) for 

arbitrary o, we need to sometimes bubbleUp and 
sometimes trickleDown:

void remove (T o) {
  Find the node n containing o.
  Replace n with the “last” node l in the heap.
  If l < n:
    trickleDown on n.
  Else:
    bubbleUp on n.
}
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Removing an arbitrary node
• In a correct implementation of remove(o) for 

arbitrary o, we need to sometimes bubbleUp and 
sometimes trickleDown:

void remove (T o) {
  Find the node n containing o.
  Replace n with the “last” node l in the heap.
  If l < n:
    trickleDown on n.
  Else:
    bubbleUp on n.
}

5 8

4 1

9

7 8

3 6...

Valid heap.n

l
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Removing an arbitrary node
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Removing an arbitrary node
• In a correct implementation of remove(o) for 

arbitrary o, we need to sometimes bubbleUp and 
sometimes trickleDown:

void remove (T o) {
  Find the node n containing o.
  Replace n with the “last” node l in the heap.
  If l < n:  // n was 4, l is 6
    trickleDown on n.
  Else:
    bubbleUp on n.
}

6 8

5 1

9

7 8

3 ...

Valid heap 
again.
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Heap operations: time costs
• The implementations for the add/find/removeLargest/remove 

methods depend on the methods bubbleUp and trickleDown.

• void bubbleUp (int idx) {
  While node at idx is “larger” than its parent:
    Swap data in the node and its parent;
    Set idx to be parentIdx(idx);
}

• At each loop iteration, idx moves one step closer from a 
leaf to the root of the heap.

• Hence, loop can execute maximum of h times (h is tree 
height). For heap of n nodes, h is log2(n).

• Inside loop, the time cost is about 2 operations.

• Hence, time cost is O(log n).
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Heap operations: time costs

• void trickleDown (int index) {
  While node at index is less than one of its children:
    Swap node with the larger child node.
    index = largerChild(index);
}

• At each loop iteration, idx moves one step closer from the 
root of the heap to a leaf.

• Hence, number of iterations is bounded by h = log2(n).

• Inside loop, the time cost is about 2 operations.

• Hence, time cost is O(log n).
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Heap operations: time costs
• Given the time costs of bubbleUp and 

trickleDown, we can compute the worst-case time 
costs of the fundamental heap operations:

• add(o): O(1)+O(log n) = O(log n)

• Append a new node to the heap. O(1)

• Bubble it up. O(log n)

• removeLargest(): O(1)+O(log n) = O(log n)

• Swap last node with root. O(1)

• Trickle root down. O(log n)
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Heap operations: time costs

• find(o): O(n)

• Search through all nodes. O(n)

• remove(): O(n)+O(1)+O(log n) = O(n)

• Find the node. O(n)

• Swap node-to-remove with root. O(1)

• Either trickle node down or bubble it up. O(log n)
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General heaps
• We have just described the minimal implementation 

of a binary heap.

• Binary heaps are the most common.

• In theory, however, any tree can be a heap as long as 
it satisfies the heap condition that the root of every 
sub-tree is no smaller than any node in the sub-
tree.

• In particular, we can define a d-ary tree in which 
each node has d child nodes (instead of always 2).
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d-ary heaps

5 1

9

7 8

...
...

4 6

6

-2

...
...

3-ary 
(ternary) 

heap

4-ary 
(quaternary) 

heap

2 3

7

1

d-ary 
heap

...

...

...

d children

d children
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d-ary heaps: Why?
• d-ary heaps can offer a time cost savings compared 

to binary heaps.

• Consider:

• The height h of a binary heap is at most log2(n).

• The height h of a ternary heap is at most log3(n).

• The height h of a d-ary heap is at most logd(n).

• As the base of the logarithm (d) gets larger, the value 
of the logarithm itself grows smaller.

• Hence, for larger d, operations that depend on the 
height of the tree will become faster.
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d-ary heaps: Why?
• On the other hand, as d increases, so does the number of 

children per node.

• The time cost of trickleDown (but not bubbleUp) is 
affected by the number of children:
void trickleDown (int index) {
  While node at index is less than one of its children:
    ...
}

• Each loop iteration implicitly requires a comparison to all 
d children.

• The loop runs for at most h iterations (h = logd n), and 
each iteration takes at least d operations.

• Hence, time cost for trickleDown is O(hd) = O(d logd n).
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bubbleUp: O(logd n)

bubbleUp is faster 
when d is large.
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trickleDown: O(d logd n)

trickleDown is faster 
when d is small.
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trickleDown versus 
bubbleUp

• In scenarios where bubbleUp is called more frequently 
than trickleDown, better time costs can be achieved 
using a larger value of d.

• Such scenarios can happen with priority queues when the 
user changes the priority of the data while they are still in 
the heap.
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Increasing/decreasing 
priority

• Example:
heap.add(o1);  // Priority 7
heap.add(o2);  // Priority 6
...
heap.add(o7);  // Priority 6 6 8

6 1

9

7 8

o2

o4

o3

o6o1o5o7
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Increasing/decreasing 
priority

• Example:
heap.add(o1);  // Priority 7
heap.add(o2);  // Priority 6
...
heap.add(o7);  // Priority 6

• Later on:
heap.increasePriority(o7);

6 8

7 1

9

7 8

o2

o4

o3

o6o1o5o7

Now we need to 
bubbleUp o7.
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Increasing/decreasing 
priority

• Example:
heap.add(o1);  // Priority 7
heap.add(o2);  // Priority 6
...
heap.add(o7);  // Priority 6

• Later on:
heap.increasePriority(o7);

7 8

6 1

9

7 8

o2

o4

o3

o6o1o5o7

Done.
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trickleDown versus 
bubbleUp

• Increasing the priority of an item requires bubbleUp to be 
called to maintain the heap condition.

• Decreasing the priority of an item requires trickleDown to be 
called to maintain the heap condition.

• In some applications, the user may want to increase the priority 
of items more frequently than they will decrease their priority.

• In this case, bubbleUp will be called more frequently than 
trickleDown.

• By using a d-ary heap and setting d>2, the time cost of the 
priority queue may be reduced compared to a binary heap.
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