
CSE 12:
Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Eleven
24 July 2012

Wednesday, July 25, 12

Heaps, continued.

Wednesday, July 25, 12

Review from last lecture
• A heap is a complete binary tree whose last

level of nodes is filled left-to-right and which
satisfies the heap condition.

• Heap condition:

• The root of every sub-tree is no smaller than
any node in the sub-tree. (For max-heap).

• The heap condition ensures that the largest
element is always stored at the root:

• O(1) time-cost for findLargest

• O(log n) time-cost for removeLargest
Wednesday, July 25, 12

Adding to a heap

5

4 2

3 1

• To add a new object o to the heap:

• Create a new node n containing o,
and add n to the last level of the
tree (at the left-most position).

• This may violate the heap
condition.

• Repeatedly “bubble up” n towards
the root whenever n > parent(n).

Wednesday, July 25, 12

Adding to a heap

5

4 2

3 1

• To add a new object o to the heap:

• Create a new node n containing o,
and add n to the last level of the
tree (at the left-most position).

• This may violate the heap
condition.

• Repeatedly “bubble up” n towards
the root whenever n > parent(n).

8

Wednesday, July 25, 12

Adding to a heap

5

4 2

3 1 8

• To add a new object o to the heap:

• Create a new node n containing o,
and add n to the last level of the
tree (at the left-most position).

• This may violate the heap
condition.

• Repeatedly “bubble up” n towards
the root whenever n > parent(n).

Wednesday, July 25, 12

Adding to a heap

5

4 8

3 1 2

• To add a new object o to the heap:

• Create a new node n containing o,
and add n to the last level of the
tree (at the left-most position).

• This may violate the heap
condition.

• Repeatedly “bubble up” n towards
the root whenever n > parent(n).

Wednesday, July 25, 12

Adding to a heap

8

4 5

3 1 2

• To add a new object o to the heap:

• Create a new node n containing o,
and add n to the last level of the
tree (at the left-most position).

• This may violate the heap
condition.

• Repeatedly “bubble up” n towards
the root whenever n > parent(n).

Wednesday, July 25, 12

Adding to a heap

8

4 5

3 1 2

• To add a new object o to the heap:

• Create a new node n containing o,
and add n to the last level of the
tree (at the left-most position).

• This may violate the heap
condition.

• Repeatedly “bubble up” n towards
the root whenever n > parent(n).

The tree is now a valid
heap again.

Wednesday, July 25, 12

Removing the largest
element from a heap

• The largest element is always stored at the top of the heap.

• Hence, just remove the root.

• We must then replace it with something.

• Remove the last node n in the heap (right-most child of
last level) and make it the new root of the tree.

• This may violate the heap condition.

• We will then have to recursively swap n with one of
its children (i.e., back down the tree) until the heap
condition is restored. This is called “trickling down”.

Wednesday, July 25, 12

Removing the largest
element from a heap

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 If node at index is less than one of its children:
 Swap node with the largest child node.
 trickleDown(largestChild(index));
}

or
void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the largest child node.
 index = largestChild(index);
}

Iterative
implementation

Recursive
implementation

Wednesday, July 25, 12

Removing the largest
element from a heap

5 3

3 4

8

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the largest child node.
 index = largestChild(index);
}

2

Wednesday, July 25, 12

Removing the largest
element from a heap

5 3

3 4

2

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the largest child node.
 index = largestChild(index);
}

Wednesday, July 25, 12

Removing the largest
element from a heap

5 3

3 4

2

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the largest child node.
 index = largestChild(index);
}

Wednesday, July 25, 12

Removing the largest
element from a heap

5 3

3 4

2

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the largest child node.
 index = largestChild(index);
}

True

Wednesday, July 25, 12

Removing the largest
element from a heap

2 3

3 4

5

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the largest child node.
 index = largestChild(index);
}

Wednesday, July 25, 12

Removing the largest
element from a heap

2 3

3 4

5

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the largest child node.
 index = largestChild(index);
}

Wednesday, July 25, 12

Removing the largest
element from a heap

2 3

3 4

5

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the largest child node.
 index = largestChild(index);
}

True

Wednesday, July 25, 12

Removing the largest
element from a heap

4 3

3 2

5

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the largest child node.
 index = largestChild(index);
}

It’s crucial we swap with
the larger child to maintain

the heap condition.

Wednesday, July 25, 12

Removing the largest
element from a heap

4 3

3 2

5

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the largest child node.
 index = largestChild(index);
}

Wednesday, July 25, 12

Removing the largest
element from a heap

4 3

3 2

5

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the largest child node.
 index = largestChild(index);
}

False

Wednesday, July 25, 12

Removing the largest
element from a heap

4 3

3 2

5

void removeLargest () {
 _nodeArray[0] = _nodeArray[_numNodes - 1];
 _numNodes--;
 trickleDown(0);
}

void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the largest child node.
 index = largestChild(index);
}

Done.

Wednesday, July 25, 12

Finding an arbitrary node

• Heaps offer fast access to the largest node in the heap.

• However, despite their binary tree representation, they
offer no advantage over simple lists in terms of finding
an arbitrary element.

• If the element o that the user wishes to find is not
the largest, then o could be anywhere in the heap.

• This contrasts with binary search trees (more later).

• Hence, to find an object o within a heap, we must
search through the entire heap.

Wednesday, July 25, 12

Finding an arbitrary node
public T find (T o) {
 final int index = findNode(0, o);
 if (index < 0) {
 throw new NoSuchElementException();
 }
 return _nodeArray[index];
}

private int findNode (int rootIdx, T o) {
 if (_nodeArray[rootIdx].equals(o)) {
 return rootIdx;
 }

 int idx;
 if (leftChild(rootIdx) < _numNodes &&
 (idx = find(leftChild(rootIdx), o)) >= 0) {
 return idx;
 } else if (rightChild(rootIdx) < _numNodes &&
 (idx = find(rightChild(rootIdx), o)) >= 0) {
 return idx;
 } else {
 return -1;
 }
}

We could implement findNode
by recursively searching
through the entire tree.

Wednesday, July 25, 12

Finding an arbitrary node

int findNode (T o) {
 for (int i = 0; i < _numNodes; i++) {
 if (_nodeArray[i].equals(o)) {
 return i;
 }
 }
}

But this is much easier (and slightly faster too).

• This is one of the conveniences of
representing the tree as an array.

• Only possible for complete trees in
which there are no “holes” in the
array (i.e., missing child nodes).

Wednesday, July 25, 12

Removing an arbitrary node

• Removing an arbitrary node requires that we first
find the node n to be removed.

• We can use the findNode(o) method we just
constructed.

• Once found, we can swap the last node in the heap
(right-most child of last level) with n.

• Then we just trickleDown that node and we’re
done, right?

Wednesday, July 25, 12

Removing an arbitrary node

Wrong.

• Removing an arbitrary node requires that we first
find the node n to be removed.

• We can use the findNode(o) method we just
constructed.

• Once found, we can swap the last node in the heap
(right-most child of last level) with n.

• Then we just trickleDown that node and we’re
done, right?

Wednesday, July 25, 12

Removing an arbitrary node
• The above procedure worked for removeLargest()

because we always started from the top (root) of
the heap.

• By trickling down from the top, we guarantee that
every sub-tree (starting from the very top) is a
valid heap.

• When removing an arbitrary node, the trickleDown
process will “fix” the sub-tree rooted at n, but not
necessarily the whole tree.

• What’s an example heap in which this problem
would arise?

Wednesday, July 25, 12

Removing an arbitrary node

5 8

4 1

9

7 8

3 6...

• Suppose we wish to remove the node containing 4.

• If we just replace it with the “last” node (6)...

Valid heap.

Wednesday, July 25, 12

Removing an arbitrary node

5 8

6 1

9

7 8

3 ...

• ...then the trickleDown() method will do nothing (6
is already bigger than its children).

• Moreover, 6 is now bigger than its parent -- a violation
of the heap condition.

Invalid heap.

Wednesday, July 25, 12

Removing an arbitrary node
• In a correct implementation of remove(o) for

arbitrary o, we need to sometimes bubbleUp and
sometimes trickleDown:

void remove (T o) {
 Find the node n containing o.
 Replace n with the “last” node l in the heap.
 If l < n:
 trickleDown on n.
 Else:
 bubbleUp on n.
}

Wednesday, July 25, 12

Removing an arbitrary node
• In a correct implementation of remove(o) for

arbitrary o, we need to sometimes bubbleUp and
sometimes trickleDown:

void remove (T o) {
 Find the node n containing o.
 Replace n with the “last” node l in the heap.
 If l < n:
 trickleDown on n.
 Else:
 bubbleUp on n.
}

5 8

4 1

9

7 8

3 6...

Valid heap.n

l

Wednesday, July 25, 12

Removing an arbitrary node
• In a correct implementation of remove(o) for

arbitrary o, we need to sometimes bubbleUp and
sometimes trickleDown:

void remove (T o) {
 Find the node n containing o.
 Replace n with the “last” node l in the heap.
 If l < n:
 trickleDown on n.
 Else:
 bubbleUp on n.
}

5 8

6 1

9

7 8

3 ...

Wednesday, July 25, 12

Removing an arbitrary node
• In a correct implementation of remove(o) for

arbitrary o, we need to sometimes bubbleUp and
sometimes trickleDown:

void remove (T o) {
 Find the node n containing o.
 Replace n with the “last” node l in the heap.
 If l < n: // n was 4, l is 6
 trickleDown on n.
 Else:
 bubbleUp on n.
}

5 8

6 1

9

7 8

3 ...

Wednesday, July 25, 12

Removing an arbitrary node
• In a correct implementation of remove(o) for

arbitrary o, we need to sometimes bubbleUp and
sometimes trickleDown:

void remove (T o) {
 Find the node n containing o.
 Replace n with the “last” node l in the heap.
 If l < n: // n was 4, l is 6
 trickleDown on n.
 Else:
 bubbleUp on n.
}

5 8

6 1

9

7 8

3 ...

Wednesday, July 25, 12

Removing an arbitrary node
• In a correct implementation of remove(o) for

arbitrary o, we need to sometimes bubbleUp and
sometimes trickleDown:

void remove (T o) {
 Find the node n containing o.
 Replace n with the “last” node l in the heap.
 If l < n: // n was 4, l is 6
 trickleDown on n.
 Else:
 bubbleUp on n.
}

6 8

5 1

9

7 8

3 ...

Wednesday, July 25, 12

Removing an arbitrary node
• In a correct implementation of remove(o) for

arbitrary o, we need to sometimes bubbleUp and
sometimes trickleDown:

void remove (T o) {
 Find the node n containing o.
 Replace n with the “last” node l in the heap.
 If l < n: // n was 4, l is 6
 trickleDown on n.
 Else:
 bubbleUp on n.
}

6 8

5 1

9

7 8

3 ...

Valid heap
again.

Wednesday, July 25, 12

Heap operations: time costs
• The implementations for the add/find/removeLargest/remove

methods depend on the methods bubbleUp and trickleDown.

• void bubbleUp (int idx) {
 While node at idx is “larger” than its parent:
 Swap data in the node and its parent;
 Set idx to be parentIdx(idx);
}

• At each loop iteration, idx moves one step closer from a
leaf to the root of the heap.

• Hence, loop can execute maximum of h times (h is tree
height). For heap of n nodes, h is log2(n).

• Inside loop, the time cost is about 2 operations.

• Hence, time cost is O(log n).

Wednesday, July 25, 12

Heap operations: time costs

• void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the larger child node.
 index = largerChild(index);
}

• At each loop iteration, idx moves one step closer from the
root of the heap to a leaf.

• Hence, number of iterations is bounded by h = log2(n).

• Inside loop, the time cost is about 2 operations.

• Hence, time cost is O(log n).

Wednesday, July 25, 12

Heap operations: time costs
• Given the time costs of bubbleUp and

trickleDown, we can compute the worst-case time
costs of the fundamental heap operations:

• add(o): O(1)+O(log n) = O(log n)

• Append a new node to the heap. O(1)

• Bubble it up. O(log n)

• removeLargest(): O(1)+O(log n) = O(log n)

• Swap last node with root. O(1)

• Trickle root down. O(log n)

Wednesday, July 25, 12

Heap operations: time costs

• find(o): O(n)

• Search through all nodes. O(n)

• remove(): O(n)+O(1)+O(log n) = O(n)

• Find the node. O(n)

• Swap node-to-remove with root. O(1)

• Either trickle node down or bubble it up. O(log n)

Wednesday, July 25, 12

General heaps
• We have just described the minimal implementation

of a binary heap.

• Binary heaps are the most common.

• In theory, however, any tree can be a heap as long as
it satisfies the heap condition that the root of every
sub-tree is no smaller than any node in the sub-
tree.

• In particular, we can define a d-ary tree in which
each node has d child nodes (instead of always 2).

Wednesday, July 25, 12

d-ary heaps

5 1

9

7 8

...
...

4 6

6

-2

...
...

3-ary
(ternary)

heap

4-ary
(quaternary)

heap

2 3

7

1

d-ary
heap

...

...

...

d children

d children

Wednesday, July 25, 12

d-ary heaps: Why?
• d-ary heaps can offer a time cost savings compared

to binary heaps.

• Consider:

• The height h of a binary heap is at most log2(n).

• The height h of a ternary heap is at most log3(n).

• The height h of a d-ary heap is at most logd(n).

• As the base of the logarithm (d) gets larger, the value
of the logarithm itself grows smaller.

• Hence, for larger d, operations that depend on the
height of the tree will become faster.

Wednesday, July 25, 12

d-ary heaps: Why?
• On the other hand, as d increases, so does the number of

children per node.

• The time cost of trickleDown (but not bubbleUp) is
affected by the number of children:
void trickleDown (int index) {
 While node at index is less than one of its children:
 ...
}

• Each loop iteration implicitly requires a comparison to all
d children.

• The loop runs for at most h iterations (h = logd n), and
each iteration takes at least d operations.

• Hence, time cost for trickleDown is O(hd) = O(d logd n).

Wednesday, July 25, 12

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9

10

n

lo
g d(n

)

d=2
d=3
d=4
d=5
d=6

bubbleUp: O(logd n)

bubbleUp is faster
when d is large.

Wednesday, July 25, 12

0 200 400 600 800 1000
0

5

10

15

20

25

n

d
lo

g d(n
)

d=3
d=4
d=5
d=6

trickleDown: O(d logd n)

trickleDown is faster
when d is small.

Wednesday, July 25, 12

trickleDown versus
bubbleUp

• In scenarios where bubbleUp is called more frequently
than trickleDown, better time costs can be achieved
using a larger value of d.

• Such scenarios can happen with priority queues when the
user changes the priority of the data while they are still in
the heap.

Wednesday, July 25, 12

Increasing/decreasing
priority

• Example:
heap.add(o1); // Priority 7
heap.add(o2); // Priority 6
...
heap.add(o7); // Priority 6 6 8

6 1

9

7 8

o2

o4

o3

o6o1o5o7

Wednesday, July 25, 12

Increasing/decreasing
priority

• Example:
heap.add(o1); // Priority 7
heap.add(o2); // Priority 6
...
heap.add(o7); // Priority 6

• Later on:
heap.increasePriority(o7);

6 8

7 1

9

7 8

o2

o4

o3

o6o1o5o7

Now we need to
bubbleUp o7.

Wednesday, July 25, 12

Increasing/decreasing
priority

• Example:
heap.add(o1); // Priority 7
heap.add(o2); // Priority 6
...
heap.add(o7); // Priority 6

• Later on:
heap.increasePriority(o7);

7 8

6 1

9

7 8

o2

o4

o3

o6o1o5o7

Done.

Wednesday, July 25, 12

trickleDown versus
bubbleUp

• Increasing the priority of an item requires bubbleUp to be
called to maintain the heap condition.

• Decreasing the priority of an item requires trickleDown to be
called to maintain the heap condition.

• In some applications, the user may want to increase the priority
of items more frequently than they will decrease their priority.

• In this case, bubbleUp will be called more frequently than
trickleDown.

• By using a d-ary heap and setting d>2, the time cost of the
priority queue may be reduced compared to a binary heap.

Wednesday, July 25, 12

