Heaps, continued.
Review from last lecture

• A heap is a complete binary tree whose last level of nodes is filled left-to-right and which satisfies the heap condition.

• Heap condition:
 • The root of every sub-tree is no smaller than any node in the sub-tree. (For max-heap).

• The heap condition ensures that the largest element is always stored at the root:
 • $O(1)$ time-cost for findLargest
 • $O(\log n)$ time-cost for removeLargest
Adding to a heap

• To add a new object \(o \) to the heap:

 • Create a new node \(n \) containing \(o \), and add \(n \) to the last level of the tree (at the left-most position).

 • This may violate the heap condition.

 • Repeatedly “bubble up” \(n \) towards the root whenever \(n > \text{parent}(n) \).
Adding to a heap

• To add a new object \(o \) to the heap:
 • Create a new node \(n \) containing \(o \), and add \(n \) to the last level of the tree (at the left-most position).
 • This may violate the heap condition.
 • Repeatedly “bubble up” \(n \) towards the root whenever \(n > \text{parent}(n) \).
Adding to a heap

- To add a new object o to the heap:
 - Create a new node n containing o, and add n to the last level of the tree (at the left-most position).
 - This may violate the heap condition.
 - Repeatedly “bubble up” n towards the root whenever $n > \text{parent}(n)$.
Adding to a heap

• To add a new object o to the heap:
 • Create a new node n containing o, and add n to the last level of the tree (at the left-most position).
 • This may violate the heap condition.
 • Repeatedly “bubble up” n towards the root whenever $n > \text{parent}(n)$.

![Tree diagram with nodes 5, 4, 3, 1, 2, 8]
Adding to a heap

- To add a new object o to the heap:
 - Create a new node n containing o, and add n to the last level of the tree (at the left-most position).
 - This may violate the heap condition.
 - Repeatedly “bubble up” n towards the root whenever n > parent(n).
Adding to a heap

• To add a new object o to the heap:
 • Create a new node n containing o, and add n to the last level of the tree (at the left-most position).

 • This may violate the heap condition.

 • Repeatedly “bubble up” n towards the root whenever $n > \text{parent}(n)$.

The tree is now a valid heap again.
Removing the largest element from a heap

• The largest element is always stored at the top of the heap.
 • Hence, just remove the root.

• We must then replace it with something.
 • Remove the last node n in the heap (right-most child of last level) and make it the new root of the tree.
 • This may violate the heap condition.
 • We will then have to recursively swap n with one of its children (i.e., back down the tree) until the heap condition is restored. This is called “trickling down”.
Removing the *largest* element from a heap

```c
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    If node at index is less than one of its children:
    Swap node with the largest child node. Recursive implementation
    trickleDown(largestChild(index));
}

Or

void trickleDown (int index) {
    While node at index is less than one of its children:
    Swap node with the largest child node. Iterative implementation
    index = largestChild(index);
}
```
Removing the largest element from a heap

```java
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
        Swap node with the largest child node.
    index = largestChild(index);
}
```

![Heap Diagram]

Removing the largest element from a heap

```c
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
        Swap node with the largest child node.
    index = largestChild(index);
}
```
Removing the largest element from a heap

```c
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
        Swap node with the largest child node.
    index = largestChild(index);
}
```

```
2
/ \
5   3
| |
3 4
```
Removing the *largest* element from a heap

```java
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
        Swap node with the largest child node.
    index = largestChild(index);
}
```

True

```
  2
 / \
5   3
 /   /
3   4
```
Removing the largest element from a heap

```java
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
        Swap node with the largest child node.
    index = largestChild(index);
}
```

![Heap Diagram]
Removing the largest element from a heap

```java
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
        Swap node with the largest child node.
    index = largestChild(index);
}
```

![Heap Diagram]
Removing the **largest** element from a heap

```java
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
        Swap node with the largest child node.
    index = largestChild(index);
}
```

True
Removing the \textit{largest} element from a heap

```java
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
        Swap node with the \textit{larger} child node.
    index = largestChild(index);
}
```

It’s crucial we swap with the \textit{larger} child to maintain the heap condition.
Removing the largest element from a heap

```java
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
    Swap node with the largest child node.
    index = largestChild(index);
}
```

![Binary heap diagram]

- 5
 - 4
 - 3
 - 2
Removing the largest element from a heap

```java
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
    Swap node with the largest child node.
    index = largestChild(index);
}
```
Removing the largest element from a heap

```java
void removeLargest () {
    _nodeArray[0] = _nodeArray[_numNodes - 1];
    _numNodes--;
    trickleDown(0);
}

void trickleDown (int index) {
    While node at index is less than one of its children:
        Swap node with the largest child node.
    index = largestChild(index);
}
```

Done.
Finding an arbitrary node

• Heaps offer fast access to the largest node in the heap.

• However, despite their binary tree representation, they offer no advantage over simple lists in terms of finding an arbitrary element.

• If the element o that the user wishes to find is not the largest, then o could be anywhere in the heap.

• This contrasts with binary search trees (more later).

• Hence, to find an object o within a heap, we must search through the entire heap.
Finding an arbitrary node

public T find (T o) {
 final int index = findNode(0, o);
 if (index < 0) {
 throw new NoSuchElementException();
 }
 return _nodeArray[index];
}

private int findNode (int rootIdx, T o) {
 if (_nodeArray[rootIdx].equals(o)) {
 return rootIdx;
 }
 int idx;
 if (leftChild(rootIdx) < _numNodes &&
 (idx = find(leftChild(rootIdx), o)) >= 0) {
 return idx;
 } else if (rightChild(rootIdx) < _numNodes &&
 (idx = find(rightChild(rootIdx), o)) >= 0) {
 return idx;
 } else {
 return -1;
 }
}
Finding an arbitrary node

But this is much easier (and slightly faster too).

```java
int findNode (T o) {
    for (int i = 0; i < _numNodes; i++) {
        if (_nodeArray[i].equals(o)) {
            return i;
        }
    }
    return -1;  // Or any other appropriate value.
}
```

- This is one of the conveniences of representing the tree as an array.
- Only possible for complete trees in which there are no “holes” in the array (i.e., missing child nodes).
Removing an arbitrary node

- Removing an arbitrary node requires that we first find the node \(n \) to be removed.
- We can use the findNode(o) method we just constructed.
- Once found, we can swap the last node in the heap (right-most child of last level) with \(n \).
- Then we just trickleDown that node and we’re done, right?
Removing an arbitrary node

• Removing an arbitrary node requires that we first find the node n to be removed.

• We can use the `findNode(o)` method we just constructed.

• Once found, we can swap the last node in the heap (right-most child of last level) with n.

• Then we just trickleDown that node and we’re done, right? Wrong.
Removing an arbitrary node

- The above procedure worked for \texttt{removeLargest()} because we always started from the top (root) of the heap.

- By trickling down from the top, we guarantee that every sub-tree (starting from the very top) is a valid heap.

- When removing an \textit{arbitrary} node, the \texttt{trickleDown} process will “fix” the sub-tree rooted at \(n \), but \textit{not necessarily} the whole tree.

- What’s an example heap in which this problem would arise?
Removing an arbitrary node

• Suppose we wish to remove the node containing 4.
• If we just replace it with the “last” node (6)...
Removing an arbitrary node

- ...then the `trickleDown()` method will do nothing (6 is already bigger than its children).
- Moreover, 6 is now bigger than its parent -- a *violation of the heap condition*.
Removing an arbitrary node

- In a correct implementation of `remove(o)` for arbitrary `o`, we need to `sometimes bubbleUp` and `sometimes trickleDown`:

```java
void remove (T o) {
    Find the node `n` containing `o`.
    Replace `n` with the "last" node `l` in the heap.
    If `l < n`:
        trickleDown on `n`.
    Else:
        bubbleUp on `n`.
}
```
Removing an arbitrary node

- In a correct implementation of `remove(o)` for arbitrary `o`, we need to *sometimes* `bubbleUp` *and* *sometimes* `trickleDown`:

```java
void remove (T o) {
    // Find the node n containing o.
    // Replace n with the "last" node l in the heap.
    // If l < n:
    //     trickleDown on n.
    // Else:
    //     bubbleUp on n.
}
```

![Valid heap diagram]
Removing an arbitrary node

• In a correct implementation of `remove(o)` for arbitrary `o`, we need to *sometimes* `bubbleUp` *and* *sometimes* `trickleDown`:

```java
void remove (T o) {
    Find the node `n` containing `o`.
    Replace `n` with the "last" node `l` in the heap.
    If `l < n`:
        `trickleDown` on `n`.
    Else:
        `bubbleUp` on `n`.
}
```

![Binary heap example]

• In a correct implementation of `remove(o)` for arbitrary `o`, we need to *sometimes* `bubbleUp` *and* *sometimes* `trickleDown`:

```java
void remove (T o) {
    Find the node `n` containing `o`.
    Replace `n` with the "last" node `l` in the heap.
    If `l < n`:
        `trickleDown` on `n`.
    Else:
        `bubbleUp` on `n`.
}
```

![Binary heap example]
Removing an arbitrary node

• In a correct implementation of remove(o) for arbitrary o, we need to sometimes `bubbleUp` and sometimes `trickleDown`:

```java
void remove (T o) {
    Find the node n containing o.
    Replace n with the “last” node l in the heap.
    If l < n:  // n was 4, l is 6
        trickleDown on n.
    Else:
        bubbleUp on n.
}
```

```plaintext
      9
     / \
   5   8
  / \ /\
3 6 1 7 8
```

Wednesday, July 25, 12
Removing an arbitrary node

- In a correct implementation of `remove(o)` for arbitrary `o`, we need to sometimes `bubbleUp` and sometimes `trickleDown`:

```java
void remove (T o) {
    Find the node `n` containing `o`.
    Replace `n` with the "last" node `l` in the heap.
    If `l < n`:  // `n` was 4, `l` is 6
        `trickleDown` on `n`.
    Else:
        `bubbleUp` on `n`.
}
```

```plaintext
6 1 7 8
3 ...
```

```
9
5 8
3
```
Removing an arbitrary node

- In a correct implementation of `remove(o)` for arbitrary `o`, we need to sometimes `bubbleUp` and sometimes `trickleDown`:

```java
void remove (T o) {
    Find the node n containing o.
    Replace n with the "last" node l in the heap.
    If l < n:  // n was 4, l is 6
        trickleDown on n.
    Else:
        bubbleUp on n.
}
```

```plaintext
6 8 5 1 9 7 8 3 ...
```
Removing an arbitrary node

• In a correct implementation of \texttt{remove(o)} for arbitrary \texttt{o}, we need to sometimes \texttt{bubbleUp} and sometimes \texttt{trickleDown}:

\begin{verbatim}
void remove (T o) {
 Find the node \texttt{n} containing \texttt{o}.
 Replace \texttt{n} with the “last” node \texttt{l} in the heap.
 If \texttt{l} < \texttt{n}: // \texttt{n} was 4, \texttt{l} is 6
 \texttt{trickleDown} on \texttt{n}.
 Else:
 \texttt{bubbleUp} on \texttt{n}.
}
\end{verbatim}

Valid heap again.
Heap operations: time costs

- The implementations for the add/find/removeLargest/remove methods depend on the methods bubbleUp and trickleDown.

```java
void bubbleUp (int idx) {
    While node at idx is “larger” than its parent:
        Swap data in the node and its parent;
        Set idx to be parentIdx(idx);
}
```

- At each loop iteration, `idx` moves one step closer from a leaf to the root of the heap.

- Hence, loop can execute maximum of `h` times (`h` is tree height). For heap of `n` nodes, `h` is $\log_2(n)$.

- Inside loop, the time cost is about 2 operations.

- Hence, time cost is $O(\log n)$.
Heap operations: time costs

- void trickleDown (int index) {
 While node at index is less than one of its children:
 Swap node with the larger child node.
 index = largerChild(index);
}

- At each loop iteration, idx moves one step closer from the root of the heap to a leaf.
 - Hence, number of iterations is bounded by \(h = \log_2(n) \).
- Inside loop, the time cost is about 2 operations.
- Hence, time cost is \(O(\log n) \).
Heap operations: time costs

- Given the time costs of `bubbleUp` and `trickleDown`, we can compute the worst-case time costs of the fundamental heap operations:
 - `add(o)`: $O(1) + O(\log n) = O(\log n)$
 - Append a new node to the heap. $O(1)$
 - Bubble it up. $O(\log n)$
 - `removeLargest()`: $O(1) + O(\log n) = O(\log n)$
 - Swap last node with root. $O(1)$
 - Trickle root down. $O(\log n)$
Heap operations: time costs

- **find(o):** $O(n)$
 - Search through all nodes. $O(n)$

- **remove():** $O(n) + O(1) + O(\log n) = O(n)$
 - Find the node. $O(n)$
 - Swap node-to-remove with root. $O(1)$
 - *Either* trickle node down *or* bubble it up. $O(\log n)$
General heaps

• We have just described the minimal implementation of a binary heap.

• Binary heaps are the most common.

• In theory, however, any tree can be a heap as long as it satisfies the heap condition that the root of every sub-tree is no smaller than any node in the sub-tree.

• In particular, we can define a d-ary tree in which each node has d child nodes (instead of always 2).
d-ary heaps

3-ary (ternary) heap

4-ary (quaternary) heap

d-ary heap

...
d-ary heaps: Why?

- d-ary heaps can offer a time cost savings compared to binary heaps.

- Consider:
 - The height h of a binary heap is at most $\log_2(n)$.
 - The height h of a ternary heap is at most $\log_3(n)$.
 - The height h of a d-ary heap is at most $\log_d(n)$.

- As the base of the logarithm (d) gets larger, the value of the logarithm itself grows smaller.

- Hence, for larger d, operations that depend on the height of the tree will become faster.
d-ary heaps: Why?

- On the other hand, as \(d \) increases, so does the number of children per node.

- The time cost of \texttt{trickleDown} (but not \texttt{bubbleUp}) is affected by the number of children:

  ```java
  void trickleDown (int index) {
    While node at index is less than one of its children:
      ...
  }
  ```

 - Each loop iteration implicitly requires a comparison to all \(d \) children.

- The loop runs for at most \(h \) iterations (\(h = \log_d n \)), and each iteration takes at least \(d \) operations.

- Hence, time cost for \texttt{trickleDown} is \(O(hd) = O(d \log_d n) \).
bubbleUp: $O(\log_d n)$

bubbleUp is faster when d is large.
trickleDown: $O(d \log_d n)$

trickleDown is faster when d is small.
trickleDown versus bubbleUp

• In scenarios where \textit{bubbleUp} is called more frequently than \textit{trickleDown}, better time costs can be achieved using a larger value of d.

• Such scenarios can happen with \textit{priority queues} when the user changes the \textit{priority} of the data while they are still in the heap.
Increasing/decreasing priority

• Example:

  ```java
  heap.add(o1);  // Priority 7
  heap.add(o2);  // Priority 6
  ...
  heap.add(o7);  // Priority 6
  ```
Increasing/decreasing priority

• Example:
 heap.add(o1); // Priority 7
 heap.add(o2); // Priority 6
 ...
 heap.add(o7); // Priority 6

• Later on:
 heap.increasePriority(o7);

Now we need to bubbleUp o7.
Increasing/decreasing priority

• Example:
 heap.add(o1); // Priority 7
 heap.add(o2); // Priority 6
 ...
 heap.add(o7); // Priority 6

• Later on:
 heap.increasePriority(o7);

Done.
trickleDown versus bubbleUp

• *Increasing* the priority of an item requires `bubbleUp` to be called to maintain the heap condition.

• *Decreasing* the priority of an item requires `trickleDown` to be called to maintain the heap condition.

• In some applications, the user may want to *increase* the priority of items more frequently than they will *decrease* their priority.

• In this case, `bubbleUp` will be called more frequently than `trickleDown`.

• By using a d-ary heap and setting $d>2$, the time cost of the priority queue may be reduced compared to a binary heap.