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More on generics.
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Collections to hold 
data of type T

• Up to now we have discussed generics in its 
simplest usage -- store data of an arbitrary 
type T in a container.

• This worked fine for lists/arrays/stacks/
queues, in which we ignore any order 
relations among the elements.

• Sometimes, however, the type T cannot be 
“just any old Object” -- type T must 
sometimes satisfy some conditions.

Wednesday, July 25, 12



Constraints on T
• An example of this is the HeapImpl12 class you are 

building for P4.

• The elements must all be Comparable -- the heap 
implementation needs to be able to call 
compareTo(o) on every element stored in the 
tree.

• If we place no restrictions on T, then the Java 
compiler cannot guarantee that an arbitrary 
element of the _nodeArray will actually be 
Comparable.
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Constraints on T

• Suppose we add three objects to a heap:

heap = new Heap12<Object>();
heap.add(“Michael”);  // OK: String is Comparable
heap.add(“Bolton”);  // OK: String is Comparable
heap.add(new Object()); // Not OK: Object not Comparable

• Internally, the HeapImpl12 class will need to call 
compareTo on all objects to implement bubbleUp and 
trickleDown, e.g.:

if (_nodeArray[idx1].compareTo(_nodeArray[idx2]) < 0) {
  ...
} But if idx1 refers to the Object we added, 

this method will fail because Object does 
not implement the Comparable interface.
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Bounds on type parameters
• What we want is a way of enforcing that the type parameter 

T allowed by the HeapImpl12 class -- as well as the Heap12 
interface itself -- be of type Comparable.

• Java generics facilitates these constraints on T by supporting 
bounds on type parameters.

• Suppose, when implementing a generic class with type 
parameter T, we want to ensure that T must be some sub-
class of a class A.

• Example: we want to implement a container for Shape 
objects -- we don’t care what particular kind of Shapes 
they are, so long as they all inherit from the Shape class.
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Bounds on type parameters
• To implement a generic class with the 

guarantee that type parameter T is a 
Shape, we can use an upper bound 
on T:

class MyContainer<T extends Shape> {
  ...
}

• Here, Shape is the upper bound on 
type parameter T.

• MyContainer can only be 
instantiated when T is Shape, or any 
sub-class of Shape.

Shape

Circle Rect Triangle

Object

Upper bound on T
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Bounds on type parameters

• Given this upper bound on T, the Java compiler will 
enforce that T be of type Shape:
MyContainer<Shape> container1 =
  new MyContainer<Shape>();  // OK

MyContainer<Circle> container2 =
  new MyContainer<Circle>();  // OK

MyContainer<Object> container4 =
  new MyContainer<Object>();  // Not OK

MyContainer<Student> container3 =
  new MyContainer<Student>();  // Not OK

  Compiler error message:
    type parameter java.lang.Object is not within its bound
    MyContainer<Object> container4 = new MyContainer<Object>();
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• We can also require that type T implement some interface.

• For example, a HeapImpl12 should only store elements 
that are all Comparable.

• Java generics gives us this power:

class HeapImpl12<T extends Comparable> implements Heap12<T> {
  ...
}

• The “extends Comparable” enforces that any T we pass in 
as the type parameter must be of type Comparable.

• Since Comparable is an interface, this means that type T 
must implement the interface Comparable (even though 
we use the word “extends”).

Bounds on type parameters

Wednesday, July 25, 12



• With this restriction on T in place, we can no longer 
instantiate a HeapImpl12 with a type parameter T that does 
not implement Comparable:
// String and Integer are both Comparable
HeapImpl12<String> heap1 = new HeapImpl12<String>();  // OK
HeapImpl12<Integer> heap2 = new HeapImpl12<Integer>(); // OK

// Next line won’t compile because Object is not Comparable
HeapImpl12<Object> heap3 = new HeapImpl12<Object>();

• The Java compiler will prevent us from instantiating a heap 
with a non-Comparable type.

• We may also wish to define the interface Heap12 to accept 
only those types T that implement Comparable:

interface Heap12<T extends Comparable> {
  ...
}

Bounds on type parameters
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• In the previous example, Comparable was the 
upper bound of T.

• The Comparable interface takes a type parameter 
of its own.

interface Comparable<U> {
  int compareTo (U o);
}

(In the previous example, we used the Comparable interface in “compatibility 
mode”, where we did not specify U).

• The type parameter U specifies what kinds of 
objects o we should be able to compare to.

Bounds on type parameters
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• By offering bounds on type parameters, Java also 
gives us the power to define what kinds of objects 
U we can compareTo, in terms of the type T we’ve 
already defined.

• Example:
class HeapImpl12<T extends Comparable<T>> ... {
  ...
}

• Here, we require that whatever type T the 
HeapImpl12 is instantiated with, it must be 
Comparable to other objects of type T.

Bounds on type parameters
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• Consider the following example:
class B { }
class A implements Comparable<B> {
  int compareTo (B o) {
    return 0;
  }
}

• Given the definitions above, an object of type A can only be 
compared to objects of type B.
final A a = new A();
final B b = new B();
final int result = a.compareTo(b);  // OK

• We cannot compare a to another object of type A!

Bounds on type parameters
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• Given our definition of HeapImpl12,

class HeapImpl12<T extends Comparable<T>> ... {
  ..
}

if we try to instantiate a HeapImpl12 with A as the type 
parameter...

HeapImpl12<A> heap = new HeapImpl12<A>();

... the compiler will complain:

  type parameter A is not within its bound
  HeapImpl12<A> h = new HeapImpl12<A>();

• This error occurs because, even though A is Comparable 
to something (B), it is not Comparable<A>.

Bounds on type parameters
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• On the other hand,

• String implements Comparable<String>

• Integer implements Comparable<Integer>

• Both String and Integer would be accepted as 
type parameters for HeapImpl12:

HeapImpl12<String> h1 = new HeapImpl12<String>();
HeapImpl12<Integer> h2 = new HeapImpl12<Integer>();

Bounds on type parameters

Both are OK
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• While useful, our current definition of HeapImpl12 is 
a bit overly restrictive.

• Consider a hierarchy of Shape classes:

class Shape implements Comparable<Shape> {
   int compareTo (Shape o) { ... }
}
class Rectangle extends Shape {
  ...
}

• The Rectangle class inherits the compareTo 
(Shape o) method from its parent Shape class.

Bounds on type parameters
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• However, Rectangle does not offer a method 
compareTo (Rectangle o) designed specifically for 
other Rectangle objects.

• Hence, the Rectangle class could not be used as the 
type parameter T when instantiating a HeapImpl12:

class HeapImpl12<T extends Comparable<T>> ...

• Reason: Even though Rectangle is Comparable 
to other Shape objects, it is not 
Comparable<Rectangle>.

• I.e., Rectangle offers no int compareTo 
(Rectangle o) method.

Bounds on type parameters
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Lower bounds on types
• What we need is a way of 

expressing that type parameter T 
may be Comparable with class T, or 
any super-class of T.

• E.g., we want to allow HeapImpl12 
to store Rectangle objects:

• Rectangles are all Comparable 
with Shape, where Shape is a 
super-class of Rectangle.

• To solve this problem, Java offers 
lower bounds on type 
parameters.

Shape

Rectangle

Lower bound on T

Object
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Lower bounds on types
• For example, we can allow the HeapImpl12 class 

to accept any type T so long as T is Comparable to 
class T, or any super-class of T.

class HeapImpl12<T extends Comparable<? super T>> ... {
  ...
}

• The wildcard type ? indicates:

• “We don’t care which type T is Comparable to, 
so long as it’s Comparable to some super-class 
of T (or T itself).”

• The keyword super indicates the lower 
bound of the type parameter.
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Lower bounds on types

• Given this revised definition of 
HeapImpl12, we can now instantiate a heap 
of Rectangle objects:

HeapImpl12<Rectangle> heap =
  new HeapImpl12<Rectangle>();  // OK
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Binary search trees
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Still something to be 
desired

• Heaps offer fast access to the largest element 
in a collection.

• This is most useful in a priority queue.

• However, finding an arbitrary element is still 
slow -- O(n) time.

• We may want to sacrifice efficiency of access 
to the largest access in exchange for increased 
efficiency to access any arbitrary element.
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Binary search trees
• A binary search tree (BST) is a binary-tree based data 

structure that offers O(log n) average-case time costs for:
add(o)
find(o)
remove(o)
findLargest/removeLargest(o)

• As with heaps, BSTs exploit the order relations among 
elements.

• Heaps required the root node r of each sub-tree to be no 
smaller than any descendant node of r.

• BSTs impose constraints on the magnitude of nodes in the 
left sub-tree compared to the magnitude of nodes in the 
right sub-tree.
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Binary search trees
• More specifically, a binary search tree (BST) is a 

binary tree (not necessarily complete) that has the 
following (recursive) ordering property:

• For each node n:

• All nodes in the left sub-tree of n are “less 
than” node n itself.

• All nodes in the right sub-tree of n are “greater 
than or equal to” node n itself.

• Both the left and right sub-trees are 
themselves BSTs.
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Binary search trees

9

6

3 7

84

12

10 18

13

Left sub-tree < Node (9) ≤ Right sub-tree
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Binary search trees

9

6

3 7

84

12

10 18

13

Left sub-tree < Node (6) ≤ Right sub-tree
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Binary search trees

9

6

3 7

84

12

10 18

13

Note that this node must 
still be greater or equal to 

9!

Wednesday, July 25, 12



Binary search trees

3

2

0

1

12

18

13

Which of these trees are valid BSTs?
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Binary search trees

3

2

0

1

12

18

13

Which of these trees are valid BSTs?

Yes
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Binary search trees

9

6

3

12

8

Which of these trees are valid BSTs?
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Binary search trees

9

6

3

12

8

Which of these trees are valid BSTs?

No
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Binary search trees

e

c

b d

a

Which of these trees are valid BSTs?

g

n

m

f
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Binary search trees

e

c

b d

a

Which of these trees are valid BSTs?

g

n

m

f
No
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Binary search trees
class BinarySearchTree<T extends Comparable...> {
  static class Node<T> {
    T _data;
    Node<T> _leftChild, _rightChild;
  }
  Node<T> _root = null;  // BST is initially empty

  ...
}
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Binary search trees

• BSTs do not permit null elements:

• Unclear what “value” they should have compared 
to other elements.
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Binary search trees
• Let us implement the following operations on BSTs:

• T find (T o);

• T findSmallest ();

• T findLargest ();

• add (T o);

• remove (T o);

• To accomplish this, we will also need a few helper 
methods (not exposed to user):

• Node<T> findNode (Node<T> root, T o);

• Node<T> findSuccessor (Node<T> node);

• Node<T> findParent (Node<T> root, T o);
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Finding the largest 
element

• Due to the ordering property, finding the 
largest element of a BST is easy -- we just 
return the right-most node in the whole tree.

9

6

3 7

12

10 18
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Finding the largest 
element

• Due to the ordering property, finding the 
largest element of a BST is easy -- we just 
return the right-most node in the whole tree.

T findLargest (Node<T> root) {

}

// Iterative solution?

// Recursive solution?
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Finding the largest 
element

• Due to the ordering property, finding the 
largest element of a BST is easy -- we just 
return the right-most node in the whole tree.

T findLargest (Node<T> root) {
  Node<T> node = root;
  while (node._rightChild != null) {
    node = node._rightChild;
  }
  return node._data;
}

Iterative solution
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Finding the largest 
element

• Due to the ordering property, finding the 
largest element of a BST is easy -- we just 
return the right-most node in the whole tree.

T findLargest (Node<T> root) {
  if (root._rightChild == null) {
    return root._data;
  } else {
    return findLargest(root._rightChild);
  }
}

Recursive solution
Base case

Recursive part
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Finding the smallest 
element

• Due to the ordering property, finding the 
smallest element of a BST is easy -- we just 
return the left-most node in the whole tree.

T findSmallest (Node<T> root) {
  Node<T> node = root;
  while (node._leftChild != null) {
    node = node._leftChild;
  }
  return node._data;
}
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Finding a node

• The ordering property of binary search trees also 
enables efficient search for any particular node.

• Due to the ordering property, there is only one place 
in a given BST where value o would be stored.

• If it’s not there, then o is not contained in the BST 
-- hence, we return null.
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Finding a node
• Given the BST below, suppose we wish to find node 4.

• We always start at the root and recurse.

9

6

3 7

84

12

10 18

13

4 ≶ 9
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Finding a node
• Given the BST below, suppose we wish to find node 4.

• We always start at the root and recurse.

9

6

3 7

84

12

10 18

13

4 < 9
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Finding a node
• Given the BST below, suppose we wish to find node 4.

• We always start at the root and recurse.

9

6

3 7

84

12

10 18

13

4 ≶ 6?
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Finding a node
• Given the BST below, suppose we wish to find node 4.

• We always start at the root and recurse.

9

6

3 7

84

12

10 18

13

4 < 6
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Finding a node
• Given the BST below, suppose we wish to find node 4.

• We always start at the root and recurse.

9

6

3 7

84

12

10 18

13

4 ≶ 3?
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Finding a node
• Given the BST below, suppose we wish to find node 4.

• We always start at the root and recurse.

9

6

3 7

84

12

10 18

13

4 ≥ 3
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Finding a node
• Given the BST below, suppose we wish to find node 4.

• We always start at the root and recurse.

9

6

3 7

84

12

10 18

134 ≶ 4?
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Finding a node
• Given the BST below, suppose we wish to find node 4.

• We always start at the root and recurse.

9

6

3 7

84

12

10 18

134 = 4
Done!
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Finding a node
• Code:

// Returns the Node containing o, or else
// null if o is not contained in the BST.
Node<T> findNode (Node<T> root, T o) {
  if (root._data.equals(o) {
    return root;
  } else if (root._data.compareTo(o) < 0 && // Right subtree
             root._rightChild != null) {
      return findNode(root._rightChild, o);
  } else if (root._data.compareTo(o) >= 0 && // Left subtree
             root._leftChild != null) {
     return findNode(root._leftChild, o);
  } else {
    return null;
  }
}

Due to the ordering property, there is only one 
place in a given BST where value o would be 
stored. If it’s not there, then o is not contained in 
the BST -- hence, we return null.
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Finding a node
• The findNode(root, o) method would not be 

exposed to the user in the BinarySearchTree ADT 
interface.

• However, we can “wrap” this method with T find (T 
o) so that the underlying node infrastructure is hidden:

T findNode (T o) {
  if (_root == null) {
    throw NoSuchElementException();
  } else {
    final Node<T> node = findNode(_root, o);
    if (node == null) {
      throw NoSuchElementException();
    } else {
      return node._data;
  }
}
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Finding a node’s successor
• It will turn out to be useful 

to be able to find a node’s 
successor in the BST.

• The successor of node n 
is the node with the next 
higher value.

9

6

3 7

84

12

10 18

13
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Finding a node’s successor
• It will turn out to be useful 

to be able to find a node’s 
successor in the BST.

• The successor of node n 
is the node with the next 
higher value.

• Examples:
Successor of 3 is 4.
Successor or 4 is 6.
Successor of 12 is 13.
Successor of 8 is 9.

9

6

3 7

84

12

10 18

13
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Finding a node’s successor
• It will turn out to be useful 

to be able to find a node’s 
successor in the BST.

• The successor of node n 
is the node with the next 
higher value.

• Examples:
Successor of 3 is 4.
Successor or 4 is 6.
Successor of 12 is 13.
Successor of 8 is 9.
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3 7

84
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10 18

13
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Finding a node’s successor
• It will turn out to be useful 

to be able to find a node’s 
successor in the BST.

• The successor of node n 
is the node with the next 
higher value.

• Examples:
Successor of 3 is 4.
Successor or 4 is 6.
Successor of 12 is 13.
Successor of 8 is 9.
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Finding a node’s successor
• It will turn out to be useful 

to be able to find a node’s 
successor in the BST.

• The successor of node n 
is the node with the next 
higher value.

• Examples:
Successor of 3 is 4.
Successor or 4 is 6.
Successor of 12 is 13.
Successor of 8 is 9.

9

6

3 7

84

12

10 18

13
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Finding a node’s successor
• A successor node of n -- if it exists -- is found by either:

1. Descending into n’s right sub-tree, and then recursively 
selecting left-child until no left child exists.

• Intuition: The right sub-tree has values bigger than n; 
we want the smallest such value (left-most node).

2. Finding the lowest ancestor of n whose left child is also 
an ancestor of n.

• Intuition: Move “up-and-left” in the BST until we can 
finally “move right” again, i.e., towards a higher valued 
node.
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Finding a node’s successor

9

6

3 7

84

12

10 18

13

• A successor node of n -- if it exists -- 
is found by either:

1. Descending into n’s right sub-tree, 
and then recursively selecting left-
child until no left child exists.

2. Finding the lowest ancestor of n 
whose left child is also an ancestor 
of n.

• Examples:
Successor of 3 is 4.
Successor or 4 is 6.
Successor of 12 is 13.
Successor of 8 is 9.
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Finding a node’s successor

9

6

3 7

84

12

10 18

13

• A successor node of n -- if it exists -- 
is found by either:

1. Descending into n’s right sub-tree, 
and then recursively selecting left-
child until no left child exists.

2. Finding the lowest ancestor of n 
whose left child is also an ancestor 
of n.

• Examples:
Successor of 3 is 4.
Successor or 4 is 6.
Successor of 12 is 13.
Successor of 8 is 9.
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Finding a node’s successor
• The code for Node<T> findSuccessorNode 

(Node<T> node) will be left as an “exercise for the 
reader”.
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Adding a new node
• To add a new node, we must distinguish two 

cases:

1. The new node is the first node in the BST.

• In this case, we simply set this node to be 
the root.

2. The new node is not the first node in the BST.

• Then we must find the parent node of the 
node we’re about to add.

• We then add the new node as a child of the 
parent.
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Finding the parent of a 
new node

• To find the parent node of the new node n we want 
to add:

• Recursively search from root down towards the 
leaf nodes, as if node n were already inserted.

• Eventually, while recursing at node p, the search for 
the node would take us to a left/right child that does 
not yet exist.

• At that point, we know p is the parent of n.

• p is the “natural insertion point” for n.
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Finding the parent of a 
new node

9

6

3 7

84

12

10 18

13

Where would 
we insert 5?

5 ≶ 9
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Finding the parent of a 
new node

9

6

3 7

84

12

10 18

13

Where would 
we insert 5?

5 ≶ 6
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Finding the parent of a 
new node

9

6

3 7

84

12

10 18

13

Where would 
we insert 5?

5 ≶ 3
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Finding the parent of a 
new node

9

6

3 7

84

12

10 18

13

Where would 
we insert 5?

5 ≶ 4
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Finding the parent of a 
new node

9

6

3 7

84

12

10 18

13

Where would 
we insert 5?

5New node

New node’s 
parent
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Finding the parent of a 
new node

// Searches from root for the parent node to which the
// specified new node should be added.
Node<T> findParentNode (Node<T> root, T o) {
  // Save comparison result
  final int comparison = root._data.compareTo(o);

  if (comparison < 0 && root._rightChild != null) {
    return findParentNode(root._rightChild, o);
  } else if (comparison >= 0 && root._leftChild != null) {
    return findParentNode(root._leftChild, o);
  } else {  // The appropriate left/child does not yet exist
    return root;  // Hence, we’ve found the parent
  }
}
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Adding a new node
• We can now implement the add(o) method:

void add (T o) {
  final Node<T> node = new Node<T>();
  node._data = o;
  if (_root == null) {  // Case 1
    _root = node;
  } else {              // Case 2
    final Node<T> parent = findParent(_root, o);
    if (parent._data.compareTo(o) < 0) { 
      parent._rightChild = node;
    } else {
      parent._leftChild = node;
    }
  }
}
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Removing a node
• When removing a node n from the BST, we must ensure that:

• The resulting tree is still connected.

• The resulting tree still has the ordering property.

• Consider what might “go wrong” when removing an 
arbitrary node n:

9

6

3 7

84

12

10 18

13

If we remove node 12, 
then we sever its left and 
right sub-trees from the 
rest of the BST.
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Removing a node
• When removing a node n from the BST, we must ensure that:

• The resulting tree is still connected.

• The resulting tree still has the ordering property.

• Consider what might “go wrong” when removing an 
arbitrary node n:

9

6

3 7

84

10 18

13

If we remove node 12, 
then we sever its left and 
right sub-trees from the 
rest of the BST.Severed!
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Removing a node
• When removing a node n from the BST, we must ensure that:

• The resulting tree is still connected.

• The resulting tree still has the ordering property.

• Consider what might “go wrong” when removing an 
arbitrary node n:

If instead we replace n 
with another node and 
“reconnect” another 
branch, we might violate 
the ordering property.
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3 7
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12
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Removing a node
• When removing a node n from the BST, we must ensure that:

• The resulting tree is still connected.

• The resulting tree still has the ordering property.

• Consider what might “go wrong” when removing an 
arbitrary node n:

If instead we replace n 
with another node and 
“reconnect” another 
branch, we might violate 
the ordering property.

9

6

3 7

84

18

10 13

Ordering property 
is now violated!
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Removing a node
• To remove a node and still ensure the resulting 

tree is a proper BST, we must distinguish three 
cases:

1. n is a leaf node -- in this case, we just snip it off.

2. n is an internal node with only one child.

• We remove n and “splice around” it.

3. n is an internal node with two child nodes.

• We replace n with the value of its successor s, 
and then recursively remove s.
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Removing a leaf node

9
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12

10 18

13

9
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3 7
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12

10 18

13

Example:  bst.remove(8);

Result: We still have a BST with the 
ordering property preserved.

Just snip it off.
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Removing a node with 
one child node
9

6

3 7

84

12

10 18

13

9

6

3 8

4

12

10 18

13

Example:  bst.remove(7);

Result: We still have a BST with the 
ordering property preserved.

“Splice around” node 7.
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Removing a node with 
two child nodes

9

6

3 7

84

12

10 18

13

9

6

3 8

4

13

10 18

Example:  bst.remove(12);

Result: We still have a BST with the 
ordering property preserved.

Replace 12 with the value of its 
successor; then remove the 

successor node.
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• When removing a node n with two children, 
we replace n with the value of its successor s, 
and then remove s itself.

• But what if s also has two children; then we 
need to remove its successor, and so on.

• Will the “removal” process ever terminate?

• Yes -- if n has two children, then its 
successor s cannot have a left-child. Why?

Removing the successor
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• When removing a node n with two children, 
we replace n with the value of its successor s, 
and then remove s itself.

• But what if s also has two children; then we 
need to remove its successor, and so on.

• Will the “removal” process ever terminate?

• Yes -- if n has two children, then its 
successor s cannot have a left-child. Why?

• If it did, s’s that left child would be n’s 
successor, and not s itself.

Removing the successor
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Successor of node with 
two children

20

12

10 18

13

• Example:

• Let n be node 12.

• Then n’s successor s is 13.

• s only has one child.

14

n

s
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Successor of node with 
two children

20

12

10 18

13

• Example:

• Let n be node 12.

• Then n’s successor s is 13.

• s only has one child.

• Suppose s had two children.

• Then it would have a left 
child, x.

• Then x would have to be n’s 
successor.

14x

Since x is still in 
n’s right sub-tree, 
x>12. And since x 
is in s’s left sub-
tree, x<13. So, x is 
n’s successor.

n

s
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Successor of node with 
two children

20

12

10 18

13

• We conclude that, if n has two 
children, then its successor s 
cannot have two children.

• Hence, removing s amounts to 
either just “snipping it off” (case 
1), or “slicing around it” (case 2).

• Hence, the remove method will 
in fact terminate.

14x

n

s
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remove(o)
• We can finally define the remove(o) method:

void remove (T o) {
  final Node<T> node = findNode(_root, o);
  removeNode(node);
}

void removeNode (Node<T> node) {  // Helper method
  if (node._leftChild == null &&
      node._rightChild == null) {
    // “Snip” node from its parent
  } else if (node._leftChild == null ||
      node._rightChild == null) {
    // “Splice around” node
  } else {
    final Node<T> successor = findSuccessor(_root, o);
    node._data = successor._data;
    removeNode(successor);
  }
}
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BSTs:
Time costs of methods
• All of the fundamental operations -- 

add(o), find(o), remove(o), and 
findLargest/findSmallest -- take time 
O(h), where h is the height of the BST.

• In the average case, the height h of the BST 
is log n.

• What about in the worst case?
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BSTs:
Time costs of methods
• In the worst case, the user will call add and 

remove in an “unfortunate” order, resulting in 
a “degenerate” BST of the following variety:

20

12

18

33

...

The “BST” is just a 
linked list!

• In this case, the 
height of the BST is 
n -- and hence the 
fundamental BST 
operations would 
also be O(n).
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Balancing BSTs

• To prevent this “worst-case” condition from 
occurring, we need to employ some form of 
“tree balancing” to keep the tree from 
degenerating into a linked list.

• Two prominent data structures which ensure a 
balanced tree include:

• AVL trees.

• Red-black trees.
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AVL trees.
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Maintaining balance
• The time cost of the fundamental add/

find/remove operations in BSTs 
depends on the height of the BST.

• Given an “unfortunate” sequence of 
add/remove operations, the BST can 
“degenerate” into a long “chain” of 
nodes of height n.

• Hence, in the worst case, the time 
cost of the fundamental BST 
operations is O(n).

• It would be beneficial to prevent this 
worst case from ever occurring.

20

12

18

33

...

“Degenerate” 
BST.
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Maintaining balance
• Fortunately, it turns out that BSTs 

can be “fixed” to store the same 
elements, but to have a smaller 
height.

• Consider the BST on the right 
(with root r) with height 3.

• It is unbalanced -- height of left 
sub-tree is 0, height of right 
sub-tree is 2. 

• We can “fix” this BST to have 
equal height on both sub-trees by 
“rotating” node n towards r.

15

12

10 18

21

19

r

n
h=0

h=2

Left 
rotation
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Maintaining balance
• Fortunately, it turns out that BSTs 

can be “fixed” to store the same 
elements, but to have a smaller 
height.

• Consider the BST on the right 
(with root r) with height 3.

• It is unbalanced -- height of left 
sub-tree is 0, height of right 
sub-tree is 2. 

• We can “fix” this BST to have 
equal height on both sub-trees by 
“rotating” node n towards r.

15

12

10

18

21

19

r

n
h=1

h=1
New root is n.

Height of BST is 2.
Left and right sub-trees 
both have height 1 (the 

BST is balanced).
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Maintaining balance
• By rotating nodes to either “up-to-the-left” or “up-

to-the-right”, we can restore balance to a BST and 
thereby decrease its height.

• The rotations will take place whenever the user 
adds or removes a node from the BST.

• By rotating properly, we can ensure that the BST 
remains balanced or “almost balanced” at all times.

• This system of node rotations was first developed 
in 1962 by G.M. Adelson-Velskii and E.M. Landis; 
hence, we call this technique an AVL-tree.
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AVL trees
• An AVL tree is a BST in which two kinds of 

rotations -- left-rotations and right-rotations -- are 
applied to nodes as necessary, in order to keep 
the balance of each sub-tree within certain limits.

• The balance of a node n is the difference in height 
between n’s left sub-tree minus its right sub-tree.

• A non-existent sub-tree is defined to have 
height 0.

• Rotations are applied to nodes during the add 
and remove methods to keep every node’s 
balance within -1 and +1 (inclusive).
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Height and balance

n

h=0

h=2

n

h=0h=1

Balance = -2 Balance = +1
n

h=2

h=2

Balance = 0
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Height and balance

• AVL trees require that each node n 
record its balance as well as the 
height of the sub-tree rooted at n.

• We can store these as extra 
instance variables in the Node 
class:

class Node<T> {
  Node<T> _parent;
  Node<T> _leftChild, _rightChild;
  int _balance, _height;
}

h=2, b=-1

h=1, b=0

h=0, b=0

h=0, b=0

h=0, b=0
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Adding a new node

• Whenever we add a new 
node n, we set its _height 
and _balance both to 0.

• We attach n as a left/right 
child of its parent.

• We must then recursively 
update the height and 
balance of all nodes from n 
up through the root of the 
whole BST.

h=0, b=0

h=0, b=0

h=0, b=0

n

h=1, b=0

h=2, b=-1

h=0, b=0
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Adding a new node

• Whenever we add a new 
node n, we set its _height 
and _balance both to 0.

• We attach n as a left/right 
child of its parent.

• We must then recursively 
update the height and 
balance of all nodes from n 
up through the root of the 
whole BST.

h=0, b=0

h=0, b=0

h=0, b=0

n

h=1, b=0

h=2, b=-1

h=0, b=0
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Adding a new node

• Whenever we add a new 
node n, we set its _height 
and _balance both to 0.

• We attach n as a left/right 
child of its parent.

• We must then recursively 
update the height and 
balance of all nodes from n 
up through the root of the 
whole BST.

h=1, b=+1

h=0, b=0

h=0, b=0

n

h=1, b=0

h=2, b=-1

h=0, b=0
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Adding a new node

• Whenever we add a new 
node n, we set its _height 
and _balance both to 0.

• We attach n as a left/right 
child of its parent.

• We must then recursively 
update the height and 
balance of all nodes from n 
up through the root of the 
whole BST.

h=1, b=+1

h=0, b=0

h=0, b=0

n

h=2, b=1

h=2, b=-1

h=0, b=0
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Adding a new node

• Whenever we add a new 
node n, we set its _height 
and _balance both to 0.

• We attach n as a left/right 
child of its parent.

• We must then recursively 
update the height and 
balance of all nodes from n 
up through the root of the 
whole BST.

h=3, b=-2

h=1, b=+1

h=0, b=0

h=0, b=0

n

h=2, b=1

h=0, b=0
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Correcting imbalances
• Suppose, when recursively updating the 

height and balance data, we determine that 
the balance of a node n is either -2 or +2.

• n is considered imbalanced.

• Then we must apply an AVL rotation to 
correct the imbalance.

• Different rotations apply to different node 
configurations...
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Imbalanced node configurations

a

cb

d e

Subtrees

Balance = +2

The Left child’s Left sub-tree 
of a is 2 higher than a’s right 
sub-tree.

This case is called LL.
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Imbalanced node configurations
Balance = -2

The Right child’s Right sub-tree 
of a is 2 higher than a’s left 
sub-tree.

This case is called RR.

a

c b

e d
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Imbalanced node configurations

a

cb

d e

Balance = +2

The Left child’s Right sub-tree 
of a is 2 higher than a’s right 
sub-tree.

This case is called LR.
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Imbalanced node configurations
Balance = -2

The Right child’s Left sub-tree 
of a is 2 higher than a’s left 
sub-tree.

This case is called RL.

a

c b

e d
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Fixing configuration LL

a

cb

d e

Right 
rotation

• To fix the imbalance in node a, we will perform 
a right rotation of node b towards a.

Original tree
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Fixing configuration LL

a

cb

d e

Right 
rotation

• To fix the imbalance in node a, we will perform 
a right rotation of node b towards a.

Original tree
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Fixing configuration LL

a

cb

d e

Right 
rotation

• To fix the imbalance in node a, we will perform 
a right rotation of node b towards a.

b

a

c

Make a the right child of 
b, and make b the new 
root of the sub-tree.

d

Original tree
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Fixing configuration LL

a

cb

d e

Right 
rotation

• To fix the imbalance in node a, we will perform 
a right rotation of node b towards a.

b

a

e c

Add e as the left child of a.

d

Original tree
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Fixing configuration LL

a

cb

d e

Right 
rotation

• To fix the imbalance in node a, we will perform 
a right rotation of node b towards a.

b

ad

e c

Original tree

Balance = 0
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Fixing configuration RR

Left 
rotation

• To fix the imbalance in node a, we will perform 
a left rotation of node b towards a.

a

c b

e d

Original tree

Wednesday, July 25, 12



Fixing configuration RR

Left 
rotation

• To fix the imbalance in node a, we will perform 
a left rotation of node b towards a.

a

c b

e d

Original tree
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Fixing configuration RR

Left 
rotation

• To fix the imbalance in node a, we will perform 
a left rotation of node b towards a.

a

c b

e d

Original tree

b

d

c

Make a the right child of 
b, and make b the new 
root of the sub-tree.

a
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Fixing configuration RR

Left 
rotation

• To fix the imbalance in node a, we will perform 
a left rotation of node b towards a.

a

c b

e d

Original tree

b

da

e

Add e as the left child of a.

c
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Fixing configuration RR

Left 
rotation

• To fix the imbalance in node a, we will perform 
a left rotation of node b towards a.

a

c b

e d

Original tree

b

da

ec

Balance = 0
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Imbalanced node configurations

• Note how LL and RR, as well as LR and RL, are 
symmetric to each other.

• LL is fixed by right rotating a.

• RR is fixed by Ieft rotating a.

• The other two cases -- LR and RL -- can be fixed 
by two rotations in succession.
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Fixing configuration LR
• To fix the imbalance in node a, we will first 

perform a left rotation of node e towards b.

a

cb

d e

Original tree

Left 
rotation
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Fixing configuration LR
• To fix the imbalance in node a, we will first 

perform a left rotation of node e towards b.

a

cb

d e

Original tree

a

c

b

d

e
Left 

rotation
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Fixing configuration LR

a

cb

d e

Original tree

a

c

b

d

e

Now we’re back to LL -- and 
we already know how to 
correct this (by applying a 
right rotation of e towards a).

• To fix the imbalance in node a, we will first 
perform a left rotation of node e towards b.
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Fixing configuration LR

• Now we perform a right rotation of e towards a.

a

cb

d e

Original tree

a

c

b

d

e

Right 
rotation

Now we’re back to LL -- and 
we already know how to 
correct this (by applying a 
right rotation of e towards a).
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Fixing configuration LR

• Now we perform a right rotation of e towards a.

a

cb

d e

Original tree

a

c

b

d

e Balance = 0
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Fixing configuration RL
• Fixing configuration RL is 

exactly symmetric to fixing LR:

• First apply a right rotation of 
e towards b.

• This returns the 
configuration to RR.

• Then apply a left rotation of e 
towards a.

• Left as an “exercise for the 
reader”.

Balance = -2
a

c b

e d
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Removing a new node

h=3, b=-2

h=1, b=-1

h=0, b=0

h=0, b=0
n

h=2, b=1

• When we remove a node n, we 
must distinguish the three cases as 
outlined last lecture:

• n is a leaf node.

• n has only one child.

• n has two children.

• After removing n, we must update 
the height and balance of all nodes 
between n and the root.

h=0, b=0
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Removing a new node

h=3, b=-2

h=0, b=0

h=0, b=0

h=1, b=0

• When we remove a node n, we 
must distinguish the three cases as 
outlined last lecture:

• n is a leaf node.

• n has only one child.

• n has two children.

• After removing n, we must update 
the height and balance of all nodes 
between n and the root.
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Removing a new node

h=2, b=-1

h=0, b=0

h=0, b=0

h=1, b=0

• When we remove a node n, we 
must distinguish the three cases as 
outlined last lecture:

• n is a leaf node.

• n has only one child.

• n has two children.

• After removing n, we must update 
the height and balance of all nodes 
between n and the root.

• Might require an AVL rotation.
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AVL trees
• Through storing the height and balance of each node and 

implementing AVL rotations as necessary, we can ensure 
that the BST is never “more imbalanced” than +1 or -1.

• This yields a BST for which h=O(log n) in the worst 
case, not just the average case.

• The AVL rotations themselves take O(1) time.

• Each rotation takes a constant number of “node 
switches”.

• Hence, with AVL trees, the fundamental tree 
operations add, find, and remove all operate in
O(log n) time worst-case.
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Duplicate keys

• In contrast to “regular” BSTs, duplicate keys are 
not permitted in AVL trees.

• With duplicate keys, rotating sub-trees could 
cause the tree to violate the BST ordering 
property.
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Duplicate keys

a

b

• However, a problem arises when we start rotating 
nodes in a sub-tree:

• Suppose a and b have the same key (e.g., 5).

5

c 5

e d
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Duplicate keys
• However, a problem arises when we start rotating 

nodes in a sub-tree:

• Suppose a and b have the same key (e.g., 5).

• Suppose we then left-rotate b towards a.
a

b

Left 
rotation5

c 5

e d

5

d5

ec

b

a
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Duplicate keys
• Now, suppose we want to find node a starting at 

the root (node b).

• We will descend the wrong sub-tree of b.

• We will never find a.
5

d5

ec

b

a
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Duplicate keys

• One solution is to:

• Disallow multiple nodes 
with the same key.

• Whenever we add an 
element with the same 
key, we append that new 
element to that node’s 
list of objects. 

5

cd

e

a, b, ...
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