CSE |12.

Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Twelve
25 July 2012

More on generics.

Collections to hold
data of type T

® Up to now we have discussed generics in its
simplest usage -- store data of an arbitrary
type T in a container.

® This worked fine for lists/arrays/stacks/
queues, in which we ignore any order
relations among the elements.

® Sometimes, however, the type T cannot be
“just any old object” -- type T must
sometimes satisfy some conditions.

Wednesday, July 25, 12

Constraints on T

® An example of this is the HeapImpl12 class you are
building for P4.

® The elements must all be Comparable -- the heap
implementation needs to be able to call
compareTo (o) on every element stored in the

tree.

® [f we place no restrictions on T, then the Java
compiler cannot guarantee that an arbitrary
element of the nodearray will actually be

Comparable.

Wednesday, July 25, 12

Constraints on T

® Suppose we add three objects to a heap:

heap = new Heapl2<Object>() ;

heap.add(“Michael”); // OK: String is Comparable
heap.add (“Bolton”); // OK: String is Comparable
heap.add (new Object()); // Not OK: Object not Comparable

® |nternally, the HeapImpl12 class will need to call
compareTo on all objects to implement bubbleUp and
trickleDown,e.g.:

if ((_ nodeArray[idx2]) < 0) {

}

Wednesday, July 25, 12

Bounds on type parameters

® What we want is a way of enforcing that the type parameter
T allowed by the HeapImpl12 class -- as well as the Heap12

interface itself -- be of type Comparable.

® Java generics facilitates these constraints on T by supporting
bounds on type parameters.

® Suppose, when implementing a generic class with type
parameter T, we want to ensure that T must be some sub-

class of a class A.

® Example: we want to implement a container for Shape
objects -- we don’t care what particular kind of Shapes
they are, so long as they all inherit from the Shape class.

Wednesday, July 25, 12

Bounds on type parameters

® TJo implement a generic class with the
guarantee that type parameter T is a
Shape, we can use an upper bound

Object
on T:
class MyContainer<T > { I
} S Shape

® Here, Shape is the upper bound on
type parameter T.

Circle| |Rect| |Triangle

® MyContainer can only be
instantiated when T is Shape, or any
sub-class of Shape.

Wednesday, July 25, 12

Bounds on type parameters

® Given this upper bound on T, the Java compiler will
enforce that T be of type shape:

MyContainer<Shape> containerl =
new MyContainer<Shape>(); // OK

MyContainer<Circle> container2 =
new MyContainer<Circle>(); // OK

MyContainer<Object> container4 =
new MyContainer<Object>(); // Not OK

Compiler error message:
type parameter java.lang.Object is not within its bound

MyContainer<Object> container4 = new MyContainer<Object>() ;

MyContainer<Student> container3 =
new MyContainer<Student>(); // Not OK

Wednesday, July 25, 12

Bounds on type parameters

® We can also require that type T implement some interface.

® For example,a HeapImpll2 should only store elements
that are all Comparable.

® |ava generics gives us this power:

class HeapImpll2<T > implements Heapl2<T> {

}

® The” " enforces that any T we pass in
as the type parameter must be of type Comparable.

® Since Comparable is an interface, this means that type T
must implement the interface Comparable (even though
we use the word “extends”).

Wednesday, July 25, 12

Bounds on type parameters

® W/ith this restriction on T in place, we can no longer
instantiate a HeapImpll2 with a type parameter T that does

not implement Comparable:

// String and Integer are both Comparable
HeapImpll2<String> heapl = new HeapImpll2<String>(); // OK
HeapImpll2<Integer> heap2 = new HeapImpll2<Integer>(); // OK

// Next line won’t compile because Object is not Comparable
HeapImpll2<Object> heap3 = new HeapImpll2<Object>() ;

® The Java compiler will prevent us from instantiating a heap
with a non-Comparable type.

® We may also wish to define the interface Heap12 to accept
only those types T that implement Comparable:

interface Heapl2<T > {

}

Wednesday, July 25, 12

Bounds on type parameters

® |n the previous example, Comparable was the
upper bound of T.

® The Comparable interface takes a type parameter
of its own.

interface Comparable<U> ({
int compareTo (U o) ;

}

(In the previous example, we used the Comparable interface in “compatibility
mode”, where we did not specify v).

® The type parameter U specifies what kinds of
objects o we should be able to compare to.

Wednesday, July 25, 12

Bounds on type parameters

® By offering bounds on type parameters, Java also
gives us the power to define what kinds of objects

U we can compareTo, in terms of the type T we've
already defined.

® Example:
class HeapImpll2<T extends Comparable<T>> ... {

}

® Here, we require that whatever type T the
HeapImpll?2 is instantiated with, it must be
Comparable to other objects of type T.

Wednesday, July 25, 12

Bounds on type parameters

® Consider the following example:

class B { }
class A implements Comparable ({

int compareTo (B o) {
return 0;

}
}

® Given the definitions above, an object of type A can only be

compared to objects of type B.

final A a = new A();

final B b = new B();
final int result = a.compareTo(b); // OK

® We cannot compare a to another object of type Al

Wednesday, July 25, 12

Bounds on type parameters

® Given our definition of Heaplmpl |2,
class HeapImpll2<T extends Comparable<T>> ... {
}

if we try to instantiate a HeapImpl1l2 with A as the type
parametetr...

HeapImpll2<A> heap = new HeapImpll2<A> ()
... the compiler will complain:

type parameter A is not within its bound
HeapImpll2<A> h = new HeapImpll2<A>() ;

® This error occurs because, even though A is Comparable
to something (B), it is not Comparable<A>.

Wednesday, July 25, 12

Bounds on type parameters

® On the other hand,
® String implements Comparable<String>

® TInteger implements Comparable<Integer>

® Both string and Integer would be accepted as
type parameters for HeapImpl12:

HeapImpll2<String> hl = new HeapImpll2<String>() ;
HeapImpll2<Integer> h2 = new HeaplImpll2<Integer>() ;

Wednesday, July 25, 12

Bounds on type parameters

® While useful, our current definition of HeapImpl12 is
a bit overly restrictive.

e Consider a hierarchy of Shape classes:

class Shape implements Comparable<Shape> {
int compareTo (Shape o) { ... }

}

class Rectangle extends Shape {
}

® T[he Rectangle class inherits the compareTo
(Shape o) method from its parent Shape class.

Wednesday, July 25, 12

Bounds on type parameters

® However, Rectangle does not offer a method
compareTo (Rectangle o) designed specifically for
other Rectangle objects.

® Hence, the Rectangle class could not be used as the
type parameter T when instantiating a HeapImpl12:

class HeapImpll2<T extends Comparable<T>> ...

® Reason: Even though Rectangle is Comparable
to other Shape objects, it is not
Comparable<Rectangle>.

® |.e,Rectangle offers no int compareTo
(Rectangle o) method.

Wednesday, July 25, 12

Lower bounds on types

® VWhat we need is a way of

expressing that type parameter T
may be Comparable with class T, or

any super-class of T. Object
® E.g.,we want to allow Heapimp112 T
to store Rectangle Objects: Shape
A
® Rectangles are all comparabie
with shape, Where shape is a
SUPeI‘-CIGSS of Rectangle.
Rectangle

® To solve this problem, Java offers
lower bounds on type
parameters.

Wednesday, July 25, 12

Lower bounds on types

® For example, we can allow the HeapImpl12 class

to accept any type T so long as T is Comparable to
class T, or any super-class of T.

class HeapImpll2<T extends Comparable< >> ... |

}

® [he indicates:

® “We don’t care which type T is Comparable to,

so long as it’'s Comparable to some
(or T itself).”

® The keyword indicates the lower
bound of the type parameter.

Wednesday, July 25, 12

Lower bounds on types

® Given this revised definition of
HeapImpll2, We can now instantiate a heap

of Rectangle objects:

HeapImpll2<Rectangle> heap =
new HeapImpll2<Rectangle>(); // OK

Wednesday, July 25, 12

Binary search trees

Still something to be
desired

® Heaps offer fast access to the largest element
in a collection.

® This is most useful in a priority queue.

® However, finding an arbitrary element is still
slow -- O(n) time.

® VWe may want to sacrifice efficiency of access
to the largest access in exchange for increased
efficiency to access any arbitrary element.

Wednesday, July 25, 12

Binary search trees

¢ A binary search tree (BST) is a binary-tree based data
structure that offers O(log n) average-case time costs for:
add (o)
find (o)

remove (o)
findLargest/removelLargest (o)

® As with heaps, BSTs exploit the order relations among
elements.

® Heaps required the root node r of each sub-tree to be no
smaller than any descendant node of r.

® BSTs impose constraints on the magnitude of nodes in the
left sub-tree compared to the magnitude of nodes in the
right sub-tree.

Wednesday, July 25, 12

Binary search trees

® More specifically, a binary search tree (BST) is a
binary tree (not necessarily complete) that has the
following (recursive) ordering property:

® For each node n:

® All nodes in the left sub-tree of n are “less
than” node n itself.

® All nodes in the right sub-tree of n are “greater
than or equal to” node n itself.

® Both the left and right sub-trees are
themselves BSTs.

Wednesday, July 25, 12

Binary search trees

< Node (9) <
(6 (12,
3 @ (8
ORROIRN©®

Binary search trees
< Node (6) <
©

O (12,

Binary search trees

Binary search trees

Which of these trees are valid BSTs?

Binary search trees

Which of these trees are valid BSTs?

Binary search trees

Which of these trees are valid BSTs?

Binary search trees

Which of these trees are valid BSTs?

Binary search trees

Which of these trees are valid BSTs?

Binary search trees

Which of these trees are valid BSTs?

Binary search trees

class BinarySearchTree<T extends Comparable...> {
static class Node<T> {
T data;
Node<T> leftChild, rightChild;

}
Node<T> root = null; // BST is initially empty

Wednesday, July 25, 12

Binary search trees

® BSTs do not permit null elements:

® Unclear what “value” they should have compared
to other elements.

Wednesday, July 25, 12

Binary search trees

® [et us implement the following operations on BSTs:
®@ T find (T o) ;
® T findSmallest ();
®@ T findLargest ()
® add (T o);

® remove (T o) ;

® TJo accomplish this, we will also need a few helper
methods (not exposed to user):

® Node<T> findNode (Node<T> root, T o)
® Node<T> findSuccessor (Node<T> node) ;

® Node<T> findParent (Node<T> root, T o0);

Wednesday, July 25, 12

Finding the largest
element

® Due to the ordering property, finding the
largest element of a BST is easy -- we just
return the right-most node in the whole tree.

Wednesday, July 25, 12

Finding the largest
element

® Due to the ordering property, finding the
largest element of a BST is easy -- we just
return the right-most node in the whole tree.

T findLargest (Node<T> root) ({

/] lterative solution?

/| Recursive solution?

Wednesday, July 25, 12

Finding the largest
element

® Due to the ordering property, finding the
largest element of a BST is easy -- we just
return the right-most node in the whole tree.

Iterative solution
T findLargest (Node<T> root) ({
Node<T> node = root;
while (node. rightChild '= null) ({
node = node. rightChild;
}

return nodeﬂ_data;

}

Wednesday, July 25, 12

Finding the largest
element

® Due to the ordering property, finding the
largest element of a BST is easy -- we just
return the right-most node in the whole tree.

Recursive solution
T findLargest (Node<T> root) ({

return root,_data;
} else {
return

}
}

Wednesday, July 25, 12

Finding the smallest
element

® Due to the ordering property, finding the

smallest element of a BST is easy -- we just
return the left-most node in the whole tree.

T findSmallest (Node<T> root) {
Node<T> node = root;
while (node. leftChild !'= null) {
node = node. leftChild;
}

return nodeﬂ_data;

}

Wednesday, July 25, 12

Finding a node

® The ordering property of binary search trees also
enables efficient search for any particular node.

® Due to the ordering property, there is only one place
in a given BST where value o would be stored.

® [f it’s not there, then o is not contained in the BST
-- hence, we return null.

Wednesday, July 25, 12

Finding a node

® Given the BST below, suppose we wish to find node 4.

® We always start at the root and recurse.

Wednesday, July 25, 12

Finding a node

® Given the BST below, suppose we wish to find node 4.

® We always start at the root and recurse.

Wednesday, July 25, 12

Finding a node

® Given the BST below, suppose we wish to find node 4.

® We always start at the root and recurse.

Wednesday, July 25, 12

Finding a node

® Given the BST below, suppose we wish to find node 4.

® We always start at the root and recurse.

O

<6 @ (@
O O ©® @
D ® €

Wednesday, July 25, 12

Finding a node

® Given the BST below, suppose we wish to find node 4.

® We always start at the root and recurse.

O

4§3? o @ ®
OBROEN©

Wednesday, July 25, 12

Finding a node

® Given the BST below, suppose we wish to find node 4.

® We always start at the root and recurse.

O

2363 @ @ (8
@D ©® G

Wednesday, July 25, 12

Finding a node

® Given the BST below, suppose we wish to find node 4.

® We always start at the root and recurse.

Wednesday, July 25, 12

Finding a node

® Given the BST below, suppose we wish to find node 4.

® We always start at the root and recurse.

O

H O © @
1=4@D ® G

Wednesday, July 25, 12

Finding a node

® Code;

// Returns the Node containing o, or else
// null if o is not contained in the BST.
Node<T> findNode (Node<T> root, T o) {
if (root. data.equals (o) {
return root;
} else if (root. data.compareTo(o) < 0 &é&
root. rightChild !'= null) ({
return findNode (root. rightChild, o);
} else if (root. data.compareTo(o) >= 0 &é&
root. leftChild '= null) {
return findNode (root. leftChild, o);
} else {

}

Wednesday, July 25, 12

Finding a node

® The findNode (root, o) method would not be

exposed to the user in the BinarySearchTree ADT
interface.

® However, we can “wrap” this method with T £ind (T
o) so that the underlying node infrastructure is hidden:

T findNode (T o) {
if (_root == null) {
throw NoSuchElementException() ;
} else {
final Node<T> node = findNode(root, 0);
1f (node == null) {
throw NoSuchElementException() ;
} else {
return node. data;

}
}

Wednesday, July 25, 12

Finding a node’s successor

® |t will turn out to be useful
to be able to find a node’s
successor in the BST.

(9,
® [he successor of node n
is the node with the next
higher value. O ©
3 @ (@ (8

b ©® G

Finding a node’s successor

® |t will turn out to be useful
to be able to find a node’s
successor in the BST.

® [he successor of node n
is the node with the next
higher value.

® Examples:
Successor or 4 is 6.

Successor of 12 is |3.
Successor of 8 is 9.

Finding a node’s successor

® |t will turn out to be useful
to be able to find a node’s
successor in the BST.

® [he successor of node n
is the node with the next
higher value.

® Examples:
Successor of 3 is 4.

Successor of 12 is |3.
Successor of 8 is 9.

Finding a node’s successor

® |t will turn out to be useful
to be able to find a node’s
successor in the BST.

® [he successor of node n
is the node with the next
higher value.

® Examples:
Successor of 3 is 4.
Successor or 4 is 6.

Successor of 8 is 9.

Finding a node’s successor

® |t will turn out to be useful
to be able to find a node’s
successor in the BST.

® [he successor of node n
is the node with the next
higher value.

® Examples:
Successor of 3 is 4.
Successor or 4 is 6.
Successor of |12 is |3.

Finding a node’s successor

® A successor node of n -- if it exists -- is found by either:

|. Descending into n’s right sub-tree, and then recursively
selecting left-child until no left child exists.

® |ntuition: The right sub-tree has values bigger than n;
we want the smallest such value (left-most node).

2. Finding the lowest ancestor of n whose left child is also
an ancestor of n.

® |ntuition: Move “up-and-left” in the BST until we can
finally “move right” again, i.e., towards a higher valued
node.

Wednesday, July 25, 12

Finding a node’s successor

® A successor node of n -- if it exists --
is found by either:

2. Finding the lowest ancestor of n
whose left child is also an ancestor
of n.

® Examples:

Successor or 4 is 6.

Successor of 8 is 9.

Wednesday, July 25, 12

Finding a node’s successor

® A successor node of n -- if it exists --
is found by either:

|. Descending into n’s right sub-tree,
and then recursively selecting left-
child until no left child exists.

® Examples:
Successor of 3 is 4.

Successor of 12 is |3.

Wednesday, July 25, 12

Finding a node’s successor

® [he code for Node<T> findSuccessorNode
(Node<T> node) Will be left as an “exercise for the
reader’’.

Wednesday, July 25, 12

Adding a new hode

® Jo add a new node, we must distinguish two
cases:

|. The new node is the first node in the BST.

® |n this case, we simply set this node to be
the root.

2. The new node is not the first node in the BST.

® Then we must find the parent node of the
node we’re about to add.

® Ve then add the new node as a child of the
parent.

Wednesday, July 25, 12

Finding the parent of a
new node

® TJo find the parent node of the new node n we want
to add:

® Recursively search from root down towards the
leaf nodes, as if node n were already inserted.

® Eventually, while recursing at node p, the search for
the node would take us to a left/right child that does
not yet exist.

® At that point, we know p is the parent of n.

® H is the “natural insertion point” for n.

Wednesday, July 25, 12

Finding the parent of a
new node

Where would
we insert 5?

Finding the parent of a
new node

Where would
we insert 5?

Finding the parent of a
new node

Where would
we insert 5?

Finding the parent of a
new node

Where would
we insert 5?

Finding the parent of a
new node

Where would
we insert 5?

Finding the parent of a
new node

// Searches from root for the parent node to which the
// specified new node should be added.
Node<T> findParentNode (Node<T> root, T o) {

// Save comparison result

final int comparison = root. data.compareTo (0);

if (comparison < 0 && root. rightChild != null) {
return findParentNode (root. rightChild, o);

} else if (comparison >= 0 && root. leftChild != null) {
return findParentNode (root. leftChild, o);

} else {
return root;

Wednesday, July 25, 12

Adding a new hode

® We can now implement the add (o) method:

void add (T o) {
final Node<T> node = new Node<T>() ;
node. data = o;
if (_root == null) {
_root = node;
} else {
final Node<T> parent = findParent(root, o0);
if (parent. data.compareTo(o) < 0) {
parent. rightChild = node;
} else {
parent. leftChild = node;

}
}

}

Wednesday, July 25, 12

Removing a hode

® When removing a node n from the BST, we must ensure that:
® The resulting tree is still connected.
® The resulting tree still has the ordering property.

® Consider what might “go wrong” when removing an
arbitrary node n:

O

(6 (12,
3 @ @ (8
D ® ¢

Wednesday, July 25, 12

Removing a hode

® When removing a node n from the BST, we must ensure that:
® The resulting tree is still connected.
® The resulting tree still has the ordering property.

® Consider what might “go wrong” when removing an
arbitrary node n:

O

e Severed!

3 @ (18)
D ©® G

Wednesday, July 25, 12

Removing a hode

® When removing a node n from the BST, we must ensure that:
® The resulting tree is still connected.
® The resulting tree still has the ordering property.

® Consider what might “go wrong” when removing an
arbitrary node n:

O

(6 (12,
3 @ @ (8
D ® ¢

Wednesday, July 25, 12

Removing a hode

® When removing a node n from the BST, we must ensure that:
® The resulting tree is still connected.
® The resulting tree still has the ordering property.

® Consider what might “go wrong” when removing an
arbitrary node n: o

(6 (18)
3 @ O ¢

Ordering property

Q @ is now violated!

Wednesday, July 25, 12

Removing a hode

® Jo remove a node and still ensure the resulting

tree is a proper BST, we must distinguish three
cases:

|. nis aleaf node -- in this case, we just snip it off.
2. nis an internal node with only one child.

® VWe remove n and “splice around” it.
3. nis an internal node with two child nodes.

® We replace n with the value of its successor s,
and then recursively remove s.

Wednesday, July 25, 12

Removing a leaf node

Example: bst.remove (8) ;

Removing a node with
one child node

Example: bst.remove (7) ;

Removing a node with
two child nodes

Example: bst.remove (12) ;

Removing the successor

® VWhen removing a node n with two children,
we replace n with the value of its successor s,
and then remove s itself.

® But what if s also has two children; then we
need to remove its successor, and so on.

® Will the “removal” process ever terminate?

® -- if n has two children, then its
successor s cannot have a left-child.

Wednesday, July 25, 12

Removing the successor

® VWhen removing a node n with two children,
we replace n with the value of its successor s,
and then remove s itself.

® But what if s also has two children; then we
need to remove its successor, and so on.

® Will the “removal” process ever terminate?

® -- if n has two children, then its
successor s cannot have a left-child.

Wednesday, July 25, 12

Successor of node with
two children

® Example:
® |Letnbenode |2
® Then n’s successor s is | 3.

® s only has one child.

Successor of node with
two children

® Example:
® |etnbenode |2
® Then n’s successor s is | 3.
® s only has one child.
® Suppose s had two children.

® Then it would have a left
child, x.

Wednesday, July 25, 12

Successor of node with
two children

® Ve conclude that, if n has two
children, then its successor s
cannot have two children.

® Hence, removing s amounts to
either just “snipping it off”’ (case
1), or “slicing around it” (case 2).

® Hence, the remove method will
in fact terminate.

Wednesday, July 25, 12

remove (o)

® We can finally define the remove (o) method:

void remove (T o) {
final Node<T> node = findNode(root, o);
removeNode (node) ;

}

void removeNode (Node<T> node) { // Helper method
if (node. leftChild == null &&
node. rightChild == null) ({
// “Snip” node from its parent
} else if (node. leftChild == null ||
node. rightChild == null) ({
// “Splice around” node
} else {
final Node<T> successor = findSuccessor(root, 0);
node. data = successor. data;
removeNode (successor) ;

Wednesday, July 25, 12

BSTs:
Time costs of methods

® All of the fundamental operations --
add (o), £find (o), remove (0), and

findLargest/findSmallest -- take time
O(h), where h is the height of the BST.

® |n the average case, the height h of the BST
is log n.

® \What about in the worst case!

Wednesday, July 25, 12

BSTs:
Time costs of methods

® |n the worst case, the user will call add and
remove in an “unfortunate” order, resulting in
a “degenerate” BST of the following variety:

® |n this case, the
height of the BST is
n -- and hence the
fundamental BST
operations would

also be O(n).

Wednesday, July 25, 12

Balancing BSTs

® TJo prevent this “worst-case” condition from
occurring, we need to employ some form of
“tree balancing” to keep the tree from
degenerating into a linked list.

® [wo prominent data structures which ensure a
balanced tree include:

® AVL trees.

® Red-black trees.

Wednesday, July 25, 12

AVL trees.

Maintaining balance

® The time cost of the fundamental add/
find/remove operations in BSTs
depends on the height of the BST.

® Given an “unfortunate” sequence of
add/remove operations, the BST can
“degenerate” into a long “chain” of
nodes of height n.

® Hence, in the worst case, the time
cost of the fundamental BST
operations is O(n).

® |t would be beneficial to prevent this
worst case from ever occurring.

Wednesday, July 25, 12

Maintaining balance

® Fortunately, it turns out that BSTs eft
(4§ b D r .
can be “fixed” to store the same © <—‘ rotation
elements, but to have a smaller
O OL

height.

® Consider the BST on the right
(with root r) with height 3.

® |t is unbalanced -- height of left
sub-tree is 0, height of right
sub-tree is 2.

® We can “fix” this BST to have
equal height on both sub-trees by
“rotating” node n towards r.

Wednesday, July 25, 12

Maintaining balance

® Fortunately, it turns out that BSTs
can be “fixed” to store the same
elements, but to have a smaller
height.

n

® Consider the BST on the right
(with root r) with height 3.

® |t is unbalanced -- height of left

sub-tree is 0, height of right New root is n.

. Height of BST is 2.
sub-tree is 2. Left and right sub-trees

® We can “fix” this BST to have botn have height | (the
, BST is balanced).
equal height on both sub-trees by
“rotating’”’ node n towards r.

Wednesday, July 25, 12

Maintaining balance

® By rotating nodes to either “up-to-the-left” or “up-
to-the-right”, we can restore balance to a BST and
thereby decrease its height.

® The rotations will take place whenever the user
adds or removes a hode from the BST.

® By rotating properly, we can ensure that the BST
remains balanced or “almost balanced” at all times.

® This system of node rotations was first developed
in 1962 by G.M. Adelson-Velskii and E.M. Landis;
hence, we call this technique an -tree.

Wednesday, July 25, 12

AVL trees

® An AVL tree is a BST in which two kinds of
rotations -- left-rotations and right-rotations -- are
applied to nodes as necessary, in order to keep
the balance of each sub-tree within certain limits.

® The balance of a node n is the difference in height
between n’s left sub-tree minus its right sub-tree.

® A non-existent sub-tree is defined to have
height 0.

® Rotations are applied to nodes during the add
and remove methods to keep every node’s
balance within -1 and +1 (inclusive).

Wednesday, July 25, 12

Height and balance

Balance = -2 Balance = +1 Balance = 0

n n n

Height and balance

® AVL trees require that each node n
record its balance as well as the h=2 b=

height of the sub-tree rooted at n.

h=0, b=0

® Ve can store these as extra h=1. b=0

instance variables in the Node
class:

h=0, b=0

class Node<T> { h=0, b=0

Node<T> parent;
Node<T> leftChild, rightChild;
int balance, height;

\ _

Wednesday, July 25, 12

Adding a new node

® VWhenever we add a

, we set Iits by be
and both to 0. |
. h=0, b=0
® We attach n as a left/right h=1.b=0

child of its parent.

® We must then recursively ~ 170:6=0

update the height and
balance of all nodes from n

up through the root of the
whole BST.

h=0, b=0

Wednesday, July 25, 12

Adding a new node

® \VWhenever we add a new
node n, we set its _height

h=2, b=-1
and balance both to 0.

h=0, b=0
h=1, b=0

® We must then recursively ~ 170:6=0

update the height and
balance of all nodes from n
up through the root of the

whole BST.

h=0, b=0

Wednesday, July 25, 12

Adding a new node

® \VWhenever we add a new
node n, we set its _height
and balance both to 0.

h=2, b=-1

h=0, b=0
® We attach n as a left/right h=1.b=0

child of its parent.
h=0, b=0
h=0, b=0

n

Wednesday, July 25, 12

Adding a new node

® VWhenever we add a new
node n, we set its _height b pe

and balance both to 0.
. h=0, b=0
® We attach n as a left/right

child of its parent. E
h=1, b=+

h=0, b=0
h=0, b=0

Wednesday, July 25, 12

Adding a new node

® \VWhenever we add a new
node n, we set its _height
and balance both to 0.

h=0, b=0
® We attach n as a left/right h=2. b=1

child of its parent.

h=1, b=+
h=0, b=0

h=0, b=0

Wednesday, July 25, 12

Correcting imbalances

® Suppose, when recursively updating the

height and balance data, we determine that
the balance of a node n is either -2 or +2.

® n is considered imbalanced.

® Then we must apply an AVL rotation to

correct the imbalance.

e Different rotations apply to different node

configurations...

Wednesday, July 25, 12

Imbalanced node configurations

Balance = +2

The
is 2 higher than

This case is called LL.

Imbalanced node configurations

Balance = -2

The
is 2 higher than ? (b

This case is called RR.

Imbalanced node configurations

Balance = +2

The
is 2 higher than

This case is called LR.

Imbalanced node configurations

Balance = -2

The
is 2 higher than ? (b]

This case is called RL.

Fixing configuration LL

® TJo fix the imbalance in node a, we will perform
a right rotation of node b towards a.

Right
rotation

Original tree

Fixing configuration LL

® TJo fix the imbalance in node a, we will perform
a right rotation of node b towards a.

Right
rotation

Original tree

Fixing configuration LL

® TJo fix the imbalance in node a, we will perform
a right rotation of node b towards a.

Right
rotation

Make a the right child of
b, and make b the new

Original tree root of the sub-tree.

Wednesday, July 25, 12

Fixing configuration LL

® TJo fix the imbalance in node a, we will perform
a right rotation of node b towards a.

Right
rotation

Original tree

Fixing configuration LL

® TJo fix the imbalance in node a, we will perform
a right rotation of node b towards a.

Right
rotation

Original tree

Fixing configuration RR

® TJo fix the imbalance in node a, we will perform
a left rotation of node b towards a.

Left

Q \ rotation

Original tree

Fixing configuration RR

® TJo fix the imbalance in node a, we will perform
a left rotation of node b towards a.

Left

Q | rotation

Original tree

Fixing configuration RR

® TJo fix the imbalance in node a, we will perform
a left rotation of node b towards a.

Left
rotation

Make a the right child of
b, and make b the new
root of the sub-tree.

Original tree

Wednesday, July 25, 12

Fixing configuration RR

® TJo fix the imbalance in node a, we will perform
a left rotation of node b towards a.

Left

Q | rotation

Original tree

Fixing configuration RR

® TJo fix the imbalance in node a, we will perform
a left rotation of node b towards a.

Left

Q | rotation

Original tree

Imbalanced node configurations

® Note how LL and RR, as well as LR and RL, are
symmetric to each other.

® || is fixed by right rotating a.
® RR is fixed by left rotating a.

® [he other two cases -- LR and RL -- can be fixed
by two rotations in succession.

Fixing configuration LR

® To fix the imbalance in node a, we will first
perform a left rotation of node e towards b.

Left
rotation

Original tree

Fixing configuration LR

® To fix the imbalance in node a, we will first
perform a left rotation of node e towards b.

Left G

rotation

A\? i{l

Original tree

Fixing configuration LR

® To fix the imbalance in node a, we will first
perform a left rotation of node e towards b.

Original tree

Fixing configuration LR

® Now we perform a right rotation of e towards a.

Right
rotation

0 Now we're back to LL -- and
we already know how to
correct this (by applying a
Original tree right rotation of e towards a).

Wednesday, July 25, 12

Fixing configuration LR

® Now we perform a right rotation of e towards a.

(e) Balance =0

——=
|
| ———
——
——

Original tree new balance

Fixing configuration RL

® Fixing configuration RL is

Balance = -2
exactly symmetric to fixing LR:

® First apply a right rotation of
e towards b.

® This returns the
configuration to RR.

® Then apply a left rotation of e
towards a.

® | eft as an “‘exercise for the
reader’’.

Wednesday, July 25, 12

Removing a nhew hode

® When we remove a node n, we
must distinguish the three cases as

outlined last lecture: h=3, b=-2
® nis aleaf node. h=0, b=0

h=2, b=
® n has only one child.

® n has two children. h=1, b=-1

, h=0, b=0
® After removing n, we must update -q p=0

the height and balance of all nodes
between n and the root.

Wednesday, July 25, 12

Removing a nhew hode

® VWhen we remove a nhode n, we
must distinguish the three cases as
outlined last lecture:

® nis aleaf node. h=0, b=0
® n has only one child.
® n has two children.

® After removing n, we must update -q p=0
the height and balance of all nodes
between n and the root.

Wednesday, July 25, 12

Removing a new node

® VWhen we remove a nhode n, we
must distinguish the three cases as
outlined last lecture:

® nis aleaf node. h=0, b=0

h=1, b=0
® n has only one child.
® n has two children.

® After removing n, we must update -q p=0
the height and balance of all nodes
between n and the root.

® Might require an AVL rotation.

Wednesday, July 25, 12

AVL trees

® Through storing the height and balance of each node and
implementing AVL rotations as necessary, we can ensure
that the BST is never “more imbalanced” than +1 or -|.

® This yields a BST for which h=0(log n) in the worst
case, not just the average case.

® The AVL rotations themselves take O(1) time.

® Each rotation takes a constant number of “node
switches”.

® Hence, with AVL trees, the fundamental tree
operations add, £ind, and remove all operate in
O(log n) time worst-case.

Wednesday, July 25, 12

Duplicate keys

® |n contrast to “regular” BSTs, duplicate keys are
not permitted in AVL trees.

® With duplicate keys, rotating sub-trees could
cause the tree to violate the BST ordering
property.

Wednesday, July 25, 12

Duplicate keys

® However, a problem arises when we start rotating
nodes in a sub-tree:

® Suppose a and b have the same key (e.g., 5).

Wednesday, July 25, 12

Duplicate keys

® However, a problem arises when we start rotating
nodes in a sub-tree:

® Suppose a and b have the same key (e.g., 5).

® Suppose we then left-rotate b towards a.
Left

rotation

Wednesday, July 25, 12

Duplicate keys

® Now, suppose we want to find node a starting at
the root (node b).

® We will descend the wrong sub-tree of b.

® \We will never find a.

O
(3) (4

Wednesday, July 25, 12

Duplicate keys

® One solution is to:

® Disallow multiple nodes
with the same key.

® VWhenever we add an
element with the same
key, we append that new
element to that node’s
list of objects.

Wednesday, July 25, 12

