
CSE 12:
Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Twelve
25 July 2012

Wednesday, July 25, 12

More on generics.

Wednesday, July 25, 12

Collections to hold
data of type T

• Up to now we have discussed generics in its
simplest usage -- store data of an arbitrary
type T in a container.

• This worked fine for lists/arrays/stacks/
queues, in which we ignore any order
relations among the elements.

• Sometimes, however, the type T cannot be
“just any old Object” -- type T must
sometimes satisfy some conditions.

Wednesday, July 25, 12

Constraints on T
• An example of this is the HeapImpl12 class you are

building for P4.

• The elements must all be Comparable -- the heap
implementation needs to be able to call
compareTo(o) on every element stored in the
tree.

• If we place no restrictions on T, then the Java
compiler cannot guarantee that an arbitrary
element of the _nodeArray will actually be
Comparable.

Wednesday, July 25, 12

Constraints on T

• Suppose we add three objects to a heap:

heap = new Heap12<Object>();
heap.add(“Michael”); // OK: String is Comparable
heap.add(“Bolton”); // OK: String is Comparable
heap.add(new Object()); // Not OK: Object not Comparable

• Internally, the HeapImpl12 class will need to call
compareTo on all objects to implement bubbleUp and
trickleDown, e.g.:

if (_nodeArray[idx1].compareTo(_nodeArray[idx2]) < 0) {
 ...
} But if idx1 refers to the Object we added,

this method will fail because Object does
not implement the Comparable interface.

Wednesday, July 25, 12

Bounds on type parameters
• What we want is a way of enforcing that the type parameter

T allowed by the HeapImpl12 class -- as well as the Heap12
interface itself -- be of type Comparable.

• Java generics facilitates these constraints on T by supporting
bounds on type parameters.

• Suppose, when implementing a generic class with type
parameter T, we want to ensure that T must be some sub-
class of a class A.

• Example: we want to implement a container for Shape
objects -- we don’t care what particular kind of Shapes
they are, so long as they all inherit from the Shape class.

Wednesday, July 25, 12

Bounds on type parameters
• To implement a generic class with the

guarantee that type parameter T is a
Shape, we can use an upper bound
on T:

class MyContainer<T extends Shape> {
 ...
}

• Here, Shape is the upper bound on
type parameter T.

• MyContainer can only be
instantiated when T is Shape, or any
sub-class of Shape.

Shape

Circle Rect Triangle

Object

Upper bound on T

Wednesday, July 25, 12

Bounds on type parameters

• Given this upper bound on T, the Java compiler will
enforce that T be of type Shape:
MyContainer<Shape> container1 =
 new MyContainer<Shape>(); // OK

MyContainer<Circle> container2 =
 new MyContainer<Circle>(); // OK

MyContainer<Object> container4 =
 new MyContainer<Object>(); // Not OK

MyContainer<Student> container3 =
 new MyContainer<Student>(); // Not OK

 Compiler error message:
 type parameter java.lang.Object is not within its bound
 MyContainer<Object> container4 = new MyContainer<Object>();

Wednesday, July 25, 12

• We can also require that type T implement some interface.

• For example, a HeapImpl12 should only store elements
that are all Comparable.

• Java generics gives us this power:

class HeapImpl12<T extends Comparable> implements Heap12<T> {
 ...
}

• The “extends Comparable” enforces that any T we pass in
as the type parameter must be of type Comparable.

• Since Comparable is an interface, this means that type T
must implement the interface Comparable (even though
we use the word “extends”).

Bounds on type parameters

Wednesday, July 25, 12

• With this restriction on T in place, we can no longer
instantiate a HeapImpl12 with a type parameter T that does
not implement Comparable:
// String and Integer are both Comparable
HeapImpl12<String> heap1 = new HeapImpl12<String>(); // OK
HeapImpl12<Integer> heap2 = new HeapImpl12<Integer>(); // OK

// Next line won’t compile because Object is not Comparable
HeapImpl12<Object> heap3 = new HeapImpl12<Object>();

• The Java compiler will prevent us from instantiating a heap
with a non-Comparable type.

• We may also wish to define the interface Heap12 to accept
only those types T that implement Comparable:

interface Heap12<T extends Comparable> {
 ...
}

Bounds on type parameters

Wednesday, July 25, 12

• In the previous example, Comparable was the
upper bound of T.

• The Comparable interface takes a type parameter
of its own.

interface Comparable<U> {
 int compareTo (U o);
}

(In the previous example, we used the Comparable interface in “compatibility
mode”, where we did not specify U).

• The type parameter U specifies what kinds of
objects o we should be able to compare to.

Bounds on type parameters

Wednesday, July 25, 12

• By offering bounds on type parameters, Java also
gives us the power to define what kinds of objects
U we can compareTo, in terms of the type T we’ve
already defined.

• Example:
class HeapImpl12<T extends Comparable<T>> ... {
 ...
}

• Here, we require that whatever type T the
HeapImpl12 is instantiated with, it must be
Comparable to other objects of type T.

Bounds on type parameters

Wednesday, July 25, 12

• Consider the following example:
class B { }
class A implements Comparable {
 int compareTo (B o) {
 return 0;
 }
}

• Given the definitions above, an object of type A can only be
compared to objects of type B.
final A a = new A();
final B b = new B();
final int result = a.compareTo(b); // OK

• We cannot compare a to another object of type A!

Bounds on type parameters

Wednesday, July 25, 12

• Given our definition of HeapImpl12,

class HeapImpl12<T extends Comparable<T>> ... {
 ..
}

if we try to instantiate a HeapImpl12 with A as the type
parameter...

HeapImpl12<A> heap = new HeapImpl12<A>();

... the compiler will complain:

 type parameter A is not within its bound
 HeapImpl12<A> h = new HeapImpl12<A>();

• This error occurs because, even though A is Comparable
to something (B), it is not Comparable<A>.

Bounds on type parameters

Wednesday, July 25, 12

• On the other hand,

• String implements Comparable<String>

• Integer implements Comparable<Integer>

• Both String and Integer would be accepted as
type parameters for HeapImpl12:

HeapImpl12<String> h1 = new HeapImpl12<String>();
HeapImpl12<Integer> h2 = new HeapImpl12<Integer>();

Bounds on type parameters

Both are OK

Wednesday, July 25, 12

• While useful, our current definition of HeapImpl12 is
a bit overly restrictive.

• Consider a hierarchy of Shape classes:

class Shape implements Comparable<Shape> {
 int compareTo (Shape o) { ... }
}
class Rectangle extends Shape {
 ...
}

• The Rectangle class inherits the compareTo
(Shape o) method from its parent Shape class.

Bounds on type parameters

Wednesday, July 25, 12

• However, Rectangle does not offer a method
compareTo (Rectangle o) designed specifically for
other Rectangle objects.

• Hence, the Rectangle class could not be used as the
type parameter T when instantiating a HeapImpl12:

class HeapImpl12<T extends Comparable<T>> ...

• Reason: Even though Rectangle is Comparable
to other Shape objects, it is not
Comparable<Rectangle>.

• I.e., Rectangle offers no int compareTo
(Rectangle o) method.

Bounds on type parameters

Wednesday, July 25, 12

Lower bounds on types
• What we need is a way of

expressing that type parameter T
may be Comparable with class T, or
any super-class of T.

• E.g., we want to allow HeapImpl12
to store Rectangle objects:

• Rectangles are all Comparable
with Shape, where Shape is a
super-class of Rectangle.

• To solve this problem, Java offers
lower bounds on type
parameters.

Shape

Rectangle

Lower bound on T

Object

Wednesday, July 25, 12

Lower bounds on types
• For example, we can allow the HeapImpl12 class

to accept any type T so long as T is Comparable to
class T, or any super-class of T.

class HeapImpl12<T extends Comparable<? super T>> ... {
 ...
}

• The wildcard type ? indicates:

• “We don’t care which type T is Comparable to,
so long as it’s Comparable to some super-class
of T (or T itself).”

• The keyword super indicates the lower
bound of the type parameter.

Wednesday, July 25, 12

Lower bounds on types

• Given this revised definition of
HeapImpl12, we can now instantiate a heap
of Rectangle objects:

HeapImpl12<Rectangle> heap =
 new HeapImpl12<Rectangle>(); // OK

Wednesday, July 25, 12

Binary search trees

Wednesday, July 25, 12

Still something to be
desired

• Heaps offer fast access to the largest element
in a collection.

• This is most useful in a priority queue.

• However, finding an arbitrary element is still
slow -- O(n) time.

• We may want to sacrifice efficiency of access
to the largest access in exchange for increased
efficiency to access any arbitrary element.

Wednesday, July 25, 12

Binary search trees
• A binary search tree (BST) is a binary-tree based data

structure that offers O(log n) average-case time costs for:
add(o)
find(o)
remove(o)
findLargest/removeLargest(o)

• As with heaps, BSTs exploit the order relations among
elements.

• Heaps required the root node r of each sub-tree to be no
smaller than any descendant node of r.

• BSTs impose constraints on the magnitude of nodes in the
left sub-tree compared to the magnitude of nodes in the
right sub-tree.

Wednesday, July 25, 12

Binary search trees
• More specifically, a binary search tree (BST) is a

binary tree (not necessarily complete) that has the
following (recursive) ordering property:

• For each node n:

• All nodes in the left sub-tree of n are “less
than” node n itself.

• All nodes in the right sub-tree of n are “greater
than or equal to” node n itself.

• Both the left and right sub-trees are
themselves BSTs.

Wednesday, July 25, 12

Binary search trees

9

6

3 7

84

12

10 18

13

Left sub-tree < Node (9) ≤ Right sub-tree

Wednesday, July 25, 12

Binary search trees

9

6

3 7

84

12

10 18

13

Left sub-tree < Node (6) ≤ Right sub-tree

Wednesday, July 25, 12

Binary search trees

9

6

3 7

84

12

10 18

13

Note that this node must
still be greater or equal to

9!

Wednesday, July 25, 12

Binary search trees

3

2

0

1

12

18

13

Which of these trees are valid BSTs?

Wednesday, July 25, 12

Binary search trees

3

2

0

1

12

18

13

Which of these trees are valid BSTs?

Yes

Wednesday, July 25, 12

Binary search trees

9

6

3

12

8

Which of these trees are valid BSTs?

Wednesday, July 25, 12

Binary search trees

9

6

3

12

8

Which of these trees are valid BSTs?

No

Wednesday, July 25, 12

Binary search trees

e

c

b d

a

Which of these trees are valid BSTs?

g

n

m

f

Wednesday, July 25, 12

Binary search trees

e

c

b d

a

Which of these trees are valid BSTs?

g

n

m

f
No

Wednesday, July 25, 12

Binary search trees
class BinarySearchTree<T extends Comparable...> {
 static class Node<T> {
 T _data;
 Node<T> _leftChild, _rightChild;
 }
 Node<T> _root = null; // BST is initially empty

 ...
}

Wednesday, July 25, 12

Binary search trees

• BSTs do not permit null elements:

• Unclear what “value” they should have compared
to other elements.

Wednesday, July 25, 12

Binary search trees
• Let us implement the following operations on BSTs:

• T find (T o);

• T findSmallest ();

• T findLargest ();

• add (T o);

• remove (T o);

• To accomplish this, we will also need a few helper
methods (not exposed to user):

• Node<T> findNode (Node<T> root, T o);

• Node<T> findSuccessor (Node<T> node);

• Node<T> findParent (Node<T> root, T o);

Wednesday, July 25, 12

Finding the largest
element

• Due to the ordering property, finding the
largest element of a BST is easy -- we just
return the right-most node in the whole tree.

9

6

3 7

12

10 18

Wednesday, July 25, 12

Finding the largest
element

• Due to the ordering property, finding the
largest element of a BST is easy -- we just
return the right-most node in the whole tree.

T findLargest (Node<T> root) {

}

// Iterative solution?

// Recursive solution?

Wednesday, July 25, 12

Finding the largest
element

• Due to the ordering property, finding the
largest element of a BST is easy -- we just
return the right-most node in the whole tree.

T findLargest (Node<T> root) {
 Node<T> node = root;
 while (node._rightChild != null) {
 node = node._rightChild;
 }
 return node._data;
}

Iterative solution

Wednesday, July 25, 12

Finding the largest
element

• Due to the ordering property, finding the
largest element of a BST is easy -- we just
return the right-most node in the whole tree.

T findLargest (Node<T> root) {
 if (root._rightChild == null) {
 return root._data;
 } else {
 return findLargest(root._rightChild);
 }
}

Recursive solution
Base case

Recursive part

Wednesday, July 25, 12

Finding the smallest
element

• Due to the ordering property, finding the
smallest element of a BST is easy -- we just
return the left-most node in the whole tree.

T findSmallest (Node<T> root) {
 Node<T> node = root;
 while (node._leftChild != null) {
 node = node._leftChild;
 }
 return node._data;
}

Wednesday, July 25, 12

Finding a node

• The ordering property of binary search trees also
enables efficient search for any particular node.

• Due to the ordering property, there is only one place
in a given BST where value o would be stored.

• If it’s not there, then o is not contained in the BST
-- hence, we return null.

Wednesday, July 25, 12

Finding a node
• Given the BST below, suppose we wish to find node 4.

• We always start at the root and recurse.

9

6

3 7

84

12

10 18

13

4 ≶ 9

Wednesday, July 25, 12

Finding a node
• Given the BST below, suppose we wish to find node 4.

• We always start at the root and recurse.

9

6

3 7

84

12

10 18

13

4 < 9

Wednesday, July 25, 12

Finding a node
• Given the BST below, suppose we wish to find node 4.

• We always start at the root and recurse.

9

6

3 7

84

12

10 18

13

4 ≶ 6?

Wednesday, July 25, 12

Finding a node
• Given the BST below, suppose we wish to find node 4.

• We always start at the root and recurse.

9

6

3 7

84

12

10 18

13

4 < 6

Wednesday, July 25, 12

Finding a node
• Given the BST below, suppose we wish to find node 4.

• We always start at the root and recurse.

9

6

3 7

84

12

10 18

13

4 ≶ 3?

Wednesday, July 25, 12

Finding a node
• Given the BST below, suppose we wish to find node 4.

• We always start at the root and recurse.

9

6

3 7

84

12

10 18

13

4 ≥ 3

Wednesday, July 25, 12

Finding a node
• Given the BST below, suppose we wish to find node 4.

• We always start at the root and recurse.

9

6

3 7

84

12

10 18

134 ≶ 4?

Wednesday, July 25, 12

Finding a node
• Given the BST below, suppose we wish to find node 4.

• We always start at the root and recurse.

9

6

3 7

84

12

10 18

134 = 4
Done!

Wednesday, July 25, 12

Finding a node
• Code:

// Returns the Node containing o, or else
// null if o is not contained in the BST.
Node<T> findNode (Node<T> root, T o) {
 if (root._data.equals(o) {
 return root;
 } else if (root._data.compareTo(o) < 0 && // Right subtree
 root._rightChild != null) {
 return findNode(root._rightChild, o);
 } else if (root._data.compareTo(o) >= 0 && // Left subtree
 root._leftChild != null) {
 return findNode(root._leftChild, o);
 } else {
 return null;
 }
}

Due to the ordering property, there is only one
place in a given BST where value o would be
stored. If it’s not there, then o is not contained in
the BST -- hence, we return null.

Wednesday, July 25, 12

Finding a node
• The findNode(root, o) method would not be

exposed to the user in the BinarySearchTree ADT
interface.

• However, we can “wrap” this method with T find (T
o) so that the underlying node infrastructure is hidden:

T findNode (T o) {
 if (_root == null) {
 throw NoSuchElementException();
 } else {
 final Node<T> node = findNode(_root, o);
 if (node == null) {
 throw NoSuchElementException();
 } else {
 return node._data;
 }
}

Wednesday, July 25, 12

Finding a node’s successor
• It will turn out to be useful

to be able to find a node’s
successor in the BST.

• The successor of node n
is the node with the next
higher value.

9

6

3 7

84

12

10 18

13

Wednesday, July 25, 12

Finding a node’s successor
• It will turn out to be useful

to be able to find a node’s
successor in the BST.

• The successor of node n
is the node with the next
higher value.

• Examples:
Successor of 3 is 4.
Successor or 4 is 6.
Successor of 12 is 13.
Successor of 8 is 9.

9

6

3 7

84

12

10 18

13

Wednesday, July 25, 12

Finding a node’s successor
• It will turn out to be useful

to be able to find a node’s
successor in the BST.

• The successor of node n
is the node with the next
higher value.

• Examples:
Successor of 3 is 4.
Successor or 4 is 6.
Successor of 12 is 13.
Successor of 8 is 9.

9

6

3 7

84

12

10 18

13

Wednesday, July 25, 12

Finding a node’s successor
• It will turn out to be useful

to be able to find a node’s
successor in the BST.

• The successor of node n
is the node with the next
higher value.

• Examples:
Successor of 3 is 4.
Successor or 4 is 6.
Successor of 12 is 13.
Successor of 8 is 9.

9

6

3 7

84

12

10 18

13

Wednesday, July 25, 12

Finding a node’s successor
• It will turn out to be useful

to be able to find a node’s
successor in the BST.

• The successor of node n
is the node with the next
higher value.

• Examples:
Successor of 3 is 4.
Successor or 4 is 6.
Successor of 12 is 13.
Successor of 8 is 9.

9

6

3 7

84

12

10 18

13

Wednesday, July 25, 12

Finding a node’s successor
• A successor node of n -- if it exists -- is found by either:

1. Descending into n’s right sub-tree, and then recursively
selecting left-child until no left child exists.

• Intuition: The right sub-tree has values bigger than n;
we want the smallest such value (left-most node).

2. Finding the lowest ancestor of n whose left child is also
an ancestor of n.

• Intuition: Move “up-and-left” in the BST until we can
finally “move right” again, i.e., towards a higher valued
node.

Wednesday, July 25, 12

Finding a node’s successor

9

6

3 7

84

12

10 18

13

• A successor node of n -- if it exists --
is found by either:

1. Descending into n’s right sub-tree,
and then recursively selecting left-
child until no left child exists.

2. Finding the lowest ancestor of n
whose left child is also an ancestor
of n.

• Examples:
Successor of 3 is 4.
Successor or 4 is 6.
Successor of 12 is 13.
Successor of 8 is 9.

Wednesday, July 25, 12

Finding a node’s successor

9

6

3 7

84

12

10 18

13

• A successor node of n -- if it exists --
is found by either:

1. Descending into n’s right sub-tree,
and then recursively selecting left-
child until no left child exists.

2. Finding the lowest ancestor of n
whose left child is also an ancestor
of n.

• Examples:
Successor of 3 is 4.
Successor or 4 is 6.
Successor of 12 is 13.
Successor of 8 is 9.

Wednesday, July 25, 12

Finding a node’s successor
• The code for Node<T> findSuccessorNode

(Node<T> node) will be left as an “exercise for the
reader”.

Wednesday, July 25, 12

Adding a new node
• To add a new node, we must distinguish two

cases:

1. The new node is the first node in the BST.

• In this case, we simply set this node to be
the root.

2. The new node is not the first node in the BST.

• Then we must find the parent node of the
node we’re about to add.

• We then add the new node as a child of the
parent.

Wednesday, July 25, 12

Finding the parent of a
new node

• To find the parent node of the new node n we want
to add:

• Recursively search from root down towards the
leaf nodes, as if node n were already inserted.

• Eventually, while recursing at node p, the search for
the node would take us to a left/right child that does
not yet exist.

• At that point, we know p is the parent of n.

• p is the “natural insertion point” for n.

Wednesday, July 25, 12

Finding the parent of a
new node

9

6

3 7

84

12

10 18

13

Where would
we insert 5?

5 ≶ 9

Wednesday, July 25, 12

Finding the parent of a
new node

9

6

3 7

84

12

10 18

13

Where would
we insert 5?

5 ≶ 6

Wednesday, July 25, 12

Finding the parent of a
new node

9

6

3 7

84

12

10 18

13

Where would
we insert 5?

5 ≶ 3

Wednesday, July 25, 12

Finding the parent of a
new node

9

6

3 7

84

12

10 18

13

Where would
we insert 5?

5 ≶ 4

Wednesday, July 25, 12

Finding the parent of a
new node

9

6

3 7

84

12

10 18

13

Where would
we insert 5?

5New node

New node’s
parent

Wednesday, July 25, 12

Finding the parent of a
new node

// Searches from root for the parent node to which the
// specified new node should be added.
Node<T> findParentNode (Node<T> root, T o) {
 // Save comparison result
 final int comparison = root._data.compareTo(o);

 if (comparison < 0 && root._rightChild != null) {
 return findParentNode(root._rightChild, o);
 } else if (comparison >= 0 && root._leftChild != null) {
 return findParentNode(root._leftChild, o);
 } else { // The appropriate left/child does not yet exist
 return root; // Hence, we’ve found the parent
 }
}

Wednesday, July 25, 12

Adding a new node
• We can now implement the add(o) method:

void add (T o) {
 final Node<T> node = new Node<T>();
 node._data = o;
 if (_root == null) { // Case 1
 _root = node;
 } else { // Case 2
 final Node<T> parent = findParent(_root, o);
 if (parent._data.compareTo(o) < 0) {
 parent._rightChild = node;
 } else {
 parent._leftChild = node;
 }
 }
}

Wednesday, July 25, 12

Removing a node
• When removing a node n from the BST, we must ensure that:

• The resulting tree is still connected.

• The resulting tree still has the ordering property.

• Consider what might “go wrong” when removing an
arbitrary node n:

9

6

3 7

84

12

10 18

13

If we remove node 12,
then we sever its left and
right sub-trees from the
rest of the BST.

Wednesday, July 25, 12

Removing a node
• When removing a node n from the BST, we must ensure that:

• The resulting tree is still connected.

• The resulting tree still has the ordering property.

• Consider what might “go wrong” when removing an
arbitrary node n:

9

6

3 7

84

10 18

13

If we remove node 12,
then we sever its left and
right sub-trees from the
rest of the BST.Severed!

Wednesday, July 25, 12

Removing a node
• When removing a node n from the BST, we must ensure that:

• The resulting tree is still connected.

• The resulting tree still has the ordering property.

• Consider what might “go wrong” when removing an
arbitrary node n:

If instead we replace n
with another node and
“reconnect” another
branch, we might violate
the ordering property.

9

6

3 7

84

12

10 18

13

Wednesday, July 25, 12

Removing a node
• When removing a node n from the BST, we must ensure that:

• The resulting tree is still connected.

• The resulting tree still has the ordering property.

• Consider what might “go wrong” when removing an
arbitrary node n:

If instead we replace n
with another node and
“reconnect” another
branch, we might violate
the ordering property.

9

6

3 7

84

18

10 13

Ordering property
is now violated!

Wednesday, July 25, 12

Removing a node
• To remove a node and still ensure the resulting

tree is a proper BST, we must distinguish three
cases:

1. n is a leaf node -- in this case, we just snip it off.

2. n is an internal node with only one child.

• We remove n and “splice around” it.

3. n is an internal node with two child nodes.

• We replace n with the value of its successor s,
and then recursively remove s.

Wednesday, July 25, 12

Removing a leaf node

9

6

3 7

84

12

10 18

13

9

6

3 7

4

12

10 18

13

Example: bst.remove(8);

Result: We still have a BST with the
ordering property preserved.

Just snip it off.

Wednesday, July 25, 12

Removing a node with
one child node
9

6

3 7

84

12

10 18

13

9

6

3 8

4

12

10 18

13

Example: bst.remove(7);

Result: We still have a BST with the
ordering property preserved.

“Splice around” node 7.

Wednesday, July 25, 12

Removing a node with
two child nodes

9

6

3 7

84

12

10 18

13

9

6

3 8

4

13

10 18

Example: bst.remove(12);

Result: We still have a BST with the
ordering property preserved.

Replace 12 with the value of its
successor; then remove the

successor node.
Wednesday, July 25, 12

• When removing a node n with two children,
we replace n with the value of its successor s,
and then remove s itself.

• But what if s also has two children; then we
need to remove its successor, and so on.

• Will the “removal” process ever terminate?

• Yes -- if n has two children, then its
successor s cannot have a left-child. Why?

Removing the successor

Wednesday, July 25, 12

• When removing a node n with two children,
we replace n with the value of its successor s,
and then remove s itself.

• But what if s also has two children; then we
need to remove its successor, and so on.

• Will the “removal” process ever terminate?

• Yes -- if n has two children, then its
successor s cannot have a left-child. Why?

• If it did, s’s that left child would be n’s
successor, and not s itself.

Removing the successor

Wednesday, July 25, 12

Successor of node with
two children

20

12

10 18

13

• Example:

• Let n be node 12.

• Then n’s successor s is 13.

• s only has one child.

14

n

s

Wednesday, July 25, 12

Successor of node with
two children

20

12

10 18

13

• Example:

• Let n be node 12.

• Then n’s successor s is 13.

• s only has one child.

• Suppose s had two children.

• Then it would have a left
child, x.

• Then x would have to be n’s
successor.

14x

Since x is still in
n’s right sub-tree,
x>12. And since x
is in s’s left sub-
tree, x<13. So, x is
n’s successor.

n

s

Wednesday, July 25, 12

Successor of node with
two children

20

12

10 18

13

• We conclude that, if n has two
children, then its successor s
cannot have two children.

• Hence, removing s amounts to
either just “snipping it off” (case
1), or “slicing around it” (case 2).

• Hence, the remove method will
in fact terminate.

14x

n

s

Wednesday, July 25, 12

remove(o)
• We can finally define the remove(o) method:

void remove (T o) {
 final Node<T> node = findNode(_root, o);
 removeNode(node);
}

void removeNode (Node<T> node) { // Helper method
 if (node._leftChild == null &&
 node._rightChild == null) {
 // “Snip” node from its parent
 } else if (node._leftChild == null ||
 node._rightChild == null) {
 // “Splice around” node
 } else {
 final Node<T> successor = findSuccessor(_root, o);
 node._data = successor._data;
 removeNode(successor);
 }
}

Wednesday, July 25, 12

BSTs:
Time costs of methods
• All of the fundamental operations --

add(o), find(o), remove(o), and
findLargest/findSmallest -- take time
O(h), where h is the height of the BST.

• In the average case, the height h of the BST
is log n.

• What about in the worst case?

Wednesday, July 25, 12

BSTs:
Time costs of methods
• In the worst case, the user will call add and

remove in an “unfortunate” order, resulting in
a “degenerate” BST of the following variety:

20

12

18

33

...

The “BST” is just a
linked list!

• In this case, the
height of the BST is
n -- and hence the
fundamental BST
operations would
also be O(n).

Wednesday, July 25, 12

Balancing BSTs

• To prevent this “worst-case” condition from
occurring, we need to employ some form of
“tree balancing” to keep the tree from
degenerating into a linked list.

• Two prominent data structures which ensure a
balanced tree include:

• AVL trees.

• Red-black trees.

Wednesday, July 25, 12

AVL trees.

Wednesday, July 25, 12

Maintaining balance
• The time cost of the fundamental add/

find/remove operations in BSTs
depends on the height of the BST.

• Given an “unfortunate” sequence of
add/remove operations, the BST can
“degenerate” into a long “chain” of
nodes of height n.

• Hence, in the worst case, the time
cost of the fundamental BST
operations is O(n).

• It would be beneficial to prevent this
worst case from ever occurring.

20

12

18

33

...

“Degenerate”
BST.

Wednesday, July 25, 12

Maintaining balance
• Fortunately, it turns out that BSTs

can be “fixed” to store the same
elements, but to have a smaller
height.

• Consider the BST on the right
(with root r) with height 3.

• It is unbalanced -- height of left
sub-tree is 0, height of right
sub-tree is 2.

• We can “fix” this BST to have
equal height on both sub-trees by
“rotating” node n towards r.

15

12

10 18

21

19

r

n
h=0

h=2

Left
rotation

Wednesday, July 25, 12

Maintaining balance
• Fortunately, it turns out that BSTs

can be “fixed” to store the same
elements, but to have a smaller
height.

• Consider the BST on the right
(with root r) with height 3.

• It is unbalanced -- height of left
sub-tree is 0, height of right
sub-tree is 2.

• We can “fix” this BST to have
equal height on both sub-trees by
“rotating” node n towards r.

15

12

10

18

21

19

r

n
h=1

h=1
New root is n.

Height of BST is 2.
Left and right sub-trees
both have height 1 (the

BST is balanced).

Wednesday, July 25, 12

Maintaining balance
• By rotating nodes to either “up-to-the-left” or “up-

to-the-right”, we can restore balance to a BST and
thereby decrease its height.

• The rotations will take place whenever the user
adds or removes a node from the BST.

• By rotating properly, we can ensure that the BST
remains balanced or “almost balanced” at all times.

• This system of node rotations was first developed
in 1962 by G.M. Adelson-Velskii and E.M. Landis;
hence, we call this technique an AVL-tree.

Wednesday, July 25, 12

AVL trees
• An AVL tree is a BST in which two kinds of

rotations -- left-rotations and right-rotations -- are
applied to nodes as necessary, in order to keep
the balance of each sub-tree within certain limits.

• The balance of a node n is the difference in height
between n’s left sub-tree minus its right sub-tree.

• A non-existent sub-tree is defined to have
height 0.

• Rotations are applied to nodes during the add
and remove methods to keep every node’s
balance within -1 and +1 (inclusive).

Wednesday, July 25, 12

Height and balance

n

h=0

h=2

n

h=0h=1

Balance = -2 Balance = +1
n

h=2

h=2

Balance = 0

Wednesday, July 25, 12

Height and balance

• AVL trees require that each node n
record its balance as well as the
height of the sub-tree rooted at n.

• We can store these as extra
instance variables in the Node
class:

class Node<T> {
 Node<T> _parent;
 Node<T> _leftChild, _rightChild;
 int _balance, _height;
}

h=2, b=-1

h=1, b=0

h=0, b=0

h=0, b=0

h=0, b=0

Wednesday, July 25, 12

Adding a new node

• Whenever we add a new
node n, we set its _height
and _balance both to 0.

• We attach n as a left/right
child of its parent.

• We must then recursively
update the height and
balance of all nodes from n
up through the root of the
whole BST.

h=0, b=0

h=0, b=0

h=0, b=0

n

h=1, b=0

h=2, b=-1

h=0, b=0

Wednesday, July 25, 12

Adding a new node

• Whenever we add a new
node n, we set its _height
and _balance both to 0.

• We attach n as a left/right
child of its parent.

• We must then recursively
update the height and
balance of all nodes from n
up through the root of the
whole BST.

h=0, b=0

h=0, b=0

h=0, b=0

n

h=1, b=0

h=2, b=-1

h=0, b=0

Wednesday, July 25, 12

Adding a new node

• Whenever we add a new
node n, we set its _height
and _balance both to 0.

• We attach n as a left/right
child of its parent.

• We must then recursively
update the height and
balance of all nodes from n
up through the root of the
whole BST.

h=1, b=+1

h=0, b=0

h=0, b=0

n

h=1, b=0

h=2, b=-1

h=0, b=0

Wednesday, July 25, 12

Adding a new node

• Whenever we add a new
node n, we set its _height
and _balance both to 0.

• We attach n as a left/right
child of its parent.

• We must then recursively
update the height and
balance of all nodes from n
up through the root of the
whole BST.

h=1, b=+1

h=0, b=0

h=0, b=0

n

h=2, b=1

h=2, b=-1

h=0, b=0

Wednesday, July 25, 12

Adding a new node

• Whenever we add a new
node n, we set its _height
and _balance both to 0.

• We attach n as a left/right
child of its parent.

• We must then recursively
update the height and
balance of all nodes from n
up through the root of the
whole BST.

h=3, b=-2

h=1, b=+1

h=0, b=0

h=0, b=0

n

h=2, b=1

h=0, b=0

Wednesday, July 25, 12

Correcting imbalances
• Suppose, when recursively updating the

height and balance data, we determine that
the balance of a node n is either -2 or +2.

• n is considered imbalanced.

• Then we must apply an AVL rotation to
correct the imbalance.

• Different rotations apply to different node
configurations...

Wednesday, July 25, 12

Imbalanced node configurations

a

cb

d e

Subtrees

Balance = +2

The Left child’s Left sub-tree
of a is 2 higher than a’s right
sub-tree.

This case is called LL.

Wednesday, July 25, 12

Imbalanced node configurations
Balance = -2

The Right child’s Right sub-tree
of a is 2 higher than a’s left
sub-tree.

This case is called RR.

a

c b

e d

Wednesday, July 25, 12

Imbalanced node configurations

a

cb

d e

Balance = +2

The Left child’s Right sub-tree
of a is 2 higher than a’s right
sub-tree.

This case is called LR.

Wednesday, July 25, 12

Imbalanced node configurations
Balance = -2

The Right child’s Left sub-tree
of a is 2 higher than a’s left
sub-tree.

This case is called RL.

a

c b

e d

Wednesday, July 25, 12

Fixing configuration LL

a

cb

d e

Right
rotation

• To fix the imbalance in node a, we will perform
a right rotation of node b towards a.

Original tree

Wednesday, July 25, 12

Fixing configuration LL

a

cb

d e

Right
rotation

• To fix the imbalance in node a, we will perform
a right rotation of node b towards a.

Original tree

Wednesday, July 25, 12

Fixing configuration LL

a

cb

d e

Right
rotation

• To fix the imbalance in node a, we will perform
a right rotation of node b towards a.

b

a

c

Make a the right child of
b, and make b the new
root of the sub-tree.

d

Original tree

Wednesday, July 25, 12

Fixing configuration LL

a

cb

d e

Right
rotation

• To fix the imbalance in node a, we will perform
a right rotation of node b towards a.

b

a

e c

Add e as the left child of a.

d

Original tree

Wednesday, July 25, 12

Fixing configuration LL

a

cb

d e

Right
rotation

• To fix the imbalance in node a, we will perform
a right rotation of node b towards a.

b

ad

e c

Original tree

Balance = 0

Wednesday, July 25, 12

Fixing configuration RR

Left
rotation

• To fix the imbalance in node a, we will perform
a left rotation of node b towards a.

a

c b

e d

Original tree

Wednesday, July 25, 12

Fixing configuration RR

Left
rotation

• To fix the imbalance in node a, we will perform
a left rotation of node b towards a.

a

c b

e d

Original tree

Wednesday, July 25, 12

Fixing configuration RR

Left
rotation

• To fix the imbalance in node a, we will perform
a left rotation of node b towards a.

a

c b

e d

Original tree

b

d

c

Make a the right child of
b, and make b the new
root of the sub-tree.

a

Wednesday, July 25, 12

Fixing configuration RR

Left
rotation

• To fix the imbalance in node a, we will perform
a left rotation of node b towards a.

a

c b

e d

Original tree

b

da

e

Add e as the left child of a.

c

Wednesday, July 25, 12

Fixing configuration RR

Left
rotation

• To fix the imbalance in node a, we will perform
a left rotation of node b towards a.

a

c b

e d

Original tree

b

da

ec

Balance = 0

Wednesday, July 25, 12

Imbalanced node configurations

• Note how LL and RR, as well as LR and RL, are
symmetric to each other.

• LL is fixed by right rotating a.

• RR is fixed by Ieft rotating a.

• The other two cases -- LR and RL -- can be fixed
by two rotations in succession.

Wednesday, July 25, 12

Fixing configuration LR
• To fix the imbalance in node a, we will first

perform a left rotation of node e towards b.

a

cb

d e

Original tree

Left
rotation

Wednesday, July 25, 12

Fixing configuration LR
• To fix the imbalance in node a, we will first

perform a left rotation of node e towards b.

a

cb

d e

Original tree

a

c

b

d

e
Left

rotation

Wednesday, July 25, 12

Fixing configuration LR

a

cb

d e

Original tree

a

c

b

d

e

Now we’re back to LL -- and
we already know how to
correct this (by applying a
right rotation of e towards a).

• To fix the imbalance in node a, we will first
perform a left rotation of node e towards b.

Wednesday, July 25, 12

Fixing configuration LR

• Now we perform a right rotation of e towards a.

a

cb

d e

Original tree

a

c

b

d

e

Right
rotation

Now we’re back to LL -- and
we already know how to
correct this (by applying a
right rotation of e towards a).

Wednesday, July 25, 12

Fixing configuration LR

• Now we perform a right rotation of e towards a.

a

cb

d e

Original tree

a

c

b

d

e Balance = 0

Wednesday, July 25, 12

Fixing configuration RL
• Fixing configuration RL is

exactly symmetric to fixing LR:

• First apply a right rotation of
e towards b.

• This returns the
configuration to RR.

• Then apply a left rotation of e
towards a.

• Left as an “exercise for the
reader”.

Balance = -2
a

c b

e d

Wednesday, July 25, 12

Removing a new node

h=3, b=-2

h=1, b=-1

h=0, b=0

h=0, b=0
n

h=2, b=1

• When we remove a node n, we
must distinguish the three cases as
outlined last lecture:

• n is a leaf node.

• n has only one child.

• n has two children.

• After removing n, we must update
the height and balance of all nodes
between n and the root.

h=0, b=0

Wednesday, July 25, 12

Removing a new node

h=3, b=-2

h=0, b=0

h=0, b=0

h=1, b=0

• When we remove a node n, we
must distinguish the three cases as
outlined last lecture:

• n is a leaf node.

• n has only one child.

• n has two children.

• After removing n, we must update
the height and balance of all nodes
between n and the root.

Wednesday, July 25, 12

Removing a new node

h=2, b=-1

h=0, b=0

h=0, b=0

h=1, b=0

• When we remove a node n, we
must distinguish the three cases as
outlined last lecture:

• n is a leaf node.

• n has only one child.

• n has two children.

• After removing n, we must update
the height and balance of all nodes
between n and the root.

• Might require an AVL rotation.

Wednesday, July 25, 12

AVL trees
• Through storing the height and balance of each node and

implementing AVL rotations as necessary, we can ensure
that the BST is never “more imbalanced” than +1 or -1.

• This yields a BST for which h=O(log n) in the worst
case, not just the average case.

• The AVL rotations themselves take O(1) time.

• Each rotation takes a constant number of “node
switches”.

• Hence, with AVL trees, the fundamental tree
operations add, find, and remove all operate in
O(log n) time worst-case.

Wednesday, July 25, 12

Duplicate keys

• In contrast to “regular” BSTs, duplicate keys are
not permitted in AVL trees.

• With duplicate keys, rotating sub-trees could
cause the tree to violate the BST ordering
property.

Wednesday, July 25, 12

Duplicate keys

a

b

• However, a problem arises when we start rotating
nodes in a sub-tree:

• Suppose a and b have the same key (e.g., 5).

5

c 5

e d

Wednesday, July 25, 12

Duplicate keys
• However, a problem arises when we start rotating

nodes in a sub-tree:

• Suppose a and b have the same key (e.g., 5).

• Suppose we then left-rotate b towards a.
a

b

Left
rotation5

c 5

e d

5

d5

ec

b

a

Wednesday, July 25, 12

Duplicate keys
• Now, suppose we want to find node a starting at

the root (node b).

• We will descend the wrong sub-tree of b.

• We will never find a.
5

d5

ec

b

a

Wednesday, July 25, 12

Duplicate keys

• One solution is to:

• Disallow multiple nodes
with the same key.

• Whenever we add an
element with the same
key, we append that new
element to that node’s
list of objects.

5

cd

e

a, b, ...

Wednesday, July 25, 12

