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Hash tables.
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Recap of BSTs
• Binary search trees (BSTs) offer O(log n) time 

costs for add/remove/find operations by 
exploiting order relationships among data.

• They are also memory efficient, in that only as 
many nodes are allocated as elements are 
contained in the BST.

• However, by utilizing more memory (greater space 
complexity), we can achieve even higher 
performance (lower time complexity).

• Hash tables offer O(1) time costs for add/
remove/find operations by investing more 
memory in the underlying storage.
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Finite “universe” of objects to store
• Suppose you were developing a database of UCSD 

students.

• You may wish to build a function that allows you to 
retrieve a student’s full record given their student ID:

class Student {
  int _studentID;  // 4 bytes long
  String _firstName, _lastName;
  String _address;
  String _favoriteColor;
}

• In this application, the key would be the student ID, and 
the value associated with the key would be the whole 
Student record.
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Finite “universe” of objects to store
• In this application (and others), there may exist only a 

finite universe of possible keys values.

• For instance, a 4-byte integer can only store about 4 
billion different values ==> 4 billion unique keys.

• Sometimes this finite set of keys is small enough that 
we can allocate an array big enough to give every 
possible key its own slot.

• In this case, we can make the “search” process for a 
particular key trivial:

• We simply “jump” to the unique array index 
assigned to that key.

• This takes only O(1) time in the worst-case.
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Finite “universe” of objects to store

• For example, in a UCSD student 
database application, we could 
allocate an array 4 billion elements 
long.

• Whenever we wished to find a 
particular student, we simply jump to 
that student’s correct slot using the 
student ID as the index.

• E.g., student with ID# 
0000008192 would be stored at 
slot 0000008192.

• Search is trivial -- O(1).

...

student

...

Key 
(student 

ID)

Value 
(reference to 
Student 
object)

...
0000008187

0000008188

0000008189

0000008190

0000008191

0000008192

0000008193

0000008194

...
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Finite “universe” of objects to store

• Similarly, when adding a student, we 
simply insert an entry at his/her 
unique location in the array:

Student other =
  new Student(8188, ...);
_container.add(other);

• Since student IDs are guaranteed to 
be unique, there is exactly one 
element that will ever reside at the 
index of the array.

other

student

...

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
0000008187

0000008188

0000008189

0000008190

0000008191

0000008192

0000008193

0000008194

...
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• Using the idea sketched above, we could implement 
a StudentDatabase with excellent time costs.
class StudentDatabase {
  Student[] _allPossibleStudents = new Student[4294967296];

  void add (Student s) {  // O(1)
    int index = s._studentID;
    _allPossibleStudents[index] = s;
  }

  // Returns null if s is not in the database
  Student get (Student s) {  // O(1)
    int index = s._studentID;
    return _allPossibleStudents[index];
  }

  void remove (Student s) {  // O(1)
    int index = s._studentID;
    _allPossibleStudents[index] = null;
  }
}

Finite “universe” of objects to store
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• However, the space costs of this data structure are 
enormous.
class StudentDatabase {
  Student[] _allPossibleStudents = new Student[4294967296];

  void add (Student s) {  // O(1)
    int index = s._studentID;
    _allPossibleStudents[index] = s;
  }

  // Returns null if s is not in the database
  Student get (Student s) {  // O(1)
    int index = s._studentID;
    return _allPossibleStudents[index];
  }

  void remove (Student s) {  // O(1)
    int index = s._studentID;
    _allPossibleStudents[index] = null;
  }
}

Finite “universe” of objects to store
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Finite “universe” of objects to store
• Allocating 4 billion entries for a UCSD student database is 

extremely wasteful.

• The universe of keys is far larger than the number we 
expect to ever want to store.

• What if we decreased the size of the table from 4 billion 
entries to storing, say, just 100,000?

• 100,000 is still far higher than the actual number of 
UCSD students, so there should be plenty of space.
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Finite “universe” of objects to store
• With an array of only 100,000 entries, each student ID 

would no longer have its own unique array index -- multiple 
student IDs would have to “share” an index.

• We call the “sharing” of an array index by 2 (or more) 
student IDs a collision.

• Whenever a collision occurs, we have to store the 
Student object “somewhere else” (more later).

• However, if we’re clever about how we assign array 
indices to student IDs, then collisions will rarely occur.

• We can still achieve O(1) add/find/remove time in the 
average case.
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Hash tables
• This idea is called a “hash table.”

• A hash table consists of a large array of M “slots” (or 
“buckets”) to store the user’s data.

• A hash table also requires:

1. Some way of converting from an object’s key into an 
index that specifies where that object should be 
stored.

• This is called a hash function.

2. A method of handling collisions.

• In order to ensure good performance, M must be bigger 
than N, the number of data the user will want to store.
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Hash function
• A hash function maps an object’s key into an array index, 

i.e., a number from 0...M-1, where M is the number of 
entries in the hash table.

• Simple example:
int hashFunction (int studentID) {
  return studentID % M;
}

• The modulus operator % divides studentID by M, and then 
returns the remainder. Examples:

3 % 10 = 3
107 % 10 = 7
7 % 4 = 3
16 % 5 = 1
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Hash function

• To be useful, a hash function must be fast.

• Its performance should not depend on the particular 
key.

• A hash function must also be deterministic:

• Given the same key, it must always return the same 
array index.

• (Otherwise, how would we find something we 
stored earlier?)
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Hash function

• A “good” hash function should also be uniform:

• Each “slot” i in the array should be equally likely to 
be chosen as any other slot j.

• We certainly don’t want to map every possible key 
to the same array index!

• Uniformity is important to ensure good 
performance.
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• For instance, if M is 100000, then 
studentID % 100000 is simply the 
last 5 digits of the student ID, e.g.:

• student1 with Student ID 
0000013012 would map to 
index 13012.

• student2 with Student ID 
1234567890 would map to 
index 67890.

• These indices specify where in 
the array the students are stored.

student1

student2

...

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...
67889

67890

67891

67892

...

Hash function
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Handling collisions
• Unfortunately, on occasion, there would be two 

(or more) Student objects who are 
“hashed” (mapped) into the same array slot.

studentID1 = 2200012345;
studentID2 = 1926112345;
hashTable.add(studentID1, student1);
hashTable.add(studentID2, student2);

• This is called a collision -- two different Student 
objects map into the same array index.

• How do we handle these collisions?
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• There are two principal ways of handling collisions:

1. Chaining (aka separate chaining) -- at each 
slot in the array, instead of storing only a single 
element, we store a linked list of elements.

2. Open addressing -- if student5 “hashes” to 
array index 123, and array index 123 is already 
occupied, then we look for “another” index at 
which to store student5, e.g., 124.

• Different schemes for determining “another 
index”.

Handling collisions
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• Each slot in the 
array contains not 
an object itself, 
but rather a 
pointer to the 
head of a linked list 
of objects which 
all map to the 
same index.

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612

stud13 stud47 ...

stud92

Chaining
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• When looking for a 
particular object, we 
must:

1. Hash the key to 
obtain the index.

2. Search the list for 
the correct 
object.

• This will still be fast 
as long as the linked 
lists are short (more 
later).

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612

stud13 stud47 ...

stud92

Chaining
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Chaining
Key 

(student 
ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612

stud13 stud47 ...

stud92

• For example, if we wish to 
find stud47 with student 
ID 0925113012.

1. Hash stud47’s student 
ID to determine the 
index.

2. Jump to the head of the 
corresponding linked 
list.

3. Traverse the linked list 
until we find stud47.
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Chaining
Key 

(student 
ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612

stud13 stud47 ...

stud92

• For example, if we wish to 
find stud47 with student 
ID 0925113012.

1. Hash stud47’s student 
ID to determine the 
index.

2. Jump to the head of the 
corresponding linked 
list.

3. Traverse the linked list 
until we find stud47.
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Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612

stud13 stud47 ...

stud92

Chaining
• For example, if we wish to 

find stud47 with student 
ID 0925113012.

1. Hash stud47’s student 
ID to determine the 
index.

2. Jump to the head of the 
corresponding linked 
list.

3. Traverse the linked list 
until we find stud47.

Thursday, July 26, 12



Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612

stud13 stud47 ...

stud92

Done.

Chaining
• For example, if we wish to 

find stud47 with student 
ID 0925113012.

1. Hash stud47’s student 
ID to determine the 
index.

2. Jump to the head of the 
corresponding linked 
list.

3. Traverse the linked list 
until we find stud47.
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• If we reach the end of 
the linked list and 
don’t find the desired 
student, then we 
know that student is 
not contained in the 
hash table.

• There is no other 
slot at which the 
Student object 
would be stored.

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612

stud13 stud47 ...

stud92

Chaining
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• If we wish to remove a 
student (e.g., stud13), 
we just:

1. Hash the student 
ID of the student 
we want to 
remove.

2. Find that student in 
the linked list.

3. “Splice it out”.

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612

stud13 stud47 ...

stud92

Chaining
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Chaining:
Performance analysis

• How fast are the add/remove/find operations for a 
hash table with chaining?

• To find an object in a hash table, we must:

• Hash the key.  O(1)

• Jump to that array index.  O(1)

• Traverse through the linked list at that index. O(?)
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Chaining:
Performance analysis

• In the worst case, all N objects stored in the hash table 
will hash to the same array index.

• This means that the linked list at that index will be 
N elements long.

• To find an arbitrary element in a linked list we 
need O(n) time.

• This is no better than just using a linked list by 
itself!
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Chaining:
Performance analysis

• However, in the average case, a hash table performs much 
better:

• Given M slots and N actual objects stored, the average list 
length for any array slot is N/M.

• Then, the average time to access any arbitrary object is
O(1 + N/M).

• Now, suppose that we always make sure that M > N.

• Then N/M < 1.

• Hence, average-case time cost is O(1+N/M)=O(1).
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Open addressing
• An alternative to chaining is open addressing.

• With open addressing, there are no linked lists associated with 
array slots.

• Instead, if a given slot is already “full”, then the hash table 
“tries another one”.

• There are different strategies for “finding another one”.

• Confusingly, open addressing is sometimes also known as closed 
hashing:

• The “closed” refers to the fact that all data are stored within 
the array itself, not in a separate chain.
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Open addressing
• There are different strategies for “finding another slot”:

• Simplest -- linear probing:

• If hashFunction(key) maps into an index i that is 
already occupied, then try i+1.

• If that doesn’t work, try i+2, i+3, ..., etc.

• If we get to M-1, we want to “wrap around” back to 0.

• The index of the jth probe (where j starts at 0) is given by 
the expression:

(i+j) % M
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Open addressing
• There are different strategies for “finding another slot”:

• Simplest -- linear probing:

• If hashFunction(key) maps into an index i that is 
already occupied, then try i+1.

• If that doesn’t work, try i+2, i+3, ..., etc.

• If we get to M-1, we want to “wrap around” back to 0.

• The index of the jth probe (where j starts at 0) is given by 
the expression:

(i+j) % M Why not (i % M) + j ?
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Open addressing

• Linear probing is simple to implement. However, it will 
tend to cause large amounts of clustering (more later).

• Better performance is achieved by quadratic 
probing:

• If hashFunction(key) maps into an index i , then 
the index of the jth probe is given by the 
expression:

(i + c0*j + c1*j2) % M
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Linear probing

• Suppose our hash table contains 
M=100000 buckets, and we wish to 
add student2 to the hash table, and 
hashFunction(studentID2) returns 
13011.

• This slot is occupied by student1.

• The next slot we try is
(13011+1) % 100000 = 13012.

• Since 13012 is available, we can 
insert student2 at that slot.

student1

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612
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Linear probing

• Suppose our hash table contains 
M=100000 buckets, and we wish to 
add student2 to the hash table, and 
hashFunction(studentID2) returns 
13011.

• This slot is occupied by student1.
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(13011+1) % 100000 = 13012.

• Since 13012 is available, we can 
insert student2 at that slot.

student1

Key 
(student 

ID)

Value 
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Student 
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...
13011

13012

13013

...

53612
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Linear probing

• Suppose our hash table contains 
M=100000 buckets, and we wish to 
add student2 to the hash table, and 
hashFunction(studentID2) returns 
13011.

• This slot is occupied by student1.

• The next slot we try is
(13011+1) % 100000 = 13012.

• Since 13012 is available, we can 
insert student2 at that slot.

student1

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612
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Linear probing

• Suppose our hash table contains 
M=100000 buckets, and we wish to 
add student2 to the hash table, and 
hashFunction(studentID2) returns 
13011.

• This slot is occupied by student1.

• The next slot we try is
(13011+1) % 100000 = 13012.

• Since 13012 is available, we can 
insert student2 at that slot.

student1

student2

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612
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• When we later wish to find student2, 
we:

1. Compute its index using the hash 
function (i=13011).

2. Search down the array (using linear 
probing) until we find the correct 
object, or until we find an empty slot.

• If we find an empty slot, then we 
know student2 is not contained in 
the hash table.

student1

student2

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612

Linear probing
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• When we later wish to find student2, 
we:

1. Compute its index using the hash 
function (i=13011).

2. Search down the array (using linear 
probing) until we find the correct 
object, or until we find an empty slot.

• If we find an empty slot, then we 
know student2 is not contained in 
the hash table.

student1

student2

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612

Linear probing

Thursday, July 26, 12



• When we later wish to find student2, 
we:

1. Compute its index using the hash 
function (i=13011).

2. Search down the array (using linear 
probing) until we find the correct 
object, or until we find an empty slot.

• If we find an empty slot, then we 
know student2 is not contained in 
the hash table.

student1

student2

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612

Linear probing
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• When we later wish to find student2, 
we:

1. Compute its index using the hash 
function (i=13011).

2. Search down the array (using linear 
probing) until we find the correct 
object, or until we find an empty slot.

• If we find an empty slot, then we 
know student2 is not contained in 
the hash table.

student1

student2

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612

Linear probing

Thursday, July 26, 12



• When we later wish to find student2, 
we:

1. Compute its index using the hash 
function (i=13011).

2. Search down the array (using linear 
probing) until we find the correct 
object, or until we find an empty slot.

• If we find an empty slot, then we 
know student2 is not contained in 
the hash table.

student1

student2

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612

Done.

Linear probing
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• Suppose we search for student9, whose 
hash code happens to also be 13011:

1. Compute its index using the hash 
function (i=13011).

2. Search down the array (using linear 
probing) until we find the correct 
object, or until we find an empty slot.

• If we find an empty slot, then we 
know student2 is not contained in 
the hash table.

student1

student2

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612

Linear probing
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• Suppose we search for student9, whose 
hash code happens to also be 13011:

1. Compute its index using the hash 
function (i=13011).

2. Search down the array (using linear 
probing) until we find the correct 
object, or until we find an empty slot.

• If we find an empty slot, then we 
know student2 is not contained in 
the hash table.

student1

student2

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612

Linear probing
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• Suppose we search for student9, whose 
hash code happens to also be 13011:

1. Compute its index using the hash 
function (i=13011).

2. Search down the array (using linear 
probing) until we find the correct 
object, or until we find an empty slot.

• If we find an empty slot, then we 
know student2 is not contained in 
the hash table.

student1

student2

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612

Linear probing
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• Suppose we search for student9, whose 
hash code happens to also be 13011:

1. Compute its index using the hash 
function (i=13011).

2. Search down the array (using linear 
probing) until we find the correct 
object, or until we find an empty slot.

• If we find an empty slot, then we 
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• Suppose we search for student9, whose 
hash code happens to also be 13011:

1. Compute its index using the hash 
function (i=13011).

2. Search down the array (using linear 
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object, or until we find an empty slot.
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• Suppose we search for student9, whose 
hash code happens to also be 13011:

1. Compute its index using the hash 
function (i=13011).

2. Search down the array (using linear 
probing) until we find the correct 
object, or until we find an empty slot.

• If we find an empty slot, then we 
know student2 is not contained in 
the hash table.

student1

student2

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612

Linear probing
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Open addressing

• Open addressing requires less memory 
than chaining because there are no 
linked lists.

• However, they suffer from a few 
complications:

1. Removing an element.

2. Clustering.

student1

student2

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612
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Removing an element

• Suppose we remove student1 from the 
hash table.

student1

student2

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612
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Removing an element

• Suppose we remove student1 from the 
hash table.

• If we later search for student2, we will 
still hash to 13011, but find that it is 
empty.

• Does that mean student2 is not 
contained in the hash table?

• No -- but we have to record that 
somehow.

student2

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612
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Removing an element

• One method of recording that an 
element was deleted is a bridge, a 
special element that indicates “empty, 
but keep looking.”

• If we later add another element, say 
student5 that hashes to 13011, then 
we can replace the bridge with a real 
Student object.

(bridge)

student2

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612
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Removing an element

• One method of recording that an 
element was deleted is a bridge, a 
special element that indicates “empty, 
but keep looking.”

• If we later add another element, say 
student5 that hashes to 13011, then 
we can replace the bridge with a real 
Student object.

student5

student2

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

...

53612
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Clustering
• The other downside of open addressing 

is clustering.

• If too many keys hash to the same index 
-- or to nearby indices -- then the linear 
probing may become expensive.

• Consider the hash table to the right:

• 13011-13016 are already occupied.

• If we want to add another student 
student7 who also hashes to 13011, 
then we have to step through 7 
elements.

• The longer the cluster, the higher the 
time cost for add/find/remove.

student5

student1

student9

student8

student3

student4

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

13014

13015

13016

13017

...
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Clustering
• The other downside of open addressing 

is clustering.

• If too many keys hash to the same index 
-- or to nearby indices -- then the linear 
probing may become expensive.

• Consider the hash table to the right:

• 13011-13016 are already occupied.

• If we want to add another student 
student7 who also hashes to 13011, 
then we have to step through 7 
elements.

• The longer the cluster, the higher the 
time cost for add/find/remove.

student5

student1

student9

student8

student3

student4

student7

Key 
(student 

ID)

Value 
(reference to 

Student 
object)

...
13011

13012

13013

13014

13015

13016

13017

...
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Open addressing
• Like chaining, open addressing guarantees O(1) time 

cost for the add/find/remove operations so long as 
M > N.

• Due to the bridging complication, open addressing 
is most useful when elements will never be deleted.

• The memory saved by not using linked lists can be 
used to allocate more slots ==> higher M.

• The larger M is, the fewer collisions will occur, 
and the better the average-case performance 
will be.
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Hash table ADTs
• So far we’ve focused more on how a hash 

table is implemented internally and less how 
a user would use it.

• There are two different interfaces that a 
hash table ADT might offer.

• The interface varies depending on whether:

1. Key is a field inside the whole record.

2. Key is separate and stored outside the 
record.
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Key inside the record
• In some previous code examples we’ve conceptualized 

the key as a field within the whole object, e.g.:
class Student {
  int _studentID;
  String _firstName, _lastName;
  boolean _hasTeddyBear;
}

• This implementation of keys then lends itself to the 
following hash table interface:
interface HashTable<T extends HasKey> {
  void add (T o);
  T get (T o);
}

where the hypothetical HasKey interface guarantees that 
T offers a method called int getKey().
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Key inside the record
• The HashTable then might then be implemented as:

class HashTableImpl<T extends HasKey> 
implements HashTable<T> {

  T[] _array;
  ...
  void add (T o) {
    _array[hashFunction(o.getKey())] = o;
  }

  T get (T o) {
    return _array[hashFunction(o.getKey())];
  }
}
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Key inside the record
• The user could then use the hash table as follows:

class Student implements HasKey {
  int _studentID;
  String _firstName, _lastName;
  boolean _hasTeddyBear;
  ...
  int getKey () {
    return _studentID;
  }
}

hashTable<Student> students = new HashTable<Student>();

students.add(new Student(12345, “Jacky”, “O’Nassis”));
students.add(new Student(9231, “Bette”, “Midler”));

...
Student someStudent = students.get(new Student(9231));
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Key inside the record
• It turns out this hypothetical HasKey interface is 

unnecessary because the Java Object class already 
offers a hashCode() method.

• hashCode() should return some “integer 
representation” of the object.

• The default implementation of Object.hashCode() is 
simply to return the address in memory (an int) of the 
object.

• Subclasses of Object can override hashCode() to do 
something more meaningful.
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hashCode()

• For example, we could override hashCode() in 
Student to return the Student’s _studentId field:

class Student implements HasKey {
  int _studentID;
  String _firstName, _lastName;
  boolean _hasTeddyBear;
  ...
  public int hashCode () {
    return _studentID;
  }
}

HasKey interface no longer necessary
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• Because hashCode() is available in every Java Object, 
we can simplify both the interface and implementation 
of the HashTable<T>:

interface HashTable<T extends HasKey> {
  void add (T o);
  T get (T o);
}

class HashTableImpl<T> implements HashTable<T> {
  ...
  void add (T o) {
    _array[hashFunction(o.hashCode())] = o;
  }

  T get (T o) {
    return _array[hashFunction(o.hashCode())];
  }
}

HasKey interface no longer necessary

hashCode()

Thursday, July 26, 12



Non-integer keys

• hashCode() also provides useful functionality for 
supporting non-integer keys.

• E.g., we want to use a Student’s full name as 
the key.

• A names is a String, which is not an int.

• How do we convert from a String into an 
(int) index into the hash table?

• Just delegate to String.hashCode().
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Non-integer keys
• Example:

class Student {
  int _studentID;
  String _firstName, _lastName;
  boolean _hasTeddyBear;
  ...
  public int hashCode () {
    String fullName = _firstName + “ “ + _lastName;
    return fullName.hashCode();
  }
}

Since fullName is a String, and String is 
an Object, then fullName is guaranteed to 

support the hashCode() method.
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Hash code examples
• Suppose our key is:

• A single character c:

• We could convert c into its ASCII value, which is an 
integer (from 0-127).

• A String s of characters:

• We could convert each c in s to its ASCII value, and 
then add them together.

• An image im:

• We could add together the pixel values across all 
three (R,G,B) channels.

Note: these are just hypothetical 
examples, not necessarily how Java 
actually implements hash codes!
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hashCode()
• In Java, the hashCode() method must uphold two 

properties:

1. Deterministic -- multiple subsequent calls to 
hashCode() on the same object o must return the 
same value.

• Otherwise, hashFunction(key.hashCode()) 
would map into a different array index -- and the 
hash table wouldn’t be able to find o.

_array[hashFunction(o.hashCode())] = o;   // Add

...
return _array[hashFunction(o.hashCode()]; // Find
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hashCode()

2. Consistent across equal instances -- if o1.equals(o2), 
then o1.hashCode() must equal o2.hashCode():

String s1 = “hello”;
String s2 = new String(“hello”);  // Distinct copy
int hashCode1 = s1.hashCode();
int hashCode2 = s2.hashCode();  // Must equal hashCode1

• This means that if class A overrides the equals() 
method, then it must also override hashCode().
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hashCode()
• In addition, it is desirable for hashCode() to have:

3. Wide distribution across instances -- hashCode() should 
return different values for different instances of the same 
class as much as possible.

• If A.hashCode() returned the same hash value for 
every instance o, then all objects of type A would map 
into the same array index.

_array[hashFunction(key1.hashCode())] = o1;
_array[hashFunction(key2.hashCode())] = o2;  // Collision
_array[hashFunction(key3.hashCode())] = o3;  // Collision
_array[hashFunction(key4.hashCode())] = o4;  // Collision

• This would yield terrible (O(n)) hash performance!

hashCode() is always the same.
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Key outside the record

• More commonly, however, hash tables separate the 
key from the value.

• A typical hash table interface might be:

interface HashTable<K,V> {
  void put (K key, V value);
  V get (K key);
}

Here, we are defining two different 
type parameters K (for keys) and V 
(for values).
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Key outside the record

• This may be more convenient than the HashTable 
interface where the key is inside the record.

• Compare:

• Key inside record:
hashTable.add(new Student(123, “Jimmy”, “Carter”));
...
Student student = hashTable.get(new Student(123));

• Key separate from record:
hashTable.put(123, new Student(“Jimmy”, “Carter”));
...

Student student = hashTable.get(123);

No need to instantiate new Student 
object just to find an existing one.
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• Separating keys from values is especially useful 
when we use a hash table as a dictionary.

• A dictionary is a data structure for storing a set 
of associations between keys and values.

Key outside the record
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• Example:

• We can create a dictionary of English words to 
their meanings:
HashTable<String,String> englishDictionary =
  new HashTable<String,String>();
englishDictionary.put(
  “eggplant”,
  “The somewhat large egg-shaped fruit of a
   tropical Old World plant, eaten as a vegetable.”
);

...

String meaning = englishDictionary.get(“eggplant”);

Key outside the record
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• To implement a HashTable in which keys are 
stored separately from values, we must “bind” the 
key and value together inside the table:
class HashTableImpl<K,V> implements HashTable<K,V> {
  static class Bucket {
    K _key;
    V _value;
    ...
  }
  Bucket[] _array;
  ...
  void put (K key, V value) {
    int bucketIdx = hashFunction(key.hashCode());
    _array[bucketIdx]._key = new Bucket(key, value);
  }

  V get (Key key) {
    return _array[hashFunction(key.hashCode())]._value;
  }
}

Key outside the record
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Hash table usage example

• Suppose we were implementing the Web server 
for Facebook.

• Server must be robust to handle billions of 
requests per day!
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Hash table usage example

• Facebook access is initiated when user enters 
the username of a particular user.

• Given the username, the Facebook page, 
including pictures and text, must be found 
fast.
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Hash table usage example

• Possible implementation:

Image findUserProfilePicture (String username) {
  String pathToImageFile = _usersToImagePaths.get(username);
  return new Image(pathToImageFile);
}

This needs to be super-fast to handle 
Facebook’s typical load; hence, use a 

hash table.
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