
CSE 12:
Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Thirteen
26 July 2012

Thursday, July 26, 12

Hash tables.

Thursday, July 26, 12

Recap of BSTs
• Binary search trees (BSTs) offer O(log n) time

costs for add/remove/find operations by
exploiting order relationships among data.

• They are also memory efficient, in that only as
many nodes are allocated as elements are
contained in the BST.

• However, by utilizing more memory (greater space
complexity), we can achieve even higher
performance (lower time complexity).

• Hash tables offer O(1) time costs for add/
remove/find operations by investing more
memory in the underlying storage.

Thursday, July 26, 12

Finite “universe” of objects to store
• Suppose you were developing a database of UCSD

students.

• You may wish to build a function that allows you to
retrieve a student’s full record given their student ID:

class Student {
 int _studentID; // 4 bytes long
 String _firstName, _lastName;
 String _address;
 String _favoriteColor;
}

• In this application, the key would be the student ID, and
the value associated with the key would be the whole
Student record.

Thursday, July 26, 12

Finite “universe” of objects to store
• In this application (and others), there may exist only a

finite universe of possible keys values.

• For instance, a 4-byte integer can only store about 4
billion different values ==> 4 billion unique keys.

• Sometimes this finite set of keys is small enough that
we can allocate an array big enough to give every
possible key its own slot.

• In this case, we can make the “search” process for a
particular key trivial:

• We simply “jump” to the unique array index
assigned to that key.

• This takes only O(1) time in the worst-case.
Thursday, July 26, 12

Finite “universe” of objects to store

• For example, in a UCSD student
database application, we could
allocate an array 4 billion elements
long.

• Whenever we wished to find a
particular student, we simply jump to
that student’s correct slot using the
student ID as the index.

• E.g., student with ID#
0000008192 would be stored at
slot 0000008192.

• Search is trivial -- O(1).

...

student

...

Key
(student

ID)

Value
(reference to
Student
object)

...
0000008187

0000008188

0000008189

0000008190

0000008191

0000008192

0000008193

0000008194

...

Thursday, July 26, 12

Finite “universe” of objects to store

• Similarly, when adding a student, we
simply insert an entry at his/her
unique location in the array:

Student other =
 new Student(8188, ...);
_container.add(other);

• Since student IDs are guaranteed to
be unique, there is exactly one
element that will ever reside at the
index of the array.

other

student

...

Key
(student

ID)

Value
(reference to

Student
object)

...
0000008187

0000008188

0000008189

0000008190

0000008191

0000008192

0000008193

0000008194

...

Thursday, July 26, 12

• Using the idea sketched above, we could implement
a StudentDatabase with excellent time costs.
class StudentDatabase {
 Student[] _allPossibleStudents = new Student[4294967296];

 void add (Student s) { // O(1)
 int index = s._studentID;
 _allPossibleStudents[index] = s;
 }

 // Returns null if s is not in the database
 Student get (Student s) { // O(1)
 int index = s._studentID;
 return _allPossibleStudents[index];
 }

 void remove (Student s) { // O(1)
 int index = s._studentID;
 _allPossibleStudents[index] = null;
 }
}

Finite “universe” of objects to store

Thursday, July 26, 12

• However, the space costs of this data structure are
enormous.
class StudentDatabase {
 Student[] _allPossibleStudents = new Student[4294967296];

 void add (Student s) { // O(1)
 int index = s._studentID;
 _allPossibleStudents[index] = s;
 }

 // Returns null if s is not in the database
 Student get (Student s) { // O(1)
 int index = s._studentID;
 return _allPossibleStudents[index];
 }

 void remove (Student s) { // O(1)
 int index = s._studentID;
 _allPossibleStudents[index] = null;
 }
}

Finite “universe” of objects to store

Thursday, July 26, 12

Finite “universe” of objects to store
• Allocating 4 billion entries for a UCSD student database is

extremely wasteful.

• The universe of keys is far larger than the number we
expect to ever want to store.

• What if we decreased the size of the table from 4 billion
entries to storing, say, just 100,000?

• 100,000 is still far higher than the actual number of
UCSD students, so there should be plenty of space.

Thursday, July 26, 12

Finite “universe” of objects to store
• With an array of only 100,000 entries, each student ID

would no longer have its own unique array index -- multiple
student IDs would have to “share” an index.

• We call the “sharing” of an array index by 2 (or more)
student IDs a collision.

• Whenever a collision occurs, we have to store the
Student object “somewhere else” (more later).

• However, if we’re clever about how we assign array
indices to student IDs, then collisions will rarely occur.

• We can still achieve O(1) add/find/remove time in the
average case.

Thursday, July 26, 12

Hash tables
• This idea is called a “hash table.”

• A hash table consists of a large array of M “slots” (or
“buckets”) to store the user’s data.

• A hash table also requires:

1. Some way of converting from an object’s key into an
index that specifies where that object should be
stored.

• This is called a hash function.

2. A method of handling collisions.

• In order to ensure good performance, M must be bigger
than N, the number of data the user will want to store.

Thursday, July 26, 12

Hash function
• A hash function maps an object’s key into an array index,

i.e., a number from 0...M-1, where M is the number of
entries in the hash table.

• Simple example:
int hashFunction (int studentID) {
 return studentID % M;
}

• The modulus operator % divides studentID by M, and then
returns the remainder. Examples:

3 % 10 = 3
107 % 10 = 7
7 % 4 = 3
16 % 5 = 1

Thursday, July 26, 12

Hash function

• To be useful, a hash function must be fast.

• Its performance should not depend on the particular
key.

• A hash function must also be deterministic:

• Given the same key, it must always return the same
array index.

• (Otherwise, how would we find something we
stored earlier?)

Thursday, July 26, 12

Hash function

• A “good” hash function should also be uniform:

• Each “slot” i in the array should be equally likely to
be chosen as any other slot j.

• We certainly don’t want to map every possible key
to the same array index!

• Uniformity is important to ensure good
performance.

Thursday, July 26, 12

• For instance, if M is 100000, then
studentID % 100000 is simply the
last 5 digits of the student ID, e.g.:

• student1 with Student ID
0000013012 would map to
index 13012.

• student2 with Student ID
1234567890 would map to
index 67890.

• These indices specify where in
the array the students are stored.

student1

student2

...

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...
67889

67890

67891

67892

...

Hash function

Thursday, July 26, 12

Handling collisions
• Unfortunately, on occasion, there would be two

(or more) Student objects who are
“hashed” (mapped) into the same array slot.

studentID1 = 2200012345;
studentID2 = 1926112345;
hashTable.add(studentID1, student1);
hashTable.add(studentID2, student2);

• This is called a collision -- two different Student
objects map into the same array index.

• How do we handle these collisions?

Thursday, July 26, 12

• There are two principal ways of handling collisions:

1. Chaining (aka separate chaining) -- at each
slot in the array, instead of storing only a single
element, we store a linked list of elements.

2. Open addressing -- if student5 “hashes” to
array index 123, and array index 123 is already
occupied, then we look for “another” index at
which to store student5, e.g., 124.

• Different schemes for determining “another
index”.

Handling collisions

Thursday, July 26, 12

• Each slot in the
array contains not
an object itself,
but rather a
pointer to the
head of a linked list
of objects which
all map to the
same index.

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

stud13 stud47 ...

stud92

Chaining

Thursday, July 26, 12

• When looking for a
particular object, we
must:

1. Hash the key to
obtain the index.

2. Search the list for
the correct
object.

• This will still be fast
as long as the linked
lists are short (more
later).

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

stud13 stud47 ...

stud92

Chaining

Thursday, July 26, 12

Chaining
Key

(student
ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

stud13 stud47 ...

stud92

• For example, if we wish to
find stud47 with student
ID 0925113012.

1. Hash stud47’s student
ID to determine the
index.

2. Jump to the head of the
corresponding linked
list.

3. Traverse the linked list
until we find stud47.

Thursday, July 26, 12

Chaining
Key

(student
ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

stud13 stud47 ...

stud92

• For example, if we wish to
find stud47 with student
ID 0925113012.

1. Hash stud47’s student
ID to determine the
index.

2. Jump to the head of the
corresponding linked
list.

3. Traverse the linked list
until we find stud47.

Thursday, July 26, 12

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

stud13 stud47 ...

stud92

Chaining
• For example, if we wish to

find stud47 with student
ID 0925113012.

1. Hash stud47’s student
ID to determine the
index.

2. Jump to the head of the
corresponding linked
list.

3. Traverse the linked list
until we find stud47.

Thursday, July 26, 12

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

stud13 stud47 ...

stud92

Done.

Chaining
• For example, if we wish to

find stud47 with student
ID 0925113012.

1. Hash stud47’s student
ID to determine the
index.

2. Jump to the head of the
corresponding linked
list.

3. Traverse the linked list
until we find stud47.

Thursday, July 26, 12

• If we reach the end of
the linked list and
don’t find the desired
student, then we
know that student is
not contained in the
hash table.

• There is no other
slot at which the
Student object
would be stored.

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

stud13 stud47 ...

stud92

Chaining

Thursday, July 26, 12

• If we wish to remove a
student (e.g., stud13),
we just:

1. Hash the student
ID of the student
we want to
remove.

2. Find that student in
the linked list.

3. “Splice it out”.

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

stud13 stud47 ...

stud92

Chaining

Thursday, July 26, 12

Chaining:
Performance analysis

• How fast are the add/remove/find operations for a
hash table with chaining?

• To find an object in a hash table, we must:

• Hash the key. O(1)

• Jump to that array index. O(1)

• Traverse through the linked list at that index. O(?)

Thursday, July 26, 12

Chaining:
Performance analysis

• In the worst case, all N objects stored in the hash table
will hash to the same array index.

• This means that the linked list at that index will be
N elements long.

• To find an arbitrary element in a linked list we
need O(n) time.

• This is no better than just using a linked list by
itself!

Thursday, July 26, 12

Chaining:
Performance analysis

• However, in the average case, a hash table performs much
better:

• Given M slots and N actual objects stored, the average list
length for any array slot is N/M.

• Then, the average time to access any arbitrary object is
O(1 + N/M).

• Now, suppose that we always make sure that M > N.

• Then N/M < 1.

• Hence, average-case time cost is O(1+N/M)=O(1).

Thursday, July 26, 12

Open addressing
• An alternative to chaining is open addressing.

• With open addressing, there are no linked lists associated with
array slots.

• Instead, if a given slot is already “full”, then the hash table
“tries another one”.

• There are different strategies for “finding another one”.

• Confusingly, open addressing is sometimes also known as closed
hashing:

• The “closed” refers to the fact that all data are stored within
the array itself, not in a separate chain.

Thursday, July 26, 12

Open addressing
• There are different strategies for “finding another slot”:

• Simplest -- linear probing:

• If hashFunction(key) maps into an index i that is
already occupied, then try i+1.

• If that doesn’t work, try i+2, i+3, ..., etc.

• If we get to M-1, we want to “wrap around” back to 0.

• The index of the jth probe (where j starts at 0) is given by
the expression:

(i+j) % M

Thursday, July 26, 12

Open addressing
• There are different strategies for “finding another slot”:

• Simplest -- linear probing:

• If hashFunction(key) maps into an index i that is
already occupied, then try i+1.

• If that doesn’t work, try i+2, i+3, ..., etc.

• If we get to M-1, we want to “wrap around” back to 0.

• The index of the jth probe (where j starts at 0) is given by
the expression:

(i+j) % M Why not (i % M) + j ?

Thursday, July 26, 12

Open addressing

• Linear probing is simple to implement. However, it will
tend to cause large amounts of clustering (more later).

• Better performance is achieved by quadratic
probing:

• If hashFunction(key) maps into an index i , then
the index of the jth probe is given by the
expression:

(i + c0*j + c1*j2) % M

Thursday, July 26, 12

Linear probing

• Suppose our hash table contains
M=100000 buckets, and we wish to
add student2 to the hash table, and
hashFunction(studentID2) returns
13011.

• This slot is occupied by student1.

• The next slot we try is
(13011+1) % 100000 = 13012.

• Since 13012 is available, we can
insert student2 at that slot.

student1

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

Thursday, July 26, 12

Linear probing

• Suppose our hash table contains
M=100000 buckets, and we wish to
add student2 to the hash table, and
hashFunction(studentID2) returns
13011.

• This slot is occupied by student1.

• The next slot we try is
(13011+1) % 100000 = 13012.

• Since 13012 is available, we can
insert student2 at that slot.

student1

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

Thursday, July 26, 12

Linear probing

• Suppose our hash table contains
M=100000 buckets, and we wish to
add student2 to the hash table, and
hashFunction(studentID2) returns
13011.

• This slot is occupied by student1.

• The next slot we try is
(13011+1) % 100000 = 13012.

• Since 13012 is available, we can
insert student2 at that slot.

student1

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

Thursday, July 26, 12

Linear probing

• Suppose our hash table contains
M=100000 buckets, and we wish to
add student2 to the hash table, and
hashFunction(studentID2) returns
13011.

• This slot is occupied by student1.

• The next slot we try is
(13011+1) % 100000 = 13012.

• Since 13012 is available, we can
insert student2 at that slot.

student1

student2

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

Thursday, July 26, 12

• When we later wish to find student2,
we:

1. Compute its index using the hash
function (i=13011).

2. Search down the array (using linear
probing) until we find the correct
object, or until we find an empty slot.

• If we find an empty slot, then we
know student2 is not contained in
the hash table.

student1

student2

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

Linear probing

Thursday, July 26, 12

• When we later wish to find student2,
we:

1. Compute its index using the hash
function (i=13011).

2. Search down the array (using linear
probing) until we find the correct
object, or until we find an empty slot.

• If we find an empty slot, then we
know student2 is not contained in
the hash table.

student1

student2

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

Linear probing

Thursday, July 26, 12

• When we later wish to find student2,
we:

1. Compute its index using the hash
function (i=13011).

2. Search down the array (using linear
probing) until we find the correct
object, or until we find an empty slot.

• If we find an empty slot, then we
know student2 is not contained in
the hash table.

student1

student2

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

Linear probing

Thursday, July 26, 12

• When we later wish to find student2,
we:

1. Compute its index using the hash
function (i=13011).

2. Search down the array (using linear
probing) until we find the correct
object, or until we find an empty slot.

• If we find an empty slot, then we
know student2 is not contained in
the hash table.

student1

student2

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

Linear probing

Thursday, July 26, 12

• When we later wish to find student2,
we:

1. Compute its index using the hash
function (i=13011).

2. Search down the array (using linear
probing) until we find the correct
object, or until we find an empty slot.

• If we find an empty slot, then we
know student2 is not contained in
the hash table.

student1

student2

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

Done.

Linear probing

Thursday, July 26, 12

• Suppose we search for student9, whose
hash code happens to also be 13011:

1. Compute its index using the hash
function (i=13011).

2. Search down the array (using linear
probing) until we find the correct
object, or until we find an empty slot.

• If we find an empty slot, then we
know student2 is not contained in
the hash table.

student1

student2

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

Linear probing

Thursday, July 26, 12

• Suppose we search for student9, whose
hash code happens to also be 13011:

1. Compute its index using the hash
function (i=13011).

2. Search down the array (using linear
probing) until we find the correct
object, or until we find an empty slot.

• If we find an empty slot, then we
know student2 is not contained in
the hash table.

student1

student2

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

Linear probing

Thursday, July 26, 12

• Suppose we search for student9, whose
hash code happens to also be 13011:

1. Compute its index using the hash
function (i=13011).

2. Search down the array (using linear
probing) until we find the correct
object, or until we find an empty slot.

• If we find an empty slot, then we
know student2 is not contained in
the hash table.

student1

student2

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

Linear probing

Thursday, July 26, 12

• Suppose we search for student9, whose
hash code happens to also be 13011:

1. Compute its index using the hash
function (i=13011).

2. Search down the array (using linear
probing) until we find the correct
object, or until we find an empty slot.

• If we find an empty slot, then we
know student2 is not contained in
the hash table.

student1

student2

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

Linear probing

Thursday, July 26, 12

• Suppose we search for student9, whose
hash code happens to also be 13011:

1. Compute its index using the hash
function (i=13011).

2. Search down the array (using linear
probing) until we find the correct
object, or until we find an empty slot.

• If we find an empty slot, then we
know student2 is not contained in
the hash table.

student1

student2

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

Linear probing

Thursday, July 26, 12

• Suppose we search for student9, whose
hash code happens to also be 13011:

1. Compute its index using the hash
function (i=13011).

2. Search down the array (using linear
probing) until we find the correct
object, or until we find an empty slot.

• If we find an empty slot, then we
know student2 is not contained in
the hash table.

student1

student2

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

Linear probing

Thursday, July 26, 12

Open addressing

• Open addressing requires less memory
than chaining because there are no
linked lists.

• However, they suffer from a few
complications:

1. Removing an element.

2. Clustering.

student1

student2

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

Thursday, July 26, 12

Removing an element

• Suppose we remove student1 from the
hash table.

student1

student2

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

Thursday, July 26, 12

Removing an element

• Suppose we remove student1 from the
hash table.

• If we later search for student2, we will
still hash to 13011, but find that it is
empty.

• Does that mean student2 is not
contained in the hash table?

• No -- but we have to record that
somehow.

student2

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

Thursday, July 26, 12

Removing an element

• One method of recording that an
element was deleted is a bridge, a
special element that indicates “empty,
but keep looking.”

• If we later add another element, say
student5 that hashes to 13011, then
we can replace the bridge with a real
Student object.

(bridge)

student2

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

Thursday, July 26, 12

Removing an element

• One method of recording that an
element was deleted is a bridge, a
special element that indicates “empty,
but keep looking.”

• If we later add another element, say
student5 that hashes to 13011, then
we can replace the bridge with a real
Student object.

student5

student2

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

...

53612

Thursday, July 26, 12

Clustering
• The other downside of open addressing

is clustering.

• If too many keys hash to the same index
-- or to nearby indices -- then the linear
probing may become expensive.

• Consider the hash table to the right:

• 13011-13016 are already occupied.

• If we want to add another student
student7 who also hashes to 13011,
then we have to step through 7
elements.

• The longer the cluster, the higher the
time cost for add/find/remove.

student5

student1

student9

student8

student3

student4

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

13014

13015

13016

13017

...

Thursday, July 26, 12

Clustering
• The other downside of open addressing

is clustering.

• If too many keys hash to the same index
-- or to nearby indices -- then the linear
probing may become expensive.

• Consider the hash table to the right:

• 13011-13016 are already occupied.

• If we want to add another student
student7 who also hashes to 13011,
then we have to step through 7
elements.

• The longer the cluster, the higher the
time cost for add/find/remove.

student5

student1

student9

student8

student3

student4

student7

Key
(student

ID)

Value
(reference to

Student
object)

...
13011

13012

13013

13014

13015

13016

13017

...

Thursday, July 26, 12

Open addressing
• Like chaining, open addressing guarantees O(1) time

cost for the add/find/remove operations so long as
M > N.

• Due to the bridging complication, open addressing
is most useful when elements will never be deleted.

• The memory saved by not using linked lists can be
used to allocate more slots ==> higher M.

• The larger M is, the fewer collisions will occur,
and the better the average-case performance
will be.

Thursday, July 26, 12

Hash table ADTs
• So far we’ve focused more on how a hash

table is implemented internally and less how
a user would use it.

• There are two different interfaces that a
hash table ADT might offer.

• The interface varies depending on whether:

1. Key is a field inside the whole record.

2. Key is separate and stored outside the
record.

Thursday, July 26, 12

Key inside the record
• In some previous code examples we’ve conceptualized

the key as a field within the whole object, e.g.:
class Student {
 int _studentID;
 String _firstName, _lastName;
 boolean _hasTeddyBear;
}

• This implementation of keys then lends itself to the
following hash table interface:
interface HashTable<T extends HasKey> {
 void add (T o);
 T get (T o);
}

where the hypothetical HasKey interface guarantees that
T offers a method called int getKey().

Thursday, July 26, 12

Key inside the record
• The HashTable then might then be implemented as:

class HashTableImpl<T extends HasKey>
implements HashTable<T> {

 T[] _array;
 ...
 void add (T o) {
 _array[hashFunction(o.getKey())] = o;
 }

 T get (T o) {
 return _array[hashFunction(o.getKey())];
 }
}

Thursday, July 26, 12

Key inside the record
• The user could then use the hash table as follows:

class Student implements HasKey {
 int _studentID;
 String _firstName, _lastName;
 boolean _hasTeddyBear;
 ...
 int getKey () {
 return _studentID;
 }
}

hashTable<Student> students = new HashTable<Student>();

students.add(new Student(12345, “Jacky”, “O’Nassis”));
students.add(new Student(9231, “Bette”, “Midler”));

...
Student someStudent = students.get(new Student(9231));

Thursday, July 26, 12

Key inside the record
• It turns out this hypothetical HasKey interface is

unnecessary because the Java Object class already
offers a hashCode() method.

• hashCode() should return some “integer
representation” of the object.

• The default implementation of Object.hashCode() is
simply to return the address in memory (an int) of the
object.

• Subclasses of Object can override hashCode() to do
something more meaningful.

Thursday, July 26, 12

hashCode()

• For example, we could override hashCode() in
Student to return the Student’s _studentId field:

class Student implements HasKey {
 int _studentID;
 String _firstName, _lastName;
 boolean _hasTeddyBear;
 ...
 public int hashCode () {
 return _studentID;
 }
}

HasKey interface no longer necessary

Thursday, July 26, 12

• Because hashCode() is available in every Java Object,
we can simplify both the interface and implementation
of the HashTable<T>:

interface HashTable<T extends HasKey> {
 void add (T o);
 T get (T o);
}

class HashTableImpl<T> implements HashTable<T> {
 ...
 void add (T o) {
 _array[hashFunction(o.hashCode())] = o;
 }

 T get (T o) {
 return _array[hashFunction(o.hashCode())];
 }
}

HasKey interface no longer necessary

hashCode()

Thursday, July 26, 12

Non-integer keys

• hashCode() also provides useful functionality for
supporting non-integer keys.

• E.g., we want to use a Student’s full name as
the key.

• A names is a String, which is not an int.

• How do we convert from a String into an
(int) index into the hash table?

• Just delegate to String.hashCode().

Thursday, July 26, 12

Non-integer keys
• Example:

class Student {
 int _studentID;
 String _firstName, _lastName;
 boolean _hasTeddyBear;
 ...
 public int hashCode () {
 String fullName = _firstName + “ “ + _lastName;
 return fullName.hashCode();
 }
}

Since fullName is a String, and String is
an Object, then fullName is guaranteed to

support the hashCode() method.

Thursday, July 26, 12

Hash code examples
• Suppose our key is:

• A single character c:

• We could convert c into its ASCII value, which is an
integer (from 0-127).

• A String s of characters:

• We could convert each c in s to its ASCII value, and
then add them together.

• An image im:

• We could add together the pixel values across all
three (R,G,B) channels.

Note: these are just hypothetical
examples, not necessarily how Java
actually implements hash codes!

Thursday, July 26, 12

hashCode()
• In Java, the hashCode() method must uphold two

properties:

1. Deterministic -- multiple subsequent calls to
hashCode() on the same object o must return the
same value.

• Otherwise, hashFunction(key.hashCode())
would map into a different array index -- and the
hash table wouldn’t be able to find o.

_array[hashFunction(o.hashCode())] = o; // Add

...
return _array[hashFunction(o.hashCode()]; // Find

Thursday, July 26, 12

hashCode()

2. Consistent across equal instances -- if o1.equals(o2),
then o1.hashCode() must equal o2.hashCode():

String s1 = “hello”;
String s2 = new String(“hello”); // Distinct copy
int hashCode1 = s1.hashCode();
int hashCode2 = s2.hashCode(); // Must equal hashCode1

• This means that if class A overrides the equals()
method, then it must also override hashCode().

Thursday, July 26, 12

hashCode()
• In addition, it is desirable for hashCode() to have:

3. Wide distribution across instances -- hashCode() should
return different values for different instances of the same
class as much as possible.

• If A.hashCode() returned the same hash value for
every instance o, then all objects of type A would map
into the same array index.

_array[hashFunction(key1.hashCode())] = o1;
_array[hashFunction(key2.hashCode())] = o2; // Collision
_array[hashFunction(key3.hashCode())] = o3; // Collision
_array[hashFunction(key4.hashCode())] = o4; // Collision

• This would yield terrible (O(n)) hash performance!

hashCode() is always the same.

Thursday, July 26, 12

Key outside the record

• More commonly, however, hash tables separate the
key from the value.

• A typical hash table interface might be:

interface HashTable<K,V> {
 void put (K key, V value);
 V get (K key);
}

Here, we are defining two different
type parameters K (for keys) and V
(for values).

Thursday, July 26, 12

Key outside the record

• This may be more convenient than the HashTable
interface where the key is inside the record.

• Compare:

• Key inside record:
hashTable.add(new Student(123, “Jimmy”, “Carter”));
...
Student student = hashTable.get(new Student(123));

• Key separate from record:
hashTable.put(123, new Student(“Jimmy”, “Carter”));
...

Student student = hashTable.get(123);

No need to instantiate new Student
object just to find an existing one.

Thursday, July 26, 12

• Separating keys from values is especially useful
when we use a hash table as a dictionary.

• A dictionary is a data structure for storing a set
of associations between keys and values.

Key outside the record

Thursday, July 26, 12

• Example:

• We can create a dictionary of English words to
their meanings:
HashTable<String,String> englishDictionary =
 new HashTable<String,String>();
englishDictionary.put(
 “eggplant”,
 “The somewhat large egg-shaped fruit of a
 tropical Old World plant, eaten as a vegetable.”
);

...

String meaning = englishDictionary.get(“eggplant”);

Key outside the record

Thursday, July 26, 12

• To implement a HashTable in which keys are
stored separately from values, we must “bind” the
key and value together inside the table:
class HashTableImpl<K,V> implements HashTable<K,V> {
 static class Bucket {
 K _key;
 V _value;
 ...
 }
 Bucket[] _array;
 ...
 void put (K key, V value) {
 int bucketIdx = hashFunction(key.hashCode());
 _array[bucketIdx]._key = new Bucket(key, value);
 }

 V get (Key key) {
 return _array[hashFunction(key.hashCode())]._value;
 }
}

Key outside the record

Thursday, July 26, 12

Hash table usage example

• Suppose we were implementing the Web server
for Facebook.

• Server must be robust to handle billions of
requests per day!

Thursday, July 26, 12

Hash table usage example

• Facebook access is initiated when user enters
the username of a particular user.

• Given the username, the Facebook page,
including pictures and text, must be found
fast.

Thursday, July 26, 12

Hash table usage example

• Possible implementation:

Image findUserProfilePicture (String username) {
 String pathToImageFile = _usersToImagePaths.get(username);
 return new Image(pathToImageFile);
}

This needs to be super-fast to handle
Facebook’s typical load; hence, use a

hash table.

Thursday, July 26, 12

