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Review of hash tables
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Hash tables

• Hash tables offer O(1) performance for 
add/find/remove operations in the 
average case.

• These excellent time costs come at the 
expense of additional space cost.

• We use a very large array to store the 
user’s data.
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Hash table interfaces

• For hash tables there are two principal 
interfaces:

• One in which the key is inside the 
record being stored.

• One in which the key is separate from 
the value of the record being stored.
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Hash table interfaces

• For hash tables there are two principal 
interfaces:

• One in which the key is inside the 
record being stored.

• One in which the key is separate from 
the value of the record being stored.

More common
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Hash table interfaces

• Key inside record:
interface HashTable<T> {
  void add (T o);
  T get (T o);
}
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Hash table interfaces

• Key inside record:
interface HashTable<T> {
  void add (T o);
  T get (T o);
}

E.g., user might want to store 
Student objects in the hash 
table. Then T would be Student.
class Student {
  int _studentId:
  String _firstName, _lastName;
  ...
}
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Hash table interfaces

• Key inside record:
interface HashTable<T> {
  void add (T o);
  T get (T o);
}

Usage:

HashTableImpl<Student> hash = new HashTableImpl<Student>();
hash.add(new Student(123, “Surely”, “Temple”));  // O(1)
...
Student s = hash.get(new Student(123));  // O(1)
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Hash table interfaces

• Key separate from record:
interface HashTable<K,V> {
  void put (K key, V value);
  V get (K key);
}
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Hash table interfaces

• Key separate from record:
interface HashTable<K,V> {
  void put (K key, V value);
  V get (K key);
}

Here, the key type K could be 
Integer (for student id), and 
value type V would be Student:
class Student {

  String _firstName, _lastName;
  ...
}
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Hash table interfaces

• Key separate from record:
interface HashTable<K,V> {
  void put (K key, V value);
  V get (K key);
}

Usage:
HashTableImpl<Integer,Student> hash = new HashTableImpl<Integer,Student>();
hash.add(123, new Student(“Surely”, “Temple”));  // O(1)
...
Student s = hash.get(123);  // O(1)

Monday, July 30, 12



hashCode()
• Fundamental to all hash tables is the ability to convert an 

arbitrary object o into an int.

• E.g., a Student object can be represented as an int 
using the student id.

• o’s integer representation is used to determine where 
inside the hash table’s intern array o will be stored

void add (T o) {
  int idx = hashFunction(o.hashCode());
  ...  // have to handle collisions
  _array[idx] = o;
}
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hashCode()
• The Java Object class provides a built-in hashCode() 

method that converts every Object into an int.

• By default, hashCode() simply returns the object’s 
address in memory (an int).

• Subclasses of Object can override hashCode() to do 
something more meaningful or to enhance 
performance, e.g.:
class Student {
  int _studentId;
  String _firstName, _lastName;
  public int hashCode () {
    return _studentId;
  }
}

Override 
Object.hashCode()
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Caches.
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Caches

• Having concluded our discussion of hash tables, we 
can now show a useful example of combining two 
data structures to build a third: in this case, a cache.

• Consider a situation in which a program needs to 
retrieve data from a container that is slow.

• The slow speed might arise due to a long distance 
over which the data must travel, or to the slow 
data rate at which a device can deliver information.
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Caches
• Examples:

• A web browser downloads a webpage from an external 
server.

• A spreadsheet program loads a file from disk.

• The CPU must read the value of a variable stored in 
main memory (instead of on-chip storage).

• In each case, the program fetches data from secondary 
storage and loads it into primary storage.

• Primary storage is faster and “closer” to the user than 
secondary storage.

• What is “slow” in one context may be “fast” in another.

Server is far away.

Disk is slow.

RAM is slow.
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Caches
• Examples:

• A web browser downloads a webpage from an external server.

• Primary storage: computer memory (RAM) and/or disk.

• Secondary storage: web server.

• A spreadsheet program loads a file from disk.

• Primary storage: computer memory (RAM).

• Secondary storage: disk.

• The CPU must read the value of a variable stored in main 
memory (instead of on-chip storage).

• Primary storage: CPU registers.

• Secondary storage: computer memory (RAM).

Monday, July 30, 12



Caches
• Now, suppose that the same data X tends to be 

fetched from secondary storage repeatedly.

• In this case, we can save time by introducing an 
intermediary data container -- a cache -- that 
“remembers” the data fetched from secondary 
storage.

• A cache is a data structure that offers high-speed 
access to a small amount of data that must 
otherwise be written to/read from a slower, 
secondary storage container.
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Caches: small and fast
• Caches are inherently fast and small:

• Fast because they reside in primary storage, not 
secondary storage.

• If they were slow, we’d forget the cache and 
just access secondary storage directly.

• Small because they are typically more expensive 
than secondary storage.

• If they were cheap, we’d just store everything in 
the cache and forget secondary storage.
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Caches in action
• A user’s request to fetch data X from secondary 

storage is “intercepted” by the cache:

• If the cache already contains X, then the cache 
returns X to the user immediately.

• Fetching X from secondary storage is 
unnecessary.

• Otherwise (cache does not contain X), the cache 
forwards the user’s request to secondary storage.

• Both read and write caches exist; here, we deal only 
with read caches.
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Caches
End-user Secondary 

storage
Time

Cache
Fetch X.
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Caches
Secondary 

storage
Time

Cache

Is X in cache? 
No.

Fetch X.

End-user
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storage
Time

Cache

Is X in cache? 
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Caches
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storage
Time

Cache

Is X in cache? 
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Fetch X.
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Caches
Secondary 

storage
Time

Cache

Is X in cache? 
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Fetch X.
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Deliver X.
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Caches
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Caches
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Caches
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Caches
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Caches: definitions
• If the user requests item X from the cache, and X is 

contained in the cache, then we have a cache hit.

• Otherwise, if X is not in the cache, then we have a 
cache miss.

• X must then be fetched from secondary storage.

• The size of the cache is always finite.

• For every cache miss: if the cache is full, the cache must 
decide which element to “forget”, i.e., evict.

• The choice of which data to evict can affect the cache 
miss rate (fraction of cache accesses that miss) and 
thereby the performance of the computer system.
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Eviction policies
• The algorithm that decides which object to evict is 

called an eviction policy.

• The choice of eviction policy can make a large impact 
on system performance.

• An optimal eviction policy determines which element 
o in the cache will not be used again for the longest 
period of time, and then evicts o.

• This minimizes the expected cache miss rate.

• Unfortunately, this optimal policy is rarely achievable 
because it’s difficult to predict which items will be 
needed in the future.
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Least-recently-used caches
• One of the most commonly implemented eviction 

policies is least-recently-used (LRU).

• Whenever we must evict an element from the 
cache, we pick the least-recently-used element.

• Justification: It seems reasonable that an item that 
has not been used in a long time will continue 
not to be requested for a while longer.

• Empirically, LRU has shown to perform “similarly” 
to the optimal eviction policy in many practical 
applications.
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LRU in action

• How would an LRU 
cache (with 2 slots) 
handle the following 
sequence of requests?

• A B A C A B B C

Cache 
contentsTime
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LRU in action

• How would an LRU 
cache (with 2 slots) 
handle the following 
sequence of requests?

• A B A C A B B C

A

Cache 
contentsTime

Cache miss
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LRU in action

• How would an LRU 
cache (with 2 slots) 
handle the following 
sequence of requests?

• A B A C A B B C

A
A B

Cache 
contentsTime

Cache miss
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LRU in action

• How would an LRU 
cache (with 2 slots) 
handle the following 
sequence of requests?

• A B A C A B B C

A
A B
A B

Cache 
contentsTime
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LRU in action

• How would an LRU 
cache (with 2 slots) 
handle the following 
sequence of requests?

• A B A C A B B C

A
A B
A B
A C

Cache 
contentsTime

B was LRU.Cache miss
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LRU in action

• How would an LRU 
cache (with 2 slots) 
handle the following 
sequence of requests?

• A B A C A B B C

A
A B
A B
A C
A C

Cache 
contentsTime
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LRU in action

• How would an LRU 
cache (with 2 slots) 
handle the following 
sequence of requests?

• A B A C A B B C

A
A B
A B
A C
A C
A B

Cache 
contentsTime

C was LRU.Cache miss
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LRU in action

• How would an LRU 
cache (with 2 slots) 
handle the following 
sequence of requests?

• A B A C A B B C

A
A B
A B
A C
A C
A B
A B

Cache 
contentsTime
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LRU in action

• How would an LRU 
cache (with 2 slots) 
handle the following 
sequence of requests?

• A B A C A B B C

A
A B
A B
A C
A C
A B
A B
C B

Cache 
contentsTime

A was LRU.Cache miss

There were 5 cache misses 
out of 8 accesses; hence, 
cache miss rate is 0.625.
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LRU Cache
• We wish to construct a Cache ADT that uses the 

LRU eviction policy.

• The cache will mediate access to some other, 
arbitrary secondary storage container.

• The user will request data by calling
Cache.get(key) and expect the associated value to 
be returned.

• If key is not stored in the cache, then the cache 
should forward the request to the secondary 
storage.
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LRU Cache interface
• Before designing a Java interface for the LRU cache, let’s 

first conceptualize how the user might access the 
secondary storage without the cache.

• Suppose the secondary storage has the following 
interface:
interface Storage<K,V> {
  // Fetches and returns the data specified by key
  V get (K key);
}

• Here, the key might be the URL of a web page we’re 
fetching, and the value might be the web page itself, e.g.:
WebServer<String,Webpage> server = new WebServer<String,Webpage>();
Webpage page = server.get(“http://my.website.com”);
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LRU Cache interface

• Now, let’s define a Java interface for an LRU cache:
// Least-recently-used (LRU) cache.
// The get(key) method should take O(1) time
// for an n-element cache.
// 
// Implementing classes should offer a
// constructor with one parameter of type
// Storage that specifies the cache’s
// secondary storage.
interface LRUCache<K,V> {
  V get (K key);
}
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LRU Cache usage

• Instead of writing:
WebServer<String,Webpage> server = new WebServer<String,Webpage>();
Webpage page = server.get(“http://my.website.com”);
...
page = server.get(“http://my.website.com”);
...
page = server.get(“http://my.website.com”);

• ...we write instead:
WebServer<String,Webpage> server = new WebServer<String,Webpage>();
LRUCache<String,Webpage> cache =
  new LRUCacheImpl<String,Webpage>(server);
Webpage page = cache.get(“http://my.website.com");
...
page = cache.get(“http://my.website.com”);
...
page = cache.get(“http://my.website.com”);
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LRU Cache usage

• Instead of writing:
WebServer<String,Webpage> server = new WebServer<String,Webpage>();
Webpage page = server.get(“http://my.website.com”);
...
page = server.get(“http://my.website.com”);
...
page = server.get(“http://my.website.com”);

• ...we write instead:
WebServer<String,Webpage> server = new WebServer<String,Webpage>();
LRUCache<String,Webpage> cache =
  new LRUCacheImpl<String,Webpage>(server);
Webpage page = cache.get(“http://my.website.com");
...
page = cache.get(“http://my.website.com”);
...
page = cache.get(“http://my.website.com”);

Cache miss: call 
server.get(...)

Cache hit

Cache hit
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• The LRUCache interface imposes the constraint that 
get(key) must operate in O(1) time for an n-element 
cache.

• Each call to get(key) must potentially:

1. Determine whether the desired object (specified by 
key) is stored in the cache in O(1) time.

2. If key is in cache, then:

(a) Make key the MRU item in O(1) time.

(b)Return the key’s associated value in O(1) time.

LRU Cache implementation
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3. Else (key is not in cache):

(a) Call value = _secondaryStorage.get(key).

(b) Find the least-recently-used (LRU) item in O(1) time.

(c) Replace the LRU item with (key,value), which is 
now the most-recently-used (MRU) item in the cache, 
in O(1) time.

LRU Cache implementation
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LRU Cache implementation

• To associate each key with its value, we need a 
Node (inner-)class:
static class Node {
  K _key;
  V _value;
}

But what will be the 
“underlying storage” for the 
cache entries themselves?
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LRU Cache implementation
• Implementation sketch of LRUCache:

class LRUCacheImpl<K,V> implements LRUCache<K,V>{
  static class Node {
    K _key;
    V _value;
  }
  Storage<K,V> _secondaryStorage;
  ...

  LRUCacheImpl (Storage<K,V> secondaryStorage) {
    _secondaryStorage = secondaryStorage;
  }

  V get (K key) {
    // If key in cache
    //    Fetch value from cache
    // Else
    //    value = _secondaryStorage.get(key);
    //    Store value in cache (evict LRU if necessary)
    // Make key the MRU item
    // Return value;
  }
}

But what will be the 
“underlying storage” for the 
cache entries themselves?

Monday, July 30, 12



• Our “underlying storage” will consist of 2 components:

1. A queue of Nodes to hold the relative order in which data 
are accessed.

• For n-element cache, max length of queue is n.

• LRU at the front, MRU at the back of the queue.

• Each Node will contain both a key (e.g., URL) and 
corresponding value (e.g., webpage).

LRU Cache implementation

  _key: W
_value: ...

Node
  _key: X
_value: ...

Node
  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node

_front _back

W is LRU item. Z is MRU item.

n = 4
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• All the important cache data is stored in the queue.

• Whenever data X is requested, we move its Node to 
the back of the queue because it’s now the MRU item.

• Whenever data V (not in the cache) is requested, we 
fetch it from secondary storage, and then store it in 
the cache.

• We must evict the LRU item to make room.

LRU Cache implementation

  _key: W
_value: ...

Node
  _key: X
_value: ...

Node
  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node

_front _back

W is LRU item. Z is MRU item.

n = 4
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• All the important cache data is stored in the queue.

• Whenever data X is requested, we move its Node to 
the back of the queue because it’s now the MRU item.

• Whenever data V (not in the cache) is requested, we 
fetch it from secondary storage, and then store it in 
the cache.

• We must evict the LRU item to make room.

LRU Cache implementation

  _key: W
_value: ...

Node
  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node
  _key: X
_value: ...

Node

_front _back

W is LRU item. Z is MRU item.

n = 4
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• All the important cache data is stored in the queue.

• Whenever data X is requested, we move its Node to 
the back of the queue because it’s now the MRU item.

• Whenever data V (not in the cache) is requested, we 
fetch it from secondary storage, and then store it in 
the cache.

• We must evict the LRU item to make room.

LRU Cache implementation

  _key: W
_value: ...

Node
  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node
  _key: X
_value: ...

Node

_front _back

W is LRU item. Z is MRU item.

n = 4
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• All the important cache data is stored in the queue.

• Whenever data X is requested, we move its Node to 
the back of the queue because it’s now the MRU item.

• Whenever data V (not in the cache) is requested, we 
fetch it from secondary storage, and then store it in 
the cache.

• We must evict the LRU item to make room.

LRU Cache implementation

  _key: W
_value: ...

Node
  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node
  _key: X
_value: ...

Node

_front _back

W is LRU item. X is MRU item.

n = 4

  _key: V
_value: ...
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• All the important cache data is stored in the queue.

• Whenever data X is requested, we move its Node to 
the back of the queue because it’s now the MRU item.

• Whenever data V (not in the cache) is requested, we 
fetch it from secondary storage, and then store it in 
the cache.

• We must evict the LRU item to make room.

LRU Cache implementation

  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node
  _key: X
_value: ...

Node
  _key: V
_value: ...

Node

_front _back

W was LRU item and was evicted. V is now MRU item.

n = 4
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Reality check
• Suppose the cache stores n = 3 elements, and suppose 

the user requests the following webpages in the 
following order:

cnn.com
google.com
gmail.com
yahoo.com
npr.org
gmail.com
wikipedia.org
gmail.com
npr.org
cnn.com
imdb.com

• Show the queue at each step.
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• Unfortunately, a queue by itself will not suffice to 
implement the LRUCache interface.

• When we want to update a Node‘s position in the 
queue to MRU, we have to find the node.

• If we just search linearly through the queue, this 
takes time O(n) (slow).

LRU Cache implementation

  _key: W
_value: ...

Node
  _key: X
_value: ...

Node
  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node

_front _backn = 4
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• Instead, we can use an additional 
HashTable<K,Node> to “jump” to the desired Node.

• This only takes O(1) time.

LRU Cache implementation

  _key: W
_value: ...

Node
  _key: X
_value: ...

Node
  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node

_front _backn = 4
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LRU Cache implementation

  _key: W
_value: ...

Node
  _key: X
_value: ...

Node
  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node

_front _back

Key Node
X
Y

... ...

_keysToNodesTable

The hash table affords O(1) 
access to any cache item, 

given its key.

The queue affords O(1) 
access to the LRU item 
(_front) in the cache.

• Every key stored in 
the queue will also 
have an entry in a 
hash table.

n = 4
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LRU Cache implementation

  _key: W
_value: ...

Node
  _key: X
_value: ...

Node
  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node

_front _back

Key Node
X
Y

... ...

_keysToNodesTable
Whenever the user calls 
cache.get(X), item X 
becomes the MRU item. 

Using the hash table, X’s Node 
in the queue can be found in 
O(1) time.

Its Node is then moved to the 
back of the queue in O(1) 
time.

n = 4
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LRU Cache implementation

  _key: W
_value: ...

Node
  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node
  _key: X
_value: ...

Node

_front _back

Key Node
X
Y

... ...

_keysToNodesTable

n = 4

Whenever the user calls 
cache.get(X), item X 
becomes the MRU item. 

Using the hash table, X’s Node 
in the queue can be found in 
O(1) time.

Its Node is then moved to the 
back of the queue in O(1) 
time.
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LRU Cache implementation

  _key: W
_value: ...

Node
  _key: Y
_value: ...

Node
  _key: Z
_value: ...

Node
  _key: X
_value: ...

Node

_front _back

Key Node
X
Y

... ...

_keysToNodesTable
If the user calls 
cache.get(A) and 
triggers an eviction, then 
the LRU node is removed 
from the queue and the 
hash table.

n = 4
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• In summary:

• An LRU cache is an example of combining data 
structures to harness their individual strengths.

• To implement an LRU cache with O(1) time for
V get (K key), we need fast access both to the 
LRU item, and to an arbitrary item specified by key.

• A queue gives us O(1) access to the LRU item 
(front of queue).

• A hash table gives us O(1) access to an arbitrary 
Node in the queue.

LRU Cache implementation
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Graphs.
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Graphs
• The last fundamental data structure we will cover in 

this course is a graph.

• Mathematically, a graph consists of a set N of 
nodes (aka vertices) connected by a set E of 
edges.
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Graphs
• In computer science, graphs are useful for 

describing relationships (edges) among things (nodes).

• E.g., each node might represent a Facebook user, 
and each edge might represent whether two 
Facebook users are friends.
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Graphs

• E.g., each node might represent a computer server, 
and each edge represents whether two nodes are 
linked by Ethernet.
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5
1
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Graphs
• Like trees, graphs consist of nodes and edges.

• Unlike trees, graph can contain cycles.

• Graphs can be either undirected (as below)...
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Graphs
• ...or directed (as below).

• Directed graphs are useful for describing 
asymmetric relationships, e.g., “I know who Rick 
Santorum is, but he doesn’t know who I am.”

Me

Rick Santorum
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