
CSE 12:
Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Fourteen
30 July 2012

Monday, July 30, 12

Review of hash tables

Monday, July 30, 12

Hash tables

• Hash tables offer O(1) performance for
add/find/remove operations in the
average case.

• These excellent time costs come at the
expense of additional space cost.

• We use a very large array to store the
user’s data.

Monday, July 30, 12

Hash table interfaces

• For hash tables there are two principal
interfaces:

• One in which the key is inside the
record being stored.

• One in which the key is separate from
the value of the record being stored.

Monday, July 30, 12

Hash table interfaces

• For hash tables there are two principal
interfaces:

• One in which the key is inside the
record being stored.

• One in which the key is separate from
the value of the record being stored.

More common

Monday, July 30, 12

Hash table interfaces

• Key inside record:
interface HashTable<T> {
 void add (T o);
 T get (T o);
}

Monday, July 30, 12

Hash table interfaces

• Key inside record:
interface HashTable<T> {
 void add (T o);
 T get (T o);
}

E.g., user might want to store
Student objects in the hash
table. Then T would be Student.
class Student {
 int _studentId:
 String _firstName, _lastName;
 ...
}

Monday, July 30, 12

Hash table interfaces

• Key inside record:
interface HashTable<T> {
 void add (T o);
 T get (T o);
}

Usage:

HashTableImpl<Student> hash = new HashTableImpl<Student>();
hash.add(new Student(123, “Surely”, “Temple”)); // O(1)
...
Student s = hash.get(new Student(123)); // O(1)

Monday, July 30, 12

Hash table interfaces

• Key separate from record:
interface HashTable<K,V> {
 void put (K key, V value);
 V get (K key);
}

Monday, July 30, 12

Hash table interfaces

• Key separate from record:
interface HashTable<K,V> {
 void put (K key, V value);
 V get (K key);
}

Here, the key type K could be
Integer (for student id), and
value type V would be Student:
class Student {

 String _firstName, _lastName;
 ...
}

Monday, July 30, 12

Hash table interfaces

• Key separate from record:
interface HashTable<K,V> {
 void put (K key, V value);
 V get (K key);
}

Usage:
HashTableImpl<Integer,Student> hash = new HashTableImpl<Integer,Student>();
hash.add(123, new Student(“Surely”, “Temple”)); // O(1)
...
Student s = hash.get(123); // O(1)

Monday, July 30, 12

hashCode()
• Fundamental to all hash tables is the ability to convert an

arbitrary object o into an int.

• E.g., a Student object can be represented as an int
using the student id.

• o’s integer representation is used to determine where
inside the hash table’s intern array o will be stored

void add (T o) {
 int idx = hashFunction(o.hashCode());
 ... // have to handle collisions
 _array[idx] = o;
}

Monday, July 30, 12

hashCode()
• The Java Object class provides a built-in hashCode()

method that converts every Object into an int.

• By default, hashCode() simply returns the object’s
address in memory (an int).

• Subclasses of Object can override hashCode() to do
something more meaningful or to enhance
performance, e.g.:
class Student {
 int _studentId;
 String _firstName, _lastName;
 public int hashCode () {
 return _studentId;
 }
}

Override
Object.hashCode()

Monday, July 30, 12

Caches.

Monday, July 30, 12

Caches

• Having concluded our discussion of hash tables, we
can now show a useful example of combining two
data structures to build a third: in this case, a cache.

• Consider a situation in which a program needs to
retrieve data from a container that is slow.

• The slow speed might arise due to a long distance
over which the data must travel, or to the slow
data rate at which a device can deliver information.

Monday, July 30, 12

Caches
• Examples:

• A web browser downloads a webpage from an external
server.

• A spreadsheet program loads a file from disk.

• The CPU must read the value of a variable stored in
main memory (instead of on-chip storage).

• In each case, the program fetches data from secondary
storage and loads it into primary storage.

• Primary storage is faster and “closer” to the user than
secondary storage.

• What is “slow” in one context may be “fast” in another.

Server is far away.

Disk is slow.

RAM is slow.

Monday, July 30, 12

Caches
• Examples:

• A web browser downloads a webpage from an external server.

• Primary storage: computer memory (RAM) and/or disk.

• Secondary storage: web server.

• A spreadsheet program loads a file from disk.

• Primary storage: computer memory (RAM).

• Secondary storage: disk.

• The CPU must read the value of a variable stored in main
memory (instead of on-chip storage).

• Primary storage: CPU registers.

• Secondary storage: computer memory (RAM).

Monday, July 30, 12

Caches
• Now, suppose that the same data X tends to be

fetched from secondary storage repeatedly.

• In this case, we can save time by introducing an
intermediary data container -- a cache -- that
“remembers” the data fetched from secondary
storage.

• A cache is a data structure that offers high-speed
access to a small amount of data that must
otherwise be written to/read from a slower,
secondary storage container.

Monday, July 30, 12

Caches: small and fast
• Caches are inherently fast and small:

• Fast because they reside in primary storage, not
secondary storage.

• If they were slow, we’d forget the cache and
just access secondary storage directly.

• Small because they are typically more expensive
than secondary storage.

• If they were cheap, we’d just store everything in
the cache and forget secondary storage.

Monday, July 30, 12

Caches in action
• A user’s request to fetch data X from secondary

storage is “intercepted” by the cache:

• If the cache already contains X, then the cache
returns X to the user immediately.

• Fetching X from secondary storage is
unnecessary.

• Otherwise (cache does not contain X), the cache
forwards the user’s request to secondary storage.

• Both read and write caches exist; here, we deal only
with read caches.

Monday, July 30, 12

Caches
End-user Secondary

storage
Time

Cache
Fetch X.

Monday, July 30, 12

Caches
Secondary

storage
Time

Cache

Is X in cache?
No.

Fetch X.

End-user

Monday, July 30, 12

Caches
Secondary

storage
Time

Cache

Is X in cache?
No.

Fetch X.

Fetch X.

Respond to
request.

End-user

Monday, July 30, 12

Caches
Secondary

storage
Time

Cache

Is X in cache?
No.

Fetch X.

Fetch X.

Deliver X.

Respond to
request.

End-user

Monday, July 30, 12

Caches
Secondary

storage
Time

Cache

Is X in cache?
No.

Fetch X.

Fetch X.

Deliver X.

Store X in
cache.

Respond to
request.

End-user

Monday, July 30, 12

Caches
Secondary

storage
Time

Cache

Is X in cache?
No.

Fetch X.

Fetch X.

Deliver X.

Store X in
cache.

Deliver X.

Respond to
request.

End-user

Monday, July 30, 12

Caches
Secondary

storage
Time

Cache

Is X in cache?
No.

Fetch X.

Fetch X.

Deliver X.

Store X in
cache.

Deliver X.

Fetch X.

Respond to
request.

End-user

Monday, July 30, 12

Caches
Secondary

storage
Time

Cache

Is X in cache?
No.

Fetch X.

Fetch X.

Deliver X.

Store X in
cache.

Deliver X.

Is X in cache?
Yes.

Fetch X.

Respond to
request.

End-user

Monday, July 30, 12

Caches
Secondary

storage
Time

Cache

Is X in cache?
No.

Fetch X.

Fetch X.

Deliver X.

Store X in
cache.

Deliver X.

Is X in cache?
Yes.

Fetch X.

Deliver X.

Respond to
request.

End-user

Monday, July 30, 12

Caches: definitions
• If the user requests item X from the cache, and X is

contained in the cache, then we have a cache hit.

• Otherwise, if X is not in the cache, then we have a
cache miss.

• X must then be fetched from secondary storage.

• The size of the cache is always finite.

• For every cache miss: if the cache is full, the cache must
decide which element to “forget”, i.e., evict.

• The choice of which data to evict can affect the cache
miss rate (fraction of cache accesses that miss) and
thereby the performance of the computer system.

Monday, July 30, 12

Eviction policies
• The algorithm that decides which object to evict is

called an eviction policy.

• The choice of eviction policy can make a large impact
on system performance.

• An optimal eviction policy determines which element
o in the cache will not be used again for the longest
period of time, and then evicts o.

• This minimizes the expected cache miss rate.

• Unfortunately, this optimal policy is rarely achievable
because it’s difficult to predict which items will be
needed in the future.

Monday, July 30, 12

Least-recently-used caches
• One of the most commonly implemented eviction

policies is least-recently-used (LRU).

• Whenever we must evict an element from the
cache, we pick the least-recently-used element.

• Justification: It seems reasonable that an item that
has not been used in a long time will continue
not to be requested for a while longer.

• Empirically, LRU has shown to perform “similarly”
to the optimal eviction policy in many practical
applications.

Monday, July 30, 12

LRU in action

• How would an LRU
cache (with 2 slots)
handle the following
sequence of requests?

• A B A C A B B C

Cache
contentsTime

Monday, July 30, 12

LRU in action

• How would an LRU
cache (with 2 slots)
handle the following
sequence of requests?

• A B A C A B B C

A

Cache
contentsTime

Cache miss

Monday, July 30, 12

LRU in action

• How would an LRU
cache (with 2 slots)
handle the following
sequence of requests?

• A B A C A B B C

A
A B

Cache
contentsTime

Cache miss

Monday, July 30, 12

LRU in action

• How would an LRU
cache (with 2 slots)
handle the following
sequence of requests?

• A B A C A B B C

A
A B
A B

Cache
contentsTime

Monday, July 30, 12

LRU in action

• How would an LRU
cache (with 2 slots)
handle the following
sequence of requests?

• A B A C A B B C

A
A B
A B
A C

Cache
contentsTime

B was LRU.Cache miss

Monday, July 30, 12

LRU in action

• How would an LRU
cache (with 2 slots)
handle the following
sequence of requests?

• A B A C A B B C

A
A B
A B
A C
A C

Cache
contentsTime

Monday, July 30, 12

LRU in action

• How would an LRU
cache (with 2 slots)
handle the following
sequence of requests?

• A B A C A B B C

A
A B
A B
A C
A C
A B

Cache
contentsTime

C was LRU.Cache miss

Monday, July 30, 12

LRU in action

• How would an LRU
cache (with 2 slots)
handle the following
sequence of requests?

• A B A C A B B C

A
A B
A B
A C
A C
A B
A B

Cache
contentsTime

Monday, July 30, 12

LRU in action

• How would an LRU
cache (with 2 slots)
handle the following
sequence of requests?

• A B A C A B B C

A
A B
A B
A C
A C
A B
A B
C B

Cache
contentsTime

A was LRU.Cache miss

There were 5 cache misses
out of 8 accesses; hence,
cache miss rate is 0.625.

Monday, July 30, 12

LRU Cache
• We wish to construct a Cache ADT that uses the

LRU eviction policy.

• The cache will mediate access to some other,
arbitrary secondary storage container.

• The user will request data by calling
Cache.get(key) and expect the associated value to
be returned.

• If key is not stored in the cache, then the cache
should forward the request to the secondary
storage.

Monday, July 30, 12

LRU Cache interface
• Before designing a Java interface for the LRU cache, let’s

first conceptualize how the user might access the
secondary storage without the cache.

• Suppose the secondary storage has the following
interface:
interface Storage<K,V> {
 // Fetches and returns the data specified by key
 V get (K key);
}

• Here, the key might be the URL of a web page we’re
fetching, and the value might be the web page itself, e.g.:
WebServer<String,Webpage> server = new WebServer<String,Webpage>();
Webpage page = server.get(“http://my.website.com”);

Monday, July 30, 12

LRU Cache interface

• Now, let’s define a Java interface for an LRU cache:
// Least-recently-used (LRU) cache.
// The get(key) method should take O(1) time
// for an n-element cache.
//
// Implementing classes should offer a
// constructor with one parameter of type
// Storage that specifies the cache’s
// secondary storage.
interface LRUCache<K,V> {
 V get (K key);
}

Monday, July 30, 12

LRU Cache usage

• Instead of writing:
WebServer<String,Webpage> server = new WebServer<String,Webpage>();
Webpage page = server.get(“http://my.website.com”);
...
page = server.get(“http://my.website.com”);
...
page = server.get(“http://my.website.com”);

• ...we write instead:
WebServer<String,Webpage> server = new WebServer<String,Webpage>();
LRUCache<String,Webpage> cache =
 new LRUCacheImpl<String,Webpage>(server);
Webpage page = cache.get(“http://my.website.com");
...
page = cache.get(“http://my.website.com”);
...
page = cache.get(“http://my.website.com”);

Monday, July 30, 12

LRU Cache usage

• Instead of writing:
WebServer<String,Webpage> server = new WebServer<String,Webpage>();
Webpage page = server.get(“http://my.website.com”);
...
page = server.get(“http://my.website.com”);
...
page = server.get(“http://my.website.com”);

• ...we write instead:
WebServer<String,Webpage> server = new WebServer<String,Webpage>();
LRUCache<String,Webpage> cache =
 new LRUCacheImpl<String,Webpage>(server);
Webpage page = cache.get(“http://my.website.com");
...
page = cache.get(“http://my.website.com”);
...
page = cache.get(“http://my.website.com”);

Cache miss: call
server.get(...)

Cache hit

Cache hit

Monday, July 30, 12

• The LRUCache interface imposes the constraint that
get(key) must operate in O(1) time for an n-element
cache.

• Each call to get(key) must potentially:

1. Determine whether the desired object (specified by
key) is stored in the cache in O(1) time.

2. If key is in cache, then:

(a) Make key the MRU item in O(1) time.

(b)Return the key’s associated value in O(1) time.

LRU Cache implementation

Monday, July 30, 12

3. Else (key is not in cache):

(a) Call value = _secondaryStorage.get(key).

(b) Find the least-recently-used (LRU) item in O(1) time.

(c) Replace the LRU item with (key,value), which is
now the most-recently-used (MRU) item in the cache,
in O(1) time.

LRU Cache implementation

Monday, July 30, 12

LRU Cache implementation

• To associate each key with its value, we need a
Node (inner-)class:
static class Node {
 K _key;
 V _value;
}

But what will be the
“underlying storage” for the
cache entries themselves?

Monday, July 30, 12

LRU Cache implementation
• Implementation sketch of LRUCache:

class LRUCacheImpl<K,V> implements LRUCache<K,V>{
 static class Node {
 K _key;
 V _value;
 }
 Storage<K,V> _secondaryStorage;
 ...

 LRUCacheImpl (Storage<K,V> secondaryStorage) {
 _secondaryStorage = secondaryStorage;
 }

 V get (K key) {
 // If key in cache
 // Fetch value from cache
 // Else
 // value = _secondaryStorage.get(key);
 // Store value in cache (evict LRU if necessary)
 // Make key the MRU item
 // Return value;
 }
}

But what will be the
“underlying storage” for the
cache entries themselves?

Monday, July 30, 12

• Our “underlying storage” will consist of 2 components:

1. A queue of Nodes to hold the relative order in which data
are accessed.

• For n-element cache, max length of queue is n.

• LRU at the front, MRU at the back of the queue.

• Each Node will contain both a key (e.g., URL) and
corresponding value (e.g., webpage).

LRU Cache implementation

 _key: W
_value: ...

Node
 _key: X
_value: ...

Node
 _key: Y
_value: ...

Node
 _key: Z
_value: ...

Node

_front _back

W is LRU item. Z is MRU item.

n = 4

Monday, July 30, 12

• All the important cache data is stored in the queue.

• Whenever data X is requested, we move its Node to
the back of the queue because it’s now the MRU item.

• Whenever data V (not in the cache) is requested, we
fetch it from secondary storage, and then store it in
the cache.

• We must evict the LRU item to make room.

LRU Cache implementation

 _key: W
_value: ...

Node
 _key: X
_value: ...

Node
 _key: Y
_value: ...

Node
 _key: Z
_value: ...

Node

_front _back

W is LRU item. Z is MRU item.

n = 4

Monday, July 30, 12

• All the important cache data is stored in the queue.

• Whenever data X is requested, we move its Node to
the back of the queue because it’s now the MRU item.

• Whenever data V (not in the cache) is requested, we
fetch it from secondary storage, and then store it in
the cache.

• We must evict the LRU item to make room.

LRU Cache implementation

 _key: W
_value: ...

Node
 _key: Y
_value: ...

Node
 _key: Z
_value: ...

Node
 _key: X
_value: ...

Node

_front _back

W is LRU item. Z is MRU item.

n = 4

Monday, July 30, 12

• All the important cache data is stored in the queue.

• Whenever data X is requested, we move its Node to
the back of the queue because it’s now the MRU item.

• Whenever data V (not in the cache) is requested, we
fetch it from secondary storage, and then store it in
the cache.

• We must evict the LRU item to make room.

LRU Cache implementation

 _key: W
_value: ...

Node
 _key: Y
_value: ...

Node
 _key: Z
_value: ...

Node
 _key: X
_value: ...

Node

_front _back

W is LRU item. Z is MRU item.

n = 4

Monday, July 30, 12

• All the important cache data is stored in the queue.

• Whenever data X is requested, we move its Node to
the back of the queue because it’s now the MRU item.

• Whenever data V (not in the cache) is requested, we
fetch it from secondary storage, and then store it in
the cache.

• We must evict the LRU item to make room.

LRU Cache implementation

 _key: W
_value: ...

Node
 _key: Y
_value: ...

Node
 _key: Z
_value: ...

Node
 _key: X
_value: ...

Node

_front _back

W is LRU item. X is MRU item.

n = 4

 _key: V
_value: ...

Monday, July 30, 12

• All the important cache data is stored in the queue.

• Whenever data X is requested, we move its Node to
the back of the queue because it’s now the MRU item.

• Whenever data V (not in the cache) is requested, we
fetch it from secondary storage, and then store it in
the cache.

• We must evict the LRU item to make room.

LRU Cache implementation

 _key: Y
_value: ...

Node
 _key: Z
_value: ...

Node
 _key: X
_value: ...

Node
 _key: V
_value: ...

Node

_front _back

W was LRU item and was evicted. V is now MRU item.

n = 4

Monday, July 30, 12

Reality check
• Suppose the cache stores n = 3 elements, and suppose

the user requests the following webpages in the
following order:

cnn.com
google.com
gmail.com
yahoo.com
npr.org
gmail.com
wikipedia.org
gmail.com
npr.org
cnn.com
imdb.com

• Show the queue at each step.

Monday, July 30, 12

• Unfortunately, a queue by itself will not suffice to
implement the LRUCache interface.

• When we want to update a Node‘s position in the
queue to MRU, we have to find the node.

• If we just search linearly through the queue, this
takes time O(n) (slow).

LRU Cache implementation

 _key: W
_value: ...

Node
 _key: X
_value: ...

Node
 _key: Y
_value: ...

Node
 _key: Z
_value: ...

Node

_front _backn = 4

Monday, July 30, 12

• Instead, we can use an additional
HashTable<K,Node> to “jump” to the desired Node.

• This only takes O(1) time.

LRU Cache implementation

 _key: W
_value: ...

Node
 _key: X
_value: ...

Node
 _key: Y
_value: ...

Node
 _key: Z
_value: ...

Node

_front _backn = 4

Monday, July 30, 12

LRU Cache implementation

 _key: W
_value: ...

Node
 _key: X
_value: ...

Node
 _key: Y
_value: ...

Node
 _key: Z
_value: ...

Node

_front _back

Key Node
X
Y

... ...

_keysToNodesTable

The hash table affords O(1)
access to any cache item,

given its key.

The queue affords O(1)
access to the LRU item
(_front) in the cache.

• Every key stored in
the queue will also
have an entry in a
hash table.

n = 4

Monday, July 30, 12

LRU Cache implementation

 _key: W
_value: ...

Node
 _key: X
_value: ...

Node
 _key: Y
_value: ...

Node
 _key: Z
_value: ...

Node

_front _back

Key Node
X
Y

... ...

_keysToNodesTable
Whenever the user calls
cache.get(X), item X
becomes the MRU item.

Using the hash table, X’s Node
in the queue can be found in
O(1) time.

Its Node is then moved to the
back of the queue in O(1)
time.

n = 4

Monday, July 30, 12

LRU Cache implementation

 _key: W
_value: ...

Node
 _key: Y
_value: ...

Node
 _key: Z
_value: ...

Node
 _key: X
_value: ...

Node

_front _back

Key Node
X
Y

... ...

_keysToNodesTable

n = 4

Whenever the user calls
cache.get(X), item X
becomes the MRU item.

Using the hash table, X’s Node
in the queue can be found in
O(1) time.

Its Node is then moved to the
back of the queue in O(1)
time.

Monday, July 30, 12

LRU Cache implementation

 _key: W
_value: ...

Node
 _key: Y
_value: ...

Node
 _key: Z
_value: ...

Node
 _key: X
_value: ...

Node

_front _back

Key Node
X
Y

... ...

_keysToNodesTable
If the user calls
cache.get(A) and
triggers an eviction, then
the LRU node is removed
from the queue and the
hash table.

n = 4

Monday, July 30, 12

• In summary:

• An LRU cache is an example of combining data
structures to harness their individual strengths.

• To implement an LRU cache with O(1) time for
V get (K key), we need fast access both to the
LRU item, and to an arbitrary item specified by key.

• A queue gives us O(1) access to the LRU item
(front of queue).

• A hash table gives us O(1) access to an arbitrary
Node in the queue.

LRU Cache implementation

Monday, July 30, 12

Graphs.

Monday, July 30, 12

Graphs
• The last fundamental data structure we will cover in

this course is a graph.

• Mathematically, a graph consists of a set N of
nodes (aka vertices) connected by a set E of
edges.

6

2

3

4

5
1

Monday, July 30, 12

Graphs
• In computer science, graphs are useful for

describing relationships (edges) among things (nodes).

• E.g., each node might represent a Facebook user,
and each edge might represent whether two
Facebook users are friends.

6

2

3

4

5
1

Monday, July 30, 12

Graphs

• E.g., each node might represent a computer server,
and each edge represents whether two nodes are
linked by Ethernet.

6

2

3

4

5
1

Monday, July 30, 12

Graphs
• Like trees, graphs consist of nodes and edges.

• Unlike trees, graph can contain cycles.

• Graphs can be either undirected (as below)...

6

2

3

4

5
1

Monday, July 30, 12

Graphs
• ...or directed (as below).

• Directed graphs are useful for describing
asymmetric relationships, e.g., “I know who Rick
Santorum is, but he doesn’t know who I am.”

Me

Rick Santorum

6

2

3

4

5
1

Monday, July 30, 12

