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Graphs, continued
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Graphs
• In the graph below, N = { 1, 2, 3, 4, 5, 6 }.

• An edge in a directed graph from node m to node n can 
be described as an ordered pair (m, n).

• In the graph below, E = { (2, 3), (3, 1), (1, 2), (4, 1), (5, 6) }.
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Graphs
• If a graph is undirected, then for every edge (m, n) ∈ E, 

we also have (n, m) ∈ E.

• For the graph below, E = { (2, 3), (3, 2), (1, 3), (3, 1), (1, 2), 
(2, 1), (1, 4), (4, 1), (5, 6), (6, 5) }.
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Graphs

• Whenever (m, n) ∈ E, we say that node m is adjacent 
(or connected) to node n.
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Graphs
• In some graphs, edges have weights associated with 

them to represent distance, cost, etc.

• In this case, an edge can be represented as an ordered 
triplet (m, n, wmn) where wmn is the weight from m to n.
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Graphs
• An example of a weighted graph is an airline map that 

shows cities connected by flights, and the weight of 
each edge is the distance (km) between those cities.
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Representing graphs
• To use graphs as a data structure, we must devise a 

way of representing a graph in memory.

• Let N be the set of nodes and E be the set of edges.

• The number of nodes is |N|, and the number of 
edges is |E|.

• To represent the set of nodes in memory, we can 
use an |N|-element array, where each node is 
assigned a unique index.

• This is both time- and space-efficient.
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Representing graphs

• To represent the set of edges, we can use two 
alternative representations:

• An adjacency matrix A for the whole graph.

• An adjacency list for every node m ∈ N.
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Adjacency matrices
• An adjacency matrix A is an |N| x |N| matrix, 

where |N| is the number of nodes in the graph.

• For an unweighted graph, the (mn)th entry of A 
contains a 1 or a 0 depending on whether edge 
(m, n) ∈ E.

• For a weighted graph, the (mn)th entry of A 
contains the weight of edge (m, n) ∈ E.

• If (m, n) ∉ E, then we can store either 0, 
infinity, or null (depending on what’s most 
useful).
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Adjacency matrices

1 2 3 4 5
1 1
2 1
3 1
4 1
5 12

3

4

5
1

m

n
Example for directed graph:

(All “blank” entries are 0.)
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Adjacency matrices

1 2 3 4 5
1 1 1 1
2 1 1
3 1 1
4 1 1
5 12

3

4

5
1

m

n
Example for undirected graph:

In an undirected graph, the 
adjacency matrix A equals its 
own transpose (i.e., A = AT).

(All “blank” entries are 0.)
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Adjacency matrices

• Adjacency matrices offer fast access to the 
presence/absence of any edge in the graph.

• However, for graphs in which edges are sparse, 
they are space-inefficient (O(|N|2)).

• A space-saving (but slower) alternative is adjacency 
lists...
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Adjacency lists

• With adjacency lists, every node maintains a list of 
other nodes to which it is connected.

2

3

4

5
1

Node 1: { 2 }
Node 2: { 3 }
Node 3: { 1 }
Node 4: { 1 }
Node 5: { 4, 1 }
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Adjacency lists
• Adjacency lists require only O(|E|) space to store 

all the edges.

• However, they require O(|E|) time to find a 
particular edge.
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Graphs in computer science
• Graphs find many uses in computer science in 

almost every sub-discipline:

• Computability/complexity theory.

• Networking.

• Machine learning.

• Social networks.

• Compilers

• ...
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Node discovery and shortest paths
• Two fundamental problems in graph theory are node 

discovery and finding a shortest path between two nodes.

• Node discovery is the process of determining the set of 
nodes reachable from a starting node s.

• Informally, we say a node t is reachable from s if there 
exists a sequence of nodes connected by edges that 
“connect” s and t.
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Node discovery and shortest paths
• Node discovery is important because it provides a way 

of iterating over all nodes in a graph that are reachable 
from some starting node.

• For instance, given a graph of cities (nodes) connected 
by bike trails (edges), we may wish to find the set of all 
cities that are reachable from La Jolla, CA by bicycle.

• The two principal algorithms for node discovery are 
Breadth-First-Search (BFS) and Depth-First-Search 
(DFS).

• Using BFS, we can also find a shortest path 
between two nodes s and t.
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BFS and DFS
• BFS and DFS both solve the problem of 

discovering all nodes reachable from s.

• These algorithms differ in the order in which they 
discover/visit nodes:

• BFS discovers/visits nodes by searching nodes 
within a fixed radius r that gradually increases:

• First, search for all nodes 1 step away from s.

• Next, search for all nodes 2 steps away from s.

• Then, search for all nodes 3 steps away ...
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BFS
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BFS
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BFS
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BFS
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BFS and DFS

• In contrast, DFS discovers nodes by following 
one path away from s “as far as it can go”.

• When it reaches the “end” of a path, it 
backtracks and then follows another path “as 
far as it can go”.
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DFS
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DFS
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DFS
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DFS
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DFS
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DFS
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DFS
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Implementing a graph
• Before describing the BFS and DFS algorithms in 

detail, it will be useful to define some “infrastructure” 
for dealing with graphs.

• Let’s suppose there exists a Node class to contain 
whatever is relevant for the user’s application, e.g.:

static class Node {
  String _name;
  Image _facePic;
  int _age;
  Node[] _friends;  // adjacency list
}

• Notice how each Node contains a list of “friends” -- 
this is an adjacency list for that person.
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Implementing a graph

• We will then define the whole Graph as follows:

class Graph {
  static class Node {
    String _name;
    Image _facePic;
    int _age;
    Node[] _friends;  // adjacency list
  }

  Node[] _people;
}
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BFS implementation

• Given this graph infrastructure, we can start to define 
our bfs(s) method:

• Internally, bfs(s) will maintain three data structures:

• A list of nodes it has already visited (from s).

• A queue of nodes it has yet to visit.
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BFS implementation

• In pseudocode, bfs(s) looks as follows:
List<Node> bfs (Node s) {
  List<Node> visitedNodes;
  Queue<Node> nodesToVisit;

  nodesToVisit.enqueue(s);
  while (nodesToVisit.size() > 0) {
    n = nodesToVisit.dequeue();
    visitedNodes.add(n);

    for each friend n’ of n:
      if n’ not in nodesToVisit and n’ not in visitedNodes
        nodesToVisit.enqueue(n’);
  }

  return visitedNodes;
}
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BFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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BFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s

nodesToVisit:
front back

Wednesday, August 1, 12



BFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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BFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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BFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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BFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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BFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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BFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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BFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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BFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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BFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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BFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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BFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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BFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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BFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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BFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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BFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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BFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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DFS implementation

• To implement depth-first-search (DFS), it turns out 
we can use the exact same pseudocode as for BFS 
except that we replace the queue with a stack.

• That this method works on the previous example 
will be left as an exercise to the reader.
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DFS implementation

• In pseudocode, dfs(s) looks as follows:
List<Node> dfs (Node s) {
  List<Node> visitedNodes;
  Stack<Node> nodesToVisit;

  nodesToVisit.push(s);
  while (nodesToVisit.size() > 0) {
    n = nodesToVisit.pop();
    visitedNodes.add(n);

    for each friend n’ of n:
      if n’ not in nodesToVisit and n’ not in visitedNodes
        nodesToVisit.push(n’);
  }

  return visitedNodes;
}
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DFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes: nodesToVisit:
sbottom top

Wednesday, August 1, 12



DFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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DFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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DFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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DFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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DFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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DFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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DFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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DFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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DFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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DFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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DFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...
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DFS in practice
• Let’s look at how the visitedNodes and 

nodesToVisit data structures are updated when 
exploring the graph from earlier...

(and so on)
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BFS and shortest paths

• It turns out that the BFS algorithm is also 
useful for finding shortest paths between 
two nodes in a graph.
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BFS and shortest paths

Radius = 1
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BFS and shortest paths

Radius = 1
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What is the length of shortest path from s to t?

3 hops
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BFS and shortest paths

k

l b

c

e

d

f

gh
t

j

s
Radius = 0

Are s and t within 0 hops apart? No.
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BFS and shortest paths

Radius = 1
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BFS and shortest paths

Radius = 1
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BFS and shortest paths

Radius = 1
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Are s and t within 3 hops apart? Yes!
Therefore, there exists a path of 3 hops between s and t.
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Kevin Bacon Number 
demo.

Wednesday, August 1, 12



Sorting
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Facesbook demo
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Sorting
• Given a data structure to store the user’s data, one of the 

fundamental operations we may want to perform is to sort the 
data.

• Some ADTs already utilize the order relations among data to 
store data more efficiently.

• Heaps always store the largest element at the top.

• Binary search trees impose require data in left sub-tree be 
smaller than in right sub-tree. 

• However, in this section we are interested in using the order 
relations to sort data stored in a standard array:

• Fixed size

• O(1) time read/write access to any element.
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Sorting
• Whole books have been written on sorting 

algorithms.

• Here, we present 6 of the most prominent sorting 
algorithms and discuss their relative merits.

• (Most of) the sorting algorithms we discuss are all 
based on comparing and swapping elements, i.e.:

• To sort an int[] array, the only operations we 
perform are to compare array[i] and array[j] 
(for some i and j) and to possibly swap those 
elements.
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Sorting
• It turns out that there is a provable lower bound on 

the time cost of any comparison-based sorting 
algorithm:

• A lower bound on the worst-case performance of 
any comparison-based sort is O(n log n).

• Comparison-based sorts are the most generally 
applicable algorithms.

• However, if additional properties of the data can be 
assumed, then we do better with other non-
comparison sorting procedures, such as bucket 
sort, radix sort, counting sort, etc.

Wednesday, August 1, 12



Sorting

• Before discussing the individual sorting algorithms, let’s 
clarify the setting:

• For concreteness, we will always sort an an array of 
integers.

• In reality, it doesn’t matter what type T they are as 
long as long T defines an order relation that is:

• Transitive: if x ≤ y and y ≤ z, then x ≤ z.

• Anti-symmetric: if x ≤ y and y ≤ x, then x = y.
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Sorting
• If all the n data in our array are unique, then we can 

sort them either into increasing or decreasing order, 
i.e.:

• Increasing: e1 < e2 < e3 < ... < en-1 < en

• Decreasing: e1 > e2 > e3 > ... > en-1 > en

• If the array contains duplicates, then we can only 
achieve non-decreasing or non-increasing order:

• Non-decreasing: e1 ≤ e2 ≤ e3 ≤ ... ≤ en-1 ≤ en

• Non-increasing: e1 ≥ e2 ≥ e3 ≥ ... ≥ en-1 ≥ en
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Sorting properties
• There are several properties of sorting algorithms 

that we are interested in:

1. Asymptotic time costs in best, average, and 
worst cases.

2. Whether the algorithm can sort in-place:

• An in-place sorting algorithms requires only 
O(1) space outside of the array itself.

• Non-in-place algorithms may have to copy the 
array into a temporary O(n) buffer.
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Sorting properties

3. Whether the sorting procedure is stable:

• A stable sorting algorithm will maintain the 
relative order of duplicate elements in the 
sorted array compared to the input array, e.g.:

• Unsorted array:

• Sorted array (stable):

• Sorted array (non-stable):

51 3 2 52 7

2 3 51 52 7

2 3 52 51 7
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Sorting properties
• Stable sort -- why do we care?

• Sometimes we may sort the same data on 
different attributes in sequence, e.g.:

• First sort data based on a person’s age.

• p1 > p2 iff p1.age > p2.age

• Then sort the same data based on a 
person’s country-of-residence.

• p1 > p2 iff p1.country > p2.country

• We don’t want the second sort to “mess up” 
the order of the first sort.
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Sorting properties

• Example -- unsorted data:

Richard, age 47, USA
Ronald, age 16, Paraguay
Gerald, age 32, Monaco
Jimmy, age 97, Indonesia
George, age 18, USA
Bill, age 54, Monaco
Ganymede, age 88, USA
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Sorting properties

• Example -- data sorted by age.

Ronald, age 16, Paraguay
George, age 18, USA
Gerald, age 32, Monaco
Richard, age 47, USA
Bill, age 54, Monaco
Ganymede, age 88, USA
Jimmy, age 97, Indonesia
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Sorting properties

• Example -- data sorted by country (stable).

Jimmy, age 97, Indonesia
Gerald, age 32, Monaco
Bill, age 54, Monaco
Ronald, age 16, Paraguay
George, age 18, USA
Richard, age 47, USA
Ganymede, age 88, USA

Within each country, 
the data are still 
sorted by age.
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Sorting properties

• Example -- data sorted by country (non-stable).

Jimmy, age 97, Indonesia
Bill, age 54, Monaco
Gerald, age 32, Monaco
Ronald, age 16, Paraguay
Richard, age 47, USA
George, age 18, USA
Ganymede, age 88, USA

Within each country, 
the data are not 
sorted by age.
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Sorting properties

3. The time cost of the algorithm on an array that 
is already sorted.

• Oftentimes, we will sort an array that might 
already be sorted.

• Some algorithms perform better or worse 
depending on whether the input array is 
already sorted or perhaps “almost” sorted.
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Bogosort.
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Bogosort
• Bogosort is a probabilistic sorting algorithm that 

randomly shuffles the input array until it is sorted:

• While array is not sorted:

• Randomly permute the contents of array.

• Check if the array is sorted.
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Bogosort
• Bogosort is a probabilistic search algorithm that 

randomly shuffles the input array until it is sorted:

• While array is not sorted:

• Randomly permute the contents of array.

• Check if the array is sorted.

• Is this algorithm guaranteed to finish?

• Yes, given infinite time.

• Given any finite number of iterations, it is always 
possible that Bogosort hasn’t “found” the right 
permutation yet.
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Bogosort
• The (average-case) time costs of Bogosort are, as a whole, 

rather “unsatisfying”:

• While array is not sorted: O(n!) (expected)

• Randomly permute the contents of array. O(n)

• Check if the array is sorted. O(n)

• Hence, in the average case, Bogosort takes time
O(n!) = O(nn).

• In best case, Bogosort takes O(n) time to permute the array 
once and check that the permuted array is sorted.

• Worst case: undefined -- may never terminate in finite time.
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Bogosort

• Does there exist some sorting algorithm which 
gives us asymptotically performance than 
Bogosort?

• Hard to say.
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Approach 1: sorted- and unsorted- parts

• Two prominent algorithms (with time costs better 
than O(nn)) that we examine are selection sort and 
insertion sort.

• Both these algorithms work by partitioning the input 
array into:

• A sorted part: a sub-array that is already sorted.

• An unsorted part: a sub-array that has not yet 
been processed and which might not yet be sorted.
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Approach 1: sorted- and unsorted- parts

• For example, consider the following array:

         6 1 3 2 4 5 7 8

• The algorithms differ in how these parts are created 
and maintained.

Sorted partUnsorted part
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Selection sort.
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Selection sort

• The main idea of selection sort is to repeatedly (n 
times) select the largest element in the unsorted 
part, and move it into the sorted part.

• If the unsorted part contains n elements, then we 
can find the largest element in n operations.

• Adding it to the sorted part just takes O(1) 
time.
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Selection sort
• Example:

6 1 4 3 8 7 2 5
Sorted partUnsorted part
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Selection sort
• Example:

6 1 4 3 8 7 2 5
6 1 4 3 7 2 5                   8

Sorted partUnsorted part

Find and move largest
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Selection sort
• Example:

6 1 4 3 8 7 2 5
6 1 4 3 7 2 5                   8
6 1 4 3 2 5                   7 8

Sorted partUnsorted part

Find and move largest
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Selection sort
• Example:

6 1 4 3 8 7 2 5
6 1 4 3 7 2 5                   8
6 1 4 3 2 5                   7 8
1 4 3 2 5                   6 7 8

Sorted partUnsorted part

Find and move largest
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Selection sort
• Example:

6 1 4 3 8 7 2 5
6 1 4 3 7 2 5                   8
6 1 4 3 2 5                   7 8
1 4 3 2 5                   6 7 8
1 4 3 2                   5 6 7 8
1 3 2                   4 5 6 7 8
1 2                   3 4 5 6 7 8
1                   2 3 4 5 6 7 8
                  1 2 3 4 5 6 7 8

Sorted partUnsorted part

Done.
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Selection sort

• The figure above suggested that we maintain two 
separate arrays: one for the unsorted part (the input 
array), and one for the sorted part.

• However, we can make selection sort operate in-
place if we swap the largest element in the 
unsorted part with the right-most element in the 
unsorted part...
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Selection sort
• Example:

6 1 4 3 8 7 2 5
Sorted partUnsorted part
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Selection sort
• Example:

6 1 4 3 5 7 2 8
Sorted partUnsorted part
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Selection sort
• Example:

6 1 4 3 5 2 7 8
Sorted partUnsorted part
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Selection sort
• Example:

2 1 4 3 5 6 7 8
Sorted partUnsorted part
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Selection sort
• Example:

1 2 3 4 5 6 7 8
Sorted partUnsorted part
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Selection sort
• Pseudocode:

void selectionSort (int[] array) {
  While size of unsorted part > 0:
    Find largest element e of unsorted part
    Swap e with right-most element of unsorted par
}

• The while loop iterates n times.

• Finding the largest element takes time n, n-1, n-2, ..., down 
to 1 depending on the particular loop iteration.

• Swapping takes O(1) time.

• Total time cost:
n + (n-1) + (n-2) + ... + 2 + 1 + n*O(1) = n(n-1)/2 + O(n)
                                                         = O(n2)

for swaps

Wednesday, August 1, 12



Selection sort
• Pseudocode:

void selectionSort (int[] array) {
  While size of unsorted part > 0:
    Find largest element e of unsorted part
    Swap e with right-most element of unsorted par
}

• Note that this time analysis applies to the worst, best, and 
average cases.

• The number of operations does not vary with the 
input.

• In particular, the if the input is already sorted, the 
algorithm still takes time O(n2).
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Selection sort: stability
• Is selection sort stable, i.e., for any duplicate input 

elements in the input array, will the sorted array 
preserve their relative order?

• It depends on the implementation.

• When finding the largest element in the unsorted 
part, if ≥2 elements are both maximal, then the 
selection sort may pick any of them to “move” to 
the sorted part.

• If the algorithm chooses the last maximal 
element to move, then the sort is stable.
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Selection sort: stability
• Example:

51 2 52 1
51 2 1  52
2  1 51 52
1  2 51 52
1  2 51 52

Sorted partUnsorted part

If we move last instance 
of the largest element to 
the sorted part, then the 

search is stable.
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