
CSE 12:
Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Fifteen
31 July 2012

Wednesday, August 1, 12

Graphs, continued

Wednesday, August 1, 12

Graphs
• In the graph below, N = { 1, 2, 3, 4, 5, 6 }.

• An edge in a directed graph from node m to node n can
be described as an ordered pair (m, n).

• In the graph below, E = { (2, 3), (3, 1), (1, 2), (4, 1), (5, 6) }.

6

2

3

4

5
1

Wednesday, August 1, 12

Graphs
• If a graph is undirected, then for every edge (m, n) ∈ E,

we also have (n, m) ∈ E.

• For the graph below, E = { (2, 3), (3, 2), (1, 3), (3, 1), (1, 2),
(2, 1), (1, 4), (4, 1), (5, 6), (6, 5) }.

6

2

3

4

5
1

Wednesday, August 1, 12

Graphs

• Whenever (m, n) ∈ E, we say that node m is adjacent
(or connected) to node n.

6

2

3

4

5
1

Wednesday, August 1, 12

Graphs
• In some graphs, edges have weights associated with

them to represent distance, cost, etc.

• In this case, an edge can be represented as an ordered
triplet (m, n, wmn) where wmn is the weight from m to n.

6

2

3

4

5
1

15

8

1

4

-3

Wednesday, August 1, 12

Graphs
• An example of a weighted graph is an airline map that

shows cities connected by flights, and the weight of
each edge is the distance (km) between those cities.

Cape Town

Zurich
Vancouver

Panama City

Wichita

Dakar

6597

4352

8039

8133

2426

6022

Wednesday, August 1, 12

Representing graphs
• To use graphs as a data structure, we must devise a

way of representing a graph in memory.

• Let N be the set of nodes and E be the set of edges.

• The number of nodes is |N|, and the number of
edges is |E|.

• To represent the set of nodes in memory, we can
use an |N|-element array, where each node is
assigned a unique index.

• This is both time- and space-efficient.

Wednesday, August 1, 12

Representing graphs

• To represent the set of edges, we can use two
alternative representations:

• An adjacency matrix A for the whole graph.

• An adjacency list for every node m ∈ N.

Wednesday, August 1, 12

Adjacency matrices
• An adjacency matrix A is an |N| x |N| matrix,

where |N| is the number of nodes in the graph.

• For an unweighted graph, the (mn)th entry of A
contains a 1 or a 0 depending on whether edge
(m, n) ∈ E.

• For a weighted graph, the (mn)th entry of A
contains the weight of edge (m, n) ∈ E.

• If (m, n) ∉ E, then we can store either 0,
infinity, or null (depending on what’s most
useful).

Wednesday, August 1, 12

Adjacency matrices

1 2 3 4 5
1 1
2 1
3 1
4 1
5 12

3

4

5
1

m

n
Example for directed graph:

(All “blank” entries are 0.)

Wednesday, August 1, 12

Adjacency matrices

1 2 3 4 5
1 1 1 1
2 1 1
3 1 1
4 1 1
5 12

3

4

5
1

m

n
Example for undirected graph:

In an undirected graph, the
adjacency matrix A equals its
own transpose (i.e., A = AT).

(All “blank” entries are 0.)

Wednesday, August 1, 12

Adjacency matrices

• Adjacency matrices offer fast access to the
presence/absence of any edge in the graph.

• However, for graphs in which edges are sparse,
they are space-inefficient (O(|N|2)).

• A space-saving (but slower) alternative is adjacency
lists...

Wednesday, August 1, 12

Adjacency lists

• With adjacency lists, every node maintains a list of
other nodes to which it is connected.

2

3

4

5
1

Node 1: { 2 }
Node 2: { 3 }
Node 3: { 1 }
Node 4: { 1 }
Node 5: { 4, 1 }

Wednesday, August 1, 12

Adjacency lists
• Adjacency lists require only O(|E|) space to store

all the edges.

• However, they require O(|E|) time to find a
particular edge.

2

3

4

5
1

Node 1: { 2 }
Node 2: { 3 }
Node 3: { 1 }
Node 4: { 1 }
Node 5: { 4, 1 }

Wednesday, August 1, 12

Graphs in computer science
• Graphs find many uses in computer science in

almost every sub-discipline:

• Computability/complexity theory.

• Networking.

• Machine learning.

• Social networks.

• Compilers

• ...

Wednesday, August 1, 12

Node discovery and shortest paths
• Two fundamental problems in graph theory are node

discovery and finding a shortest path between two nodes.

• Node discovery is the process of determining the set of
nodes reachable from a starting node s.

• Informally, we say a node t is reachable from s if there
exists a sequence of nodes connected by edges that
“connect” s and t.

6

2

3

4

5
16 and 5 are

not reachable
from 2.

3, 1, and 4 are
reachable
from 2.

Wednesday, August 1, 12

Node discovery and shortest paths
• Node discovery is important because it provides a way

of iterating over all nodes in a graph that are reachable
from some starting node.

• For instance, given a graph of cities (nodes) connected
by bike trails (edges), we may wish to find the set of all
cities that are reachable from La Jolla, CA by bicycle.

• The two principal algorithms for node discovery are
Breadth-First-Search (BFS) and Depth-First-Search
(DFS).

• Using BFS, we can also find a shortest path
between two nodes s and t.

Wednesday, August 1, 12

BFS and DFS
• BFS and DFS both solve the problem of

discovering all nodes reachable from s.

• These algorithms differ in the order in which they
discover/visit nodes:

• BFS discovers/visits nodes by searching nodes
within a fixed radius r that gradually increases:

• First, search for all nodes 1 step away from s.

• Next, search for all nodes 2 steps away from s.

• Then, search for all nodes 3 steps away ...

Wednesday, August 1, 12

BFS

k

l b

c

e

d

f

gh
i

j

s
Radius = 0

A BFS starts with at a node s and “radiates outwards”.

0

Wednesday, August 1, 12

BFS

1

3

4

5 2

Radius = 1

k

l b

c

e

d

f

gh
i

j

s
Radius = 0

A BFS starts with at a node s and “radiates outwards”.

0

Wednesday, August 1, 12

BFS

1

3

4

5 2

Radius = 1

6

7

8

9

10

k

l b

c

e

d

f

gh
i

j

Radius = 2

s
Radius = 0

A BFS starts with at a node s and “radiates outwards”.

0

Wednesday, August 1, 12

BFS

1

3

4

5 2

Radius = 1

6

7

8

9

10

k

l b

c

e

d

f

gh
i

j

Radius = 2

Radius = 3

11

s
Radius = 0

A BFS starts with at a node s and “radiates outwards”.

0

Wednesday, August 1, 12

BFS and DFS

• In contrast, DFS discovers nodes by following
one path away from s “as far as it can go”.

• When it reaches the “end” of a path, it
backtracks and then follows another path “as
far as it can go”.

Wednesday, August 1, 12

DFS

k

l b

c

e

d

f

gh
i

j

s

A DFS starts with at a node s and “goes
as far as it can” down a single path.

0

Wednesday, August 1, 12

DFS

k

l b

c

e

d

f

gh
i

j

s

A DFS starts with at a node s and “goes
as far as it can” down a single path.

1

2
3

4

0

Wednesday, August 1, 12

DFS

k

l b

c

e

d

f

gh
i

j

s

At the end of a path, it then “backtracks” and
pursues another path “as far as it can go”.

1

2
3

4

5

6

0

Wednesday, August 1, 12

DFS

k

l b

c

e

d

f

gh
i

j

s

At the end of a path, it then “backtracks” and
pursues another path “as far as it can go”.

1

2
3

4

5

6 7

0

Wednesday, August 1, 12

DFS

k

l b

c

e

d

f

gh
i

j

s

At the end of a path, it then “backtracks” and
pursues another path “as far as it can go”.

1

2
3

4

5

6 7

8

9

0

Wednesday, August 1, 12

DFS

k

l b

c

e

d

f

gh
i

j

s

At the end of a path, it then “backtracks” and
pursues another path “as far as it can go”.

1

2
3

4

5

6 7

8

9

10

0

Wednesday, August 1, 12

DFS

k

l b

c

e

d

f

gh
i

j

s

At the end of a path, it then “backtracks” and
pursues another path “as far as it can go”.

1

2
3

4

5

6 7

8

9

10

11

0

Wednesday, August 1, 12

Implementing a graph
• Before describing the BFS and DFS algorithms in

detail, it will be useful to define some “infrastructure”
for dealing with graphs.

• Let’s suppose there exists a Node class to contain
whatever is relevant for the user’s application, e.g.:

static class Node {
 String _name;
 Image _facePic;
 int _age;
 Node[] _friends; // adjacency list
}

• Notice how each Node contains a list of “friends” --
this is an adjacency list for that person.

Wednesday, August 1, 12

Implementing a graph

• We will then define the whole Graph as follows:

class Graph {
 static class Node {
 String _name;
 Image _facePic;
 int _age;
 Node[] _friends; // adjacency list
 }

 Node[] _people;
}

Wednesday, August 1, 12

BFS implementation

• Given this graph infrastructure, we can start to define
our bfs(s) method:

• Internally, bfs(s) will maintain three data structures:

• A list of nodes it has already visited (from s).

• A queue of nodes it has yet to visit.

Wednesday, August 1, 12

BFS implementation

• In pseudocode, bfs(s) looks as follows:
List<Node> bfs (Node s) {
 List<Node> visitedNodes;
 Queue<Node> nodesToVisit;

 nodesToVisit.enqueue(s);
 while (nodesToVisit.size() > 0) {
 n = nodesToVisit.dequeue();
 visitedNodes.add(n);

 for each friend n’ of n:
 if n’ not in nodesToVisit and n’ not in visitedNodes
 nodesToVisit.enqueue(n’);
 }

 return visitedNodes;
}

Wednesday, August 1, 12

BFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes: nodesToVisit:
sfront back

Wednesday, August 1, 12

BFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s

nodesToVisit:
front back

Wednesday, August 1, 12

BFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s

nodesToVisit:
c f g k lfront back

Wednesday, August 1, 12

BFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s c

nodesToVisit:
f g k lfront back

Wednesday, August 1, 12

BFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s c

nodesToVisit:
f g k l b d efront back

Wednesday, August 1, 12

BFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s c f

nodesToVisit:
g k l b d efront back

Wednesday, August 1, 12

BFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s c f g

nodesToVisit:
k l b d efront back

Wednesday, August 1, 12

BFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s c f g

nodesToVisit:
k l b d e hfront back

Wednesday, August 1, 12

BFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s c f g k

nodesToVisit:
l b d e hfront back

Wednesday, August 1, 12

BFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s c f g k

nodesToVisit:
l b d e h jfront back

Wednesday, August 1, 12

BFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s c f g k l

nodesToVisit:
b d e h jfront back

Wednesday, August 1, 12

BFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s c f g k l b

nodesToVisit:
d e h jfront back

Wednesday, August 1, 12

BFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s c f g k l b d

nodesToVisit:
e h jfront back

Wednesday, August 1, 12

BFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s c f g k l b d e

nodesToVisit:
h jfront back

Wednesday, August 1, 12

BFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s c f g k l b d e h

nodesToVisit:
jfront back

Wednesday, August 1, 12

BFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s c f g k l b d e h

nodesToVisit:
j ifront back

Wednesday, August 1, 12

BFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s c f g k l b d e h j

nodesToVisit:
ifront back

Wednesday, August 1, 12

BFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s c f g k l b d e h j i

nodesToVisit:
front back

Wednesday, August 1, 12

DFS implementation

• To implement depth-first-search (DFS), it turns out
we can use the exact same pseudocode as for BFS
except that we replace the queue with a stack.

• That this method works on the previous example
will be left as an exercise to the reader.

Wednesday, August 1, 12

DFS implementation

• In pseudocode, dfs(s) looks as follows:
List<Node> dfs (Node s) {
 List<Node> visitedNodes;
 Stack<Node> nodesToVisit;

 nodesToVisit.push(s);
 while (nodesToVisit.size() > 0) {
 n = nodesToVisit.pop();
 visitedNodes.add(n);

 for each friend n’ of n:
 if n’ not in nodesToVisit and n’ not in visitedNodes
 nodesToVisit.push(n’);
 }

 return visitedNodes;
}

Wednesday, August 1, 12

DFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes: nodesToVisit:
sbottom top

Wednesday, August 1, 12

DFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s

nodesToVisit:
bottom top

Wednesday, August 1, 12

DFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s

nodesToVisit:
c f g k lbottom top

Wednesday, August 1, 12

DFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s l

nodesToVisit:
c f g kbottom top

Wednesday, August 1, 12

DFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s l k

nodesToVisit:
c f gbottom top

Wednesday, August 1, 12

DFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s l k

nodesToVisit:
c f g jbottom top

Wednesday, August 1, 12

DFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s l k j

nodesToVisit:
c f gbottom top

Wednesday, August 1, 12

DFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s l k j g

nodesToVisit:
c fbottom top

Wednesday, August 1, 12

DFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s l k j g

nodesToVisit:
c f hbottom top

Wednesday, August 1, 12

DFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s l k j g h

nodesToVisit:
c fbottom top

Wednesday, August 1, 12

DFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s l k j g h

nodesToVisit:
c f ibottom top

Wednesday, August 1, 12

DFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

k

l b

c

e

d

f

gh
i

j

s

visitedNodes:
s l k j g h i

nodesToVisit:
c f ibottom top

Wednesday, August 1, 12

DFS in practice
• Let’s look at how the visitedNodes and

nodesToVisit data structures are updated when
exploring the graph from earlier...

(and so on)

Wednesday, August 1, 12

BFS and shortest paths

• It turns out that the BFS algorithm is also
useful for finding shortest paths between
two nodes in a graph.

Wednesday, August 1, 12

BFS and shortest paths

Radius = 1

k

l b

c

e

d

f

gh
t

j

Radius = 2

s
Radius = 0

What is the length of shortest path from s to t?

Wednesday, August 1, 12

BFS and shortest paths

Radius = 1

k

l b

c

e

d

f

gh
t

j

Radius = 2

s
Radius = 0

What is the length of shortest path from s to t?

3 hops

Wednesday, August 1, 12

BFS and shortest paths

k

l b

c

e

d

f

gh
t

j

s
Radius = 0

Are s and t within 0 hops apart? No.

Wednesday, August 1, 12

BFS and shortest paths

Radius = 1

k

l b

c

e

d

f

gh
t

j

s
Radius = 0

Are s and t within 1 hops apart? No.

Wednesday, August 1, 12

BFS and shortest paths

Radius = 1

k

l b

c

e

d

f

gh
t

j

Radius = 2

s
Radius = 0

Are s and t within 2 hops apart? No.

Wednesday, August 1, 12

BFS and shortest paths

Radius = 1

k

l b

c

e

d

f

gh
t

j

Radius = 2

s
Radius = 0

Are s and t within 3 hops apart? Yes!
Therefore, there exists a path of 3 hops between s and t.

Radius = 3

Wednesday, August 1, 12

Kevin Bacon Number
demo.

Wednesday, August 1, 12

Sorting

Wednesday, August 1, 12

Facesbook demo

Wednesday, August 1, 12

Sorting
• Given a data structure to store the user’s data, one of the

fundamental operations we may want to perform is to sort the
data.

• Some ADTs already utilize the order relations among data to
store data more efficiently.

• Heaps always store the largest element at the top.

• Binary search trees impose require data in left sub-tree be
smaller than in right sub-tree.

• However, in this section we are interested in using the order
relations to sort data stored in a standard array:

• Fixed size

• O(1) time read/write access to any element.

Wednesday, August 1, 12

Sorting
• Whole books have been written on sorting

algorithms.

• Here, we present 6 of the most prominent sorting
algorithms and discuss their relative merits.

• (Most of) the sorting algorithms we discuss are all
based on comparing and swapping elements, i.e.:

• To sort an int[] array, the only operations we
perform are to compare array[i] and array[j]
(for some i and j) and to possibly swap those
elements.

Wednesday, August 1, 12

Sorting
• It turns out that there is a provable lower bound on

the time cost of any comparison-based sorting
algorithm:

• A lower bound on the worst-case performance of
any comparison-based sort is O(n log n).

• Comparison-based sorts are the most generally
applicable algorithms.

• However, if additional properties of the data can be
assumed, then we do better with other non-
comparison sorting procedures, such as bucket
sort, radix sort, counting sort, etc.

Wednesday, August 1, 12

Sorting

• Before discussing the individual sorting algorithms, let’s
clarify the setting:

• For concreteness, we will always sort an an array of
integers.

• In reality, it doesn’t matter what type T they are as
long as long T defines an order relation that is:

• Transitive: if x ≤ y and y ≤ z, then x ≤ z.

• Anti-symmetric: if x ≤ y and y ≤ x, then x = y.

Wednesday, August 1, 12

Sorting
• If all the n data in our array are unique, then we can

sort them either into increasing or decreasing order,
i.e.:

• Increasing: e1 < e2 < e3 < ... < en-1 < en

• Decreasing: e1 > e2 > e3 > ... > en-1 > en

• If the array contains duplicates, then we can only
achieve non-decreasing or non-increasing order:

• Non-decreasing: e1 ≤ e2 ≤ e3 ≤ ... ≤ en-1 ≤ en

• Non-increasing: e1 ≥ e2 ≥ e3 ≥ ... ≥ en-1 ≥ en

Wednesday, August 1, 12

Sorting properties
• There are several properties of sorting algorithms

that we are interested in:

1. Asymptotic time costs in best, average, and
worst cases.

2. Whether the algorithm can sort in-place:

• An in-place sorting algorithms requires only
O(1) space outside of the array itself.

• Non-in-place algorithms may have to copy the
array into a temporary O(n) buffer.

Wednesday, August 1, 12

Sorting properties

3. Whether the sorting procedure is stable:

• A stable sorting algorithm will maintain the
relative order of duplicate elements in the
sorted array compared to the input array, e.g.:

• Unsorted array:

• Sorted array (stable):

• Sorted array (non-stable):

51 3 2 52 7

2 3 51 52 7

2 3 52 51 7

Wednesday, August 1, 12

Sorting properties
• Stable sort -- why do we care?

• Sometimes we may sort the same data on
different attributes in sequence, e.g.:

• First sort data based on a person’s age.

• p1 > p2 iff p1.age > p2.age

• Then sort the same data based on a
person’s country-of-residence.

• p1 > p2 iff p1.country > p2.country

• We don’t want the second sort to “mess up”
the order of the first sort.

Wednesday, August 1, 12

Sorting properties

• Example -- unsorted data:

Richard, age 47, USA
Ronald, age 16, Paraguay
Gerald, age 32, Monaco
Jimmy, age 97, Indonesia
George, age 18, USA
Bill, age 54, Monaco
Ganymede, age 88, USA

Wednesday, August 1, 12

Sorting properties

• Example -- data sorted by age.

Ronald, age 16, Paraguay
George, age 18, USA
Gerald, age 32, Monaco
Richard, age 47, USA
Bill, age 54, Monaco
Ganymede, age 88, USA
Jimmy, age 97, Indonesia

Wednesday, August 1, 12

Sorting properties

• Example -- data sorted by country (stable).

Jimmy, age 97, Indonesia
Gerald, age 32, Monaco
Bill, age 54, Monaco
Ronald, age 16, Paraguay
George, age 18, USA
Richard, age 47, USA
Ganymede, age 88, USA

Within each country,
the data are still
sorted by age.

Wednesday, August 1, 12

Sorting properties

• Example -- data sorted by country (non-stable).

Jimmy, age 97, Indonesia
Bill, age 54, Monaco
Gerald, age 32, Monaco
Ronald, age 16, Paraguay
Richard, age 47, USA
George, age 18, USA
Ganymede, age 88, USA

Within each country,
the data are not
sorted by age.

Wednesday, August 1, 12

Sorting properties

3. The time cost of the algorithm on an array that
is already sorted.

• Oftentimes, we will sort an array that might
already be sorted.

• Some algorithms perform better or worse
depending on whether the input array is
already sorted or perhaps “almost” sorted.

Wednesday, August 1, 12

Bogosort.

Wednesday, August 1, 12

Bogosort
• Bogosort is a probabilistic sorting algorithm that

randomly shuffles the input array until it is sorted:

• While array is not sorted:

• Randomly permute the contents of array.

• Check if the array is sorted.

Wednesday, August 1, 12

Bogosort
• Bogosort is a probabilistic search algorithm that

randomly shuffles the input array until it is sorted:

• While array is not sorted:

• Randomly permute the contents of array.

• Check if the array is sorted.

• Is this algorithm guaranteed to finish?

• Yes, given infinite time.

• Given any finite number of iterations, it is always
possible that Bogosort hasn’t “found” the right
permutation yet.

Wednesday, August 1, 12

Bogosort
• The (average-case) time costs of Bogosort are, as a whole,

rather “unsatisfying”:

• While array is not sorted: O(n!) (expected)

• Randomly permute the contents of array. O(n)

• Check if the array is sorted. O(n)

• Hence, in the average case, Bogosort takes time
O(n!) = O(nn).

• In best case, Bogosort takes O(n) time to permute the array
once and check that the permuted array is sorted.

• Worst case: undefined -- may never terminate in finite time.

Wednesday, August 1, 12

Bogosort

• Does there exist some sorting algorithm which
gives us asymptotically performance than
Bogosort?

• Hard to say.

Wednesday, August 1, 12

Approach 1: sorted- and unsorted- parts

• Two prominent algorithms (with time costs better
than O(nn)) that we examine are selection sort and
insertion sort.

• Both these algorithms work by partitioning the input
array into:

• A sorted part: a sub-array that is already sorted.

• An unsorted part: a sub-array that has not yet
been processed and which might not yet be sorted.

Wednesday, August 1, 12

Approach 1: sorted- and unsorted- parts

• For example, consider the following array:

 6 1 3 2 4 5 7 8

• The algorithms differ in how these parts are created
and maintained.

Sorted partUnsorted part

Wednesday, August 1, 12

Selection sort.

Wednesday, August 1, 12

Selection sort

• The main idea of selection sort is to repeatedly (n
times) select the largest element in the unsorted
part, and move it into the sorted part.

• If the unsorted part contains n elements, then we
can find the largest element in n operations.

• Adding it to the sorted part just takes O(1)
time.

Wednesday, August 1, 12

Selection sort
• Example:

6 1 4 3 8 7 2 5
Sorted partUnsorted part

Wednesday, August 1, 12

Selection sort
• Example:

6 1 4 3 8 7 2 5
6 1 4 3 7 2 5 8

Sorted partUnsorted part

Find and move largest

Wednesday, August 1, 12

Selection sort
• Example:

6 1 4 3 8 7 2 5
6 1 4 3 7 2 5 8
6 1 4 3 2 5 7 8

Sorted partUnsorted part

Find and move largest

Wednesday, August 1, 12

Selection sort
• Example:

6 1 4 3 8 7 2 5
6 1 4 3 7 2 5 8
6 1 4 3 2 5 7 8
1 4 3 2 5 6 7 8

Sorted partUnsorted part

Find and move largest

Wednesday, August 1, 12

Selection sort
• Example:

6 1 4 3 8 7 2 5
6 1 4 3 7 2 5 8
6 1 4 3 2 5 7 8
1 4 3 2 5 6 7 8
1 4 3 2 5 6 7 8
1 3 2 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
 1 2 3 4 5 6 7 8

Sorted partUnsorted part

Done.

Wednesday, August 1, 12

Selection sort

• The figure above suggested that we maintain two
separate arrays: one for the unsorted part (the input
array), and one for the sorted part.

• However, we can make selection sort operate in-
place if we swap the largest element in the
unsorted part with the right-most element in the
unsorted part...

Wednesday, August 1, 12

Selection sort
• Example:

6 1 4 3 8 7 2 5
Sorted partUnsorted part

Wednesday, August 1, 12

Selection sort
• Example:

6 1 4 3 5 7 2 8
Sorted partUnsorted part

Wednesday, August 1, 12

Selection sort
• Example:

6 1 4 3 5 2 7 8
Sorted partUnsorted part

Wednesday, August 1, 12

Selection sort
• Example:

2 1 4 3 5 6 7 8
Sorted partUnsorted part

Wednesday, August 1, 12

Selection sort
• Example:

1 2 3 4 5 6 7 8
Sorted partUnsorted part

Wednesday, August 1, 12

Selection sort
• Pseudocode:

void selectionSort (int[] array) {
 While size of unsorted part > 0:
 Find largest element e of unsorted part
 Swap e with right-most element of unsorted par
}

• The while loop iterates n times.

• Finding the largest element takes time n, n-1, n-2, ..., down
to 1 depending on the particular loop iteration.

• Swapping takes O(1) time.

• Total time cost:
n + (n-1) + (n-2) + ... + 2 + 1 + n*O(1) = n(n-1)/2 + O(n)
 = O(n2)

for swaps

Wednesday, August 1, 12

Selection sort
• Pseudocode:

void selectionSort (int[] array) {
 While size of unsorted part > 0:
 Find largest element e of unsorted part
 Swap e with right-most element of unsorted par
}

• Note that this time analysis applies to the worst, best, and
average cases.

• The number of operations does not vary with the
input.

• In particular, the if the input is already sorted, the
algorithm still takes time O(n2).

Wednesday, August 1, 12

Selection sort: stability
• Is selection sort stable, i.e., for any duplicate input

elements in the input array, will the sorted array
preserve their relative order?

• It depends on the implementation.

• When finding the largest element in the unsorted
part, if ≥2 elements are both maximal, then the
selection sort may pick any of them to “move” to
the sorted part.

• If the algorithm chooses the last maximal
element to move, then the sort is stable.

Wednesday, August 1, 12

Selection sort: stability
• Example:

51 2 52 1
51 2 1 52
2 1 51 52
1 2 51 52
1 2 51 52

Sorted partUnsorted part

If we move last instance
of the largest element to
the sorted part, then the

search is stable.

Wednesday, August 1, 12

