CSE |2.

Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Fifteen
31 July 2012

Graphs, continued

Graphs

® |n the graph below,N={1,2,3,4,5,6 }.

® An edge in a directed graph from node m to node n can
be described as an ordered pair (m, n).

® |n the graph below, E ={ (2, 3),(3, 1), (l,2),(4, 1), (5, 6) }.
©
2 @

(®)- 6

Wednesday, August 1, 12

Graphs

® |f a graph is undirected, then for every edge (m, n) € E,
we also have (n,m) € E.

® For the graph below, E = { (2,3), (3,2), (1,3), (3, 1), (I, 2),
2, 1), (1,4), (4, 1), (5,6), (6,5) }.

Wednesday, August 1, 12

Graphs

® Whenever (m, n) € E, we say that node m is adjacent
(or connected) to node n.

Wednesday, August 1, 12

Graphs

® |n some graphs, edges have weights associated with
them to represent distance, cost, etc.

® |n this case, an edge can be represented as an ordered
triplet (m, n, wmn) where wpmn is the weight from m to n.

Wednesday, August 1, 12

Graphs

® An example of a weighted graph is an airline map that
shows cities connected by flights, and the weight of
each edge is the distance (km) between those cities.

.a xp: , b A f
~a&‘4.

-'/__gf‘t"l)‘\'

Zq

A
| g

Wednesday, August 1, 12

Representing graphs

® To use graphs as a data structure, we must devise a
way of representing a graph in memory.

® [et N be the set of nodes and E be the set of edges.

® The number of nodes is |N|,and the number of
edges is |E|.

® To represent the set of nodes in memory, we can
use an |N|-element array, where each node is
assigned a unique index.

® This is both time- and space-efficient.

Wednesday, August 1, 12

Representing graphs

® To represent the set of edges, we can use two
alternative representations:

® An adjacency matrix A for the whole graph.

® An adjacency list for every node m € N.

Wednesday, August 1, 12

Adjacency matrices

¢ An adjacency matrix A is an [N| x [N| matrix,
where |N| is the number of nodes in the graph.

® For an unweighted graph, the (mn)th entry of A
contains a | or a 0 depending on whether edge

(m, n) € E.

® For a weighted graph, the (mn)th entry of A
contains the weight of edge (m, n) € E.

® |f (m,n) ¢ E, then we can store either 0,

infinity, or null (depending on what’s most
useful).

Wednesday, August 1, 12

Adjacency matrices

Example for directed graph:

OUr h W N —

(All “blank” entries are 0.)

Adjacency matrices

Example for undirected graph:

In an undirected graph, the
adjacency matrix A equals its
own transpose (i.e.,A = AT).

m

OUr h W N —

(All “blank” entries are 0.)

Wednesday, August 1, 12

Adjacency matrices

® Adjacency matrices offer fast access to the
presence/absence of any edge in the graph.

® However, for graphs in which edges are sparse,
they are space-inefficient (O(|N|?)).

® A space-saving (but slower) alternative is adjacency
lists...

Wednesday, August 1, 12

Adjacency lists

® With adjacency lists, every node maintains a list of
other nodes to which it is connected.

Wednesday, August 1, 12

Adjacency lists

® Adjacency lists require only O(|E|) space to store
all the edges.

® However, they require O(|E|) time to find a
particular edge.

Wednesday, August 1, 12

Graphs in computer science

® Graphs find many uses in computer science in
almost every sub-discipline:

® Computability/complexity theory.
® Networking.

® Machine learning.

® Social networks.

® Compilers

Wednesday, August 1, 12

Node discovery and shortest paths

® Jwo fundamental problems in graph theory are node
discovery and finding a shortest path between two nodes.

® Node discovery is the process of determining the set of
nodes reachable from a starting node s.

® [nformally, we say a node t is reachable from s if there
exists a sequence of nodes connected by edges that
“connect” s and t.

6 and 5 are
not reachable

from 2. @ ‘@

Wednesday, August 1, 12

Node discovery and shortest paths

® Node discovery is important because it provides a way
of iterating over all nodes in a graph that are reachable
from some starting node.

® For instance, given a graph of cities (nodes) connected
by bike trails (edges), we may wish to find the set of all
cities that are reachable from La Jolla, CA by bicycle.

® The two principal algorithms for node discovery are
Breadth-First-Search (BFS) and Depth-First-Search
(DFS).

® Using BFS, we can also find a shortest path
between two nodes s and t.

Wednesday, August 1, 12

BFS and DFS

® BFS and DFS both solve the problem of
discovering all nodes reachable from s.

® These algorithms differ in the order in which they
discover/visit nodes:

® BFS discovers/visits nodes by searching nodes
within a fixed radius r that gradually increases:

® First, search for all nodes | step away from s.
® Next, search for all nodes 2 steps away from s.

® Then, search for all nodes 3 steps away ...

Wednesday, August 1, 12

BFS

A BFS starts with at a node s and “radiates outwards”’.

BFS

A BFS starts with at a node s and “radiates outwards”’.

BFS

A BFS starts with at a node s and “radiates outwards”’.

BFS

A BFS starts with at a node s and “radlates outwards’’.

Wednesday, August 1, 12

BFS and DFS

® |n contrast, DFS discovers nodes by following
one path away from s “as far as it can go”.

® When it reaches the “end” of a path, it
backtracks and then follows another path “as
far as it can go’.

Wednesday, August 1, 12

DFS

A DFS starts with at a node s and “goes
as far as it can” down a single path.

DFS

A DFS starts with at a node s and “goes
as far as it can” down a single path.

DFS

At the end of a path, it then “backtracks™ and
pursues another path “as far as it can go”’.

k 0 fc G

Wednesday, August 1, 12

DFS

At the end of a path, it then “backtracks™ and
pursues another path “as far as it can go”’.

k 0 fc G

Wednesday, August 1, 12

DFS

At the end of a path, it then “backtracks™ and
pursues another path “as far as it can go”’.

9
i ' (b)
k 0 gfc G

; O

Wednesday, August 1, 12

DFS

At the end of a path, it then “backtracks™ and
pursues another path “as far as it can go”’.

Wednesday, August 1, 12

DFS

At the end of a path, it then “backtracks™ and
pursues another path “as far as it can go”’.

Wednesday, August 1, 12

Implementing a graph

® Before describing the BFS and DFS algorithms in
detail, it will be useful to define some “infrastructure’

for dealing with graphs.

’

® Let’s suppose there exists a Node class to contain
whatever is relevant for the user’s application, e.g.:

static class Node {

String name;

Image facePic;

int age;

Node[] friends; // adjacency list
}

® Notice how each Node contains a list of “friends’ --
this is an adjacency list for that person.

Wednesday, August 1, 12

Implementing a graph

® We will then define the whole Graph as follows:

class Graph {
static class Node {
String name;
Image facePic;
int age;
Node[] friends; // adjacency list
}

Node[] people;
}

Wednesday, August 1, 12

BFS implementation

® Given this graph infrastructure, we can start to define
our bfs (s) method:

® Internally,bfs (s) will maintain three data structures:
® A list of nodes it has already visited (from s).

® A queue of nodes it has yet to visit.

Wednesday, August 1, 12

BFS implementation

® |nh pseudocode,bfs(s) looks as follows:

List<Node> bfs (Node s) {
List<Node> wvisitedNodes;
Queue<Node> nodesToVisit;

nodesToVisit.enqueue (s) ;

while (nodesToVisit.size() > 0) {
n = nodesToVisit.dequeue() ;
visitedNodes.add (n) ;

for each friend n’ of n:
1f n’ not in nodesToVisit and n’ not in visitedNodes

nodesToVisit.enqueue(n’) ;

}

return visitedNodes;

Wednesday, August 1, 12

BFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

0"

Wednesday, August 1, 12

BFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

0"

Wednesday, August 1, 12

BFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

0"

Wednesday, August 1, 12

BFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

0"

Wednesday, August 1, 12

BFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

0"

Wednesday, August 1, 12

BFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

S C front g I(I b d e back

O,
e

o

Wednesday, August 1, 12

BFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.
S C f front I(I b d e back

e

o

Wednesday, August 1, 12

BFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

S C fg front I(I b d e back

e

o

Wednesday, August 1, 12

BFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

SCfg e | b d e h back
®
AN

o

Wednesday, August 1, 12

BFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

scfgk - |bdeh j pac

®
L@

o

Wednesday, August 1, 12

BFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

scfgk bdeh] pac

®
L@

o

Wednesday, August 1, 12

BFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

S C fg k| rone] @ hd> back

AN

o

Wednesday, August 1, 12

BFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.
scfgklb e @ | j back

o

Wednesday, August 1, 12

BFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.
scfgklbd rore | back

o

Wednesday, August 1, 12

BFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.
scfgklbde frone | back

o

Wednesday, August 1, 12

BFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.
scfgklbde frone | back

o

Wednesday, August 1, 12

BFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.
scfgklbdeh fone | back

o

Wednesday, August 1, 12

BFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

scfgklbdehiji o bac

Wednesday, August 1, 12

DFS implementation

® To implement depth-first-search (DFS), it turns out
we can use the exact same pseudocode as for BFS
except that we

® That this method works on the previous example
will be left as an exercise to the reader.

Wednesday, August 1, 12

DFS implementation

® |n pseudocode, dfs (s) looks as follows:

List<Node> dfs (Node s) {
List<Node> visitedNodes;
<Node> nodesToVisit;

nodesToVisit. (s);
while (nodesToVisit.size() > 0) {
n = nodesToVisit. ()

visitedNodes.add (n) ;

for each friend n’ of n:
1f n’ not in nodesToVisit and n’ not in wvisitedNodes
nodesToVisit. (n’);

}

return visitedNodes;

Wednesday, August 1, 12

DFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

bottom top

i

o

Wednesday, August 1, 12

DFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

bottom top

i

o

Wednesday, August 1, 12

DFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

S bottom top

i

o

Wednesday, August 1, 12

DFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

0"

Wednesday, August 1, 12

DFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

S I bottom C f g top

®
o

¢

Wednesday, August 1, 12

DFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

S I I(bottom C fg top

®
o

¢

Wednesday, August 1, 12

DFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

S I I(bottom C fg top

®
o

¢

Wednesday, August 1, 12

DFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

S I I(j bottom C f top

o

Wednesday, August 1, 12

DFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

S I I(j g bottom C f top

o

Wednesday, August 1, 12

DFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

S I I(j g bottom C f top

o

Wednesday, August 1, 12

DFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

slkijgh o ¢ f

o

Wednesday, August 1, 12

DFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

visitedNodes. nodesToVisit.

slkijgh i € f |

®
o

>~

Wednesday, August 1, 12

DFS in practice

® |et’s look at how the visitedNodes and
nodesToVisit data structures are updated when
exploring the graph from earlier...

(and so on)

Wednesday, August 1, 12

BFS and shortest paths

® |t turns out that the BFS algorithm is also
useful for finding shortest paths between
two nodes in a graph.

Wednesday, August 1, 12

BFS and shortest paths

What is the length of shortest path from s to t?

BFS and shortest paths

What is the length of shortest path from s to t?

BFS and shortest paths

Are s and t within O hops apart? No.

BFS and shortest paths

Are s and t within | hops apart? No.

BFS and shortest paths

Are s and t within 2 hops apart? No.

BFS and shortest Eaths

Are s and t within 3 hops

rt? Yes!

Wednesday, August 1, 12

Kevin Bacon Number
demo.

Sorting

Wednesday, August 1, 12

Facesbook demo

Sorting

® Given a data structure to store the user’s data, one of the
fundamental operations we may want to perform is to sort the
data.

® Some ADTs already utilize the order relations among data to
store data more efficiently.

® Heaps always store the largest element at the top.

® Binary search trees impose require data in left sub-tree be
smaller than in right sub-tree.

® However, in this section we are interested in using the order
relations to sort data stored in a standard array:

® Fixed size

® (O(l) time read/write access to any element.

Wednesday, August 1, 12

Sorting

® Whole books have been written on sorting
algorithms.

® Here, we present 6 of the most prominent sorting
algorithms and discuss their relative merits.

® (Most of) the sorting algorithms we discuss are all
based on comparing and swapping elements, i.e.:

® Jo sortan int[] array,the only operations we
perform are to compare array[i] and array[j]

(for some i and j) and to possibly swap those
elements.

Wednesday, August 1, 12

Sorting

® [t turns out that there is a provable lower bound on
the time cost of any comparison-based sorting
algorithm:

® Comparison-based sorts are the most generally
applicable algorithmes.

® However, if additional properties of the data can be
assumed, then we do better with other
sorting procedures, such as bucket
sort, radix sort, counting sort, etc.

Wednesday, August 1, 12

Sorting

® Before discussing the individual sorting algorithms, let’s
clarify the setting:

® For concreteness, we will always sort an an array of
integers.

® |n reality, it doesn’t matter what type T they are as
long as long T defines an order relation that is:

® Transitive:ifx < yandy < z,then x < z.

® Anti-symmetric:if x <yandy < x,then x =y.

Wednesday, August 1, 12

Sorting

® |[f all the n data in our array are unique, then we can
sort them either into increasing or decreasing order,
l.e.:

® Increasing:e <e;<e3<..<en <en
® Decreasing:e > e;> e3> ...>enl > €

® |[f the array contains duplicates, then we can only
achieve non-decreasing or non-increasing order:

® Non-decreasing.e| <e; <e3 < ..<enl < e

® Non-increasing:.e; = e; = €3 = ... = ep| = €y

Wednesday, August 1, 12

Sorting properties

® There are several properties of sorting algorithms
that we are interested in:

|. Asymptotic time costs in best, average, and
worst cases.

2. Whether the algorithm can sort in-place:

® An in=place sorting algorithms requires only
O(1) space outside of the array itself.

® Non-in-place algorithms may have to copy the
array into a temporary O(n) buffer.

Wednesday, August 1, 12

Sorting properties

3. Whether the sorting procedure is stable:

® A stable sorting algorithm will maintain the
relative order of duplicate elements in the
sorted array compared to the input array, e.g.:

® Unsorted array: 3257
® Sorted array (): 23 7/

® Sorted array (non-stable): 23 7/

Wednesday, August 1, 12

Sorting properties

® Stable sort -- why do we care?

® Sometimes we may sort the same data on
different attributes in sequence, e.g.:

® First sort data based on a person’s age.
® pl > p2iff pl.age > p2.age

® T[hen sort the same data based on a
person’s country-of-residence.

® pl1 > p2iff p1.country > p2.country

® Ve don’t want the second sort to “mess up”
the order of the first sort.

Wednesday, August 1, 12

Sorting properties

® Example -- unsorted data:

Richard, age 47, USA
Ronald, age 16, Paraguay
Gerald, age 32, Monaco
Jimmy, age 97, Indonesia
George, age |8, USA
Bill, age 54, Monaco
Ganymede, age 88, USA

Sorting properties

® Example -- data sorted by

Ronald, age |6, Paraguay
George, age |18, USA
Gerald, age 32, Monaco
Richard, age 47, USA
Bill, age 54, Monaco

Ganymede, age 88, USA
Jimmy, age 97, Indonesia

Sorting properties

® Example -- data sorted by (stable).

Jimmy, age 97, Indonesia

Gerald, age 32, Monaco |
Bi”, age 54, Monaco the data are still
Ronald, age |6, Paraguay sorted by age.
George, age |8, USA

Richard, age 47, USA

Ganymede, age 88, USA

Sorting properties

® Example -- data sorted by (non-stable).

Jimmy, age 97, Indonesia

Bi”’ agc 54’ Monaco Within each country,
Gerald, age 32, Monaco the data are not
Ronald, age |6, Paraguay sorted by age.
Richard, age 47, USA

George, age |8, USA

Ganymede, age 88, USA

Sorting properties

3. The time cost of the algorithm on an array that
is already sorted.

® Oftentimes, we will sort an array that might
already be sorted.

® Some algorithms perform better or worse
depending on whether the input array is
already sorted or perhaps “almost” sorted.

Wednesday, August 1, 12

Bogosort.

Bogosort

® Bogosort is a probabilistic sorting algorithm that
randomly shuffles the input array until it is sorted:

® While array is not sorted:
® Randomly permute the contents of array.

® Check if the array is sorted.

Wednesday, August 1, 12

Bogosort

® Bogosort is a probabilistic search algorithm that
randomly shuffles the input array until it is sorted:

® While array is not sorted:
® Randomly permute the contents of array.
® Check if the array is sorted.
® |s this algorithm guaranteed to finish!?
® Yes, given infinite time.

® Given any finite number of iterations, it is always
possible that Bogosort hasn’t “found” the right
permutation yet.

Wednesday, August 1, 12

Bogosort

® The (average-case) time costs of Bogosort are, as a whole,
rather “unsatisfying”’:

® While array is not sorted: (expected)
® Randomly permute the contents of array.
® Check if the array is sorted.

® Hence, in the average case, Bogosort takes time
O(n!) = O(n").

® |n best case, Bogosort takes O(n) time to permute the array
once and check that the permuted array is sorted.

® Worst case: undefined -- may never terminate in finite time.

Wednesday, August 1, 12

Bogosort

® Does there exist some sorting algorithm which
gives us asymptotically performance than
Bogosort!

® Hard to say.

Wednesday, August 1, 12

Approach |:sorted- and unsorted- parts

® Two prominent algorithms (with time costs better
than O(n")) that we examine are selection sort and
insertion sort.

® Both these algorithms work by partitioning the input
array into:

e A sorted part:a sub-array that is already sorted.

¢ An unsorted part:a sub-array that has not yet
been processed and which might not yet be sorted.

Wednesday, August 1, 12

Approach |:sorted- and unsorted- parts

® For example, consider the following array:

6 1 3 2

Unsorted part

® The algorithms differ in how these parts are created
and maintained.

Wednesday, August 1, 12

Selection sort.

Selection sort

® The main idea of selection sort is to repeatedly (n
times) select the largest element in the unsorted
part, and move it into the sorted part.

® |f the unsorted part contains n elements, then we
can find the largest element in n operations.

® Adding it to the sorted part just takes O(/)
time.

Wednesday, August 1, 12

Selection sort

® Example:

Unsorted part
614387 25

Wednesday, August 1, 12

Selection sort

® Example:

Unsorted part
3 0 Find and move largest

7T 2
2 5 >

6 1 4 3
6 1 4 3

Wednesday, August 1, 12

Selection sort

® Example:

Unsorted part

6 1 4 387 25
61437265 o
6 143 2 5 ind and move larges N

Wednesday, August 1, 12

Selection sort

® Example:

Unsorted part

61 4 387 25

6 1 4 37 25

614325 |
14325 Find and move largest N

Wednesday, August 1, 12

Selection sort

® Example:

Unsorted part Sorted part

61 4 387 25

CO 0O 0O 0 0 O 00
N
O O O 0 O
1N O N LN
< P
™M ™
N
L)
AN LN
I~ (N N
M M NN
T MN
e M N
OO -4

1 2 3456 78

Done.

Wednesday, August 1, 12

Selection sort

® The figure above suggested that we maintain two

separate arrays: one for the unsorted part (the input
array), and one for the sorted part.

® However, we can make selection sort operate in-
place if we swap the largest element in the

unsorted part with the right-most element in the
unsorted part...

Wednesday, August 1, 12

Selection sort

® Example:

Unsorted part
614387 25

Wednesday, August 1, 12

Selection sort

® Example:

Unsorted part
6 14357 2

Wednesday, August 1, 12

Selection sort

® Example:

Unsorted part
6 14 35 2

Selection sort

® Example:

Unsorted part
21435

Selection sort

® Example:

Unsorted part

Selection sort

® Pseudocode:

void selectionSort (int[] array) ({
While size of unsorted part > O:
Find largest element e of unsorted part
Swap e with right-most element of unsorted par

}

® The while loop iterates n times.

® Finding the largest element takes time n, n-1, n-2, ..., down
to | depending on the particular loop iteration.

® Swapping takes O(l) time.

: for swaps
® Jotal time cost:

n+(n-1)+ (n-2)+..+2+ | +n*O(l) = n(n-1)/2 + O(n)
= O()

Wednesday, August 1, 12

Selection sort

® Pseudocode:

void selectionSort (int[] array) ({
While size of unsorted part > O:
Find largest element e of unsorted part
Swap e with right-most element of unsorted par

}

® Note that this time analysis applies to the worst, best, and
average cases.

® The number of operations does not vary with the
Input.

® |n particular, the if the input is already sorted, the
algorithm still takes time O(n?).

Wednesday, August 1, 12

Selection sort: stability

® |s selection sort stable, i.e., for any duplicate input
elements in the input array, will the sorted array
preserve their relative order?

® |t depends on the implementation.

® When finding the largest element in the unsorted
part, if =2 elements are both maximal, then the
selection sort may pick any of them to “move” to
the sorted part.

® |f the algorithm chooses the last maximal
element to move, then the sort is stable.

Wednesday, August 1, 12

Selection sort: stability

® Example:

Unsorted part

5, 2 1
5, 2 1 .

If we move instance
2 1 of the largest element to
1 the sorted part, then the

search is stable.

Wednesday, August 1, 12

