
CSE 12:
Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Two
2 Aug 2011

Tuesday, July 3, 12

Scheduler (demo)

Tuesday, July 3, 12

Review from last
lecture

• In computer science, all data must
ultimately be represented as a binary
sequence.

• Data structures are necessary to encode
useful information in binary sequences.

• Data structures may vary in their time
complexity, space complexity, and “code
complexity” (human effort).

Tuesday, July 3, 12

Review from last lecture

• It is important to learn the fundamental data
structures of computer science so you don’t
keep having to “rediscover the wheel”.

• The fundamental data structures covered in
this course include: lists, stacks, queues,
heaps, trees, hash tables, and graphs.

Tuesday, July 3, 12

Fundamental data structures
• 5 of these structures (list, stack, queue, heap,

hash table) are useful as collections to
support add/find/remove operations.

• In coarse English, a collection is useful if the
programmer wants to “put data in it”, and
later “pull data out of it.”

• E.g., you’re writing a program to manage the
financial aid of all UCSD students. You want “some
structure” (collection) to hold all the
UCSDStudent objects while the program is
running -- you don’t want to manage the data
yourself.

Tuesday, July 3, 12

Fundamental data structures

• Different collections have different time and
space costs for the add/retrieve/remove
operations.

• Which collection is best depends on
which operations your code calls most
often.

Tuesday, July 3, 12

Fundamental data structures

• 2 of these structures (tree, graph) are useful to
represent connectivity relationships among data:

• Trees can represent hierarchical relationships
(e.g., heredity).

• Graphs can represent arbitrary relationships
between pairs of data (e.g., Facebook friends).

Tuesday, July 3, 12

Fundamental data structures

• In this course we will develop all of these data
structures as Abstract Data Types (ADTs).

• In this lecture I hope to:

• Explain abstraction from a computer
system’s perspective.

• Motivate building data structures as ADTs.

• Introduce our first ADT of the course: the
list.

Tuesday, July 3, 12

Review of
Unannounced Quiz 0

Tuesday, July 3, 12

Which markers are close to me?

Me

Tuesday, July 3, 12

Unannounced Quiz 0

• Given:

class Location {
 // ...
}
class Marker {
 public boolean isCloseTo (Location location) {
 // ...
 }
}

Tuesday, July 3, 12

Unannounced Quiz 0
• Objective was to implement GooglePlanet method:

// Return an array of Marker objects that are
// "close to" the specified location.
Marker[] findLocalMarkers (Location location) {

}

Tuesday, July 3, 12

Unannounced Quiz 0
• Objective was to implement GooglePlanet method:

// Return an array of Marker objects that are
// "close to" the specified location.
Marker[] findLocalMarkers (Location location) {
 Create empty list localMarkers
 For each marker in _markers:
 If marker.isCloseTo(location):
 Add marker to localMarkers
 Return localMarkers
}

• In actual Java code, this becomes surprisingly tedious...

Tuesday, July 3, 12

public Marker[] findLocalMarkers (Location location) {
! Marker[] localMarkers = new Marker[128]; // initialize to some small size
! int idx = 0;
! for (Marker marker : _markers) {
! ! if (marker.isCloseTo(location)) {
! ! ! if (idx == localMarkers.length) { // Array is full
! ! ! ! // Allocate a new array twice as big as the last one
! ! ! ! Marker[] newLocalMarkers = new Marker[2*localMarkers.length];
! ! ! ! // Copy the old array into the new array
! ! ! ! for (int i = 0; i < localMarkers.length; i++) {
! ! ! ! ! newLocalMarkers[i] = localMarkers[i];
! ! ! ! }
! ! ! ! // Now, make localMarkers point to that *new* array -- the "old"
! ! ! ! // version of localMarkers will be swept away by the garbage collector.
! ! ! ! localMarkers = newLocalMarkers;
! ! ! }
! ! ! // Now, we know we definitely have enough room to store one more marker
! ! ! localMarkers[idx] = marker;
! ! ! idx++;
! ! }
! }
! // We still have to "trim down" the localMarkers array to the
! // exact number of Marker objects that we actually added --
! // this is recorded in idx. Let's allocate one more Marker[]
! // to store the correct number of objects.
! Marker[] newLocalMarkers = new Marker[idx];
! for (int i = 0; i < idx; i++) {
! ! newLocalMarkers[i] = localMarkers[i];
! }
! localMarkers = newLocalMarkers;
! return localMarkers;
}

Tuesday, July 3, 12

public Marker[] findLocalMarkers (Location location) {
! Marker[] localMarkers = new Marker[128]; // initialize to some small size
! int idx = 0;
! for (Marker marker : _markers) {
! ! if (marker.isCloseTo(location)) {
! ! ! if (idx == localMarkers.length) { // Array is full
! ! ! ! // Allocate a new array twice as big as the last one
! ! ! ! Marker[] newLocalMarkers = new Marker[2*localMarkers.length];
! ! ! ! // Copy the old array into the new array
! ! ! ! for (int i = 0; i < localMarkers.length; i++) {
! ! ! ! ! newLocalMarkers[i] = localMarkers[i];
! ! ! ! }
! ! ! ! // Now, make localMarkers point to that *new* array -- the "old"
! ! ! ! // version of localMarkers will be swept away by the garbage collector.
! ! ! ! localMarkers = newLocalMarkers;
! ! ! }
! ! ! // Now, we know we definitely have enough room to store one more marker
! ! ! localMarkers[idx] = marker;
! ! ! idx++;
! ! }
! }
! // We still have to "trim down" the localMarkers array to the
! // exact number of Marker objects that we actually added --
! // this is recorded in idx. Let's allocate one more Marker[]
! // to store the correct number of objects.
! Marker[] newLocalMarkers = new Marker[idx];
! for (int i = 0; i < idx; i++) {
! ! newLocalMarkers[i] = localMarkers[i];
! }
! localMarkers = newLocalMarkers;
! return localMarkers;
}

All this code is
“nuisance” code.

Tuesday, July 3, 12

• Suppose there already existed a class called
ArrayList that allowed us to:

• add data to it

• retrieve data from it using an index; and

• would resize itself automatically?

• Our own code becomes much simpler...

Unannounced Quiz 0

Tuesday, July 3, 12

public ArrayList findLocalMarkers (Location location) {
! ArrayList localMarkers = new ArrayList();
!
! for (Marker marker : _markers) {
! ! if (marker.isCloseTo(location)) {
!

! ! !
! ! ! localMarkers.add(marker);

! ! }
! }

! return localMarkers;
}

Tuesday, July 3, 12

• What would this hypothetical ArrayList class
look like?

• It would certainly need an add method:

class ArrayList {
 void add (Object o) { ... }
 // ...
}

• All of the “nuisance” code would go into these
methods.

Unannounced Quiz 0

Tuesday, July 3, 12

• In writing the findLocalMarkers method, we
could then just use this ArrayList class.

• We are the user of this ArrayList.

• Someone else would then have to implement
the class by writing the actual implementation of
ArrayList.add(o).

• They are the implementor of the class.

Unannounced Quiz 0

Tuesday, July 3, 12

• Separating the user from the implementor
facilitates an elegant division of labor in writing
software.

Unannounced Quiz 0

Tuesday, July 3, 12

Data structures
you’re already familiar

with.

Tuesday, July 3, 12

Data structures you
already know

• In prior coursework you have already
worked with some simple data structures:

• Arrays:

int[] numbers = new int[100];
...
numbers[5] = 16;

Tuesday, July 3, 12

Data structures you
already know

• In prior coursework you have already
worked with some simple data structures:

• Arrays: collection of related variables
specified by an index:

int[] numbers = new int[100];
...
numbers[5] = 16;

More convenient than declaring 100 variables!
int number1, number2, number3, ... number100;

Tuesday, July 3, 12

Data structures you
already know

• Strings:

String firstName = “Jimmy”;
String lastName = “Carter”;
String fullName = firstName + “ “ + lastName;
System.out.println(“Hello, “ + fullName);

Tuesday, July 3, 12

Data structures you
already know

• Strings: a finite sequence of characters:

String firstName = “Jimmy”;
String lastName = “Carter”;
String fullName = firstName + “ “ + lastName;
System.out.println(“Hello, “ + fullName);

String data structure allows you to
“add” strings together.

Tuesday, July 3, 12

Data structures you
already know

• In other languages (e.g., C), a string is simply an
array of characters:

char str1[32] = “angry”; // str of max len 32
char str2[32] = “bird”;

• You can’t concatenate two strings simply by
“adding” them:

char str3[64] = str1 + str2;

Tuesday, July 3, 12

Data structures you
already know

• Records:

class Customer {
 String _name;
 int _age;
 float _accountBalance;
}

Tuesday, July 3, 12

Data structures you
already know

• Records: a group of related variables:

class Customer {
 String _name;
 int _age;
 float _accountBalance;
}

Records alleviate the burden of maintaining “whose
name goes with whose age and whose balance?”

Tuesday, July 3, 12

Data structures you
already know

• Simple data structures like arrays, strings, and
records provide conveniences to the
programmer.

• However, these structures are not physically
present anywhere in the computer.

• They are not real; they are abstract.
Merriam-Webster: existing in thought or as an idea but not having a physical or concrete existence

• In contrast, bits (0/1) are physically present
-- they encode whether a particular
transistor is on/off.

Tuesday, July 3, 12

Abstraction for
convenience.

Tuesday, July 3, 12

Memory abstraction
• Even the “one long sequence of 1’s and 0’s” from

last lecture is abstract:

• In fact, computers typically have multiple long
sequences of 0’s and 1’s -- one for each memory
chip in the machine.

0010011110001001110100101101100111001100100001010000... 10100011101011100111001101000101111011010010111...

1101010000110001100111110010100001010110...

2GB 2GB

2GB
Tuesday, July 3, 12

Memory abstraction

• Hence, if we want to write to or read from a
particular byte of memory, we must specify both
which chip (A, B, or C) and which location on
that chip (anywhere from 0 to 2147483647).

0010011110001001110100101101100111001100100001010000... 10100011101011100111001101000101111011010010111...

1101010000110001100111110010100001010110...

2GB 2GB

2GB

A B

C
Tuesday, July 3, 12

Memory abstraction

• How is this related to computer programming?

• Every variable in every program you write
must be stored in memory somewhere.

0010011110001001110100101101100111001100100001010000... 10100011101011100111001101000101111011010010111...

1101010000110001100111110010100001010110...

2GB 2GB

2GB

A B

C
Tuesday, July 3, 12

Foray into computer
architecture

Memory bus

CPU

Memory
controller

Memory chips

Source code (e.g., x = y + 5;)

Machine instructions

Compiler

• Somewhere between your source code and
the memory chips, the determination of
“which memory chip” must be made...

Tuesday, July 3, 12

Memory abstraction
• The memory controller provides a “convenient

illusion”:

• It allows the CPU, compiler, and ultimately our Java
code to “pretend” there’s only one large bank of
memory of size 6GB.

• No need to specify “memory chip A, B, or C”.

• Just specify the byte location you’re interested in
(anywhere from 0 to 6442450943).

• This illusion is called an “abstraction”.

Tuesday, July 3, 12

Memory abstraction

• Memory controller must “translate”
between “abstract” requests of the CPU
and “reality” of multiple memory chips.

Memory
controller

Memory chips

Request from CPU:
“Store 123 into memory
location 2214592512”.

A

B

C

Hmm, 2214592512
is on chip B.

“Store 123 into
location...”

Tuesday, July 3, 12

Memory abstraction
• Thanks to this “memory abstraction”, the

CPU, operating system, Java compiler, and
ultimately you-the-programmer don’t have to
worry about which memory chip your
variables are stored.

Memory bus

CPU

Memory chips

Source code (e.g., x = y + 5;)

Machine instructions

Compiler

Abstraction:
pretend we have

just one “bank” of
memory.

Reality: we have
multiple memory

chips.

Memory
controller

“Wall” of abstraction

Tuesday, July 3, 12

Memory addresses

• The memory controller
provides us with the
“abstraction” of viewing
memory as one, long
sequence of bytes (8 bits
each).

• Each location in the memory
bank is called an address.

11110110

11001001

01010001

01011000

11101000

11100000

01000100

11001110

01100101

00101001

01101111

00010111

10101111

01101110

01011111

...

ContentsAddress

0

4

3221225468

...

6GB
total

8

Tuesday, July 3, 12

Memory controller implements
OneLongBinarySequence

abstraction
• The memory controller is responsible for implementing

this abstraction.

• The memory controller must handle requests/
messages from the CPU and respond to them
appropriately.

• Example requests:

• “Store value 123 into address 2152420584.”

• “Fetch the value stored at address 2152420584.”

Tuesday, July 3, 12

Programming language abstractions

• In this course, we will deal with abstractions
primarily at the programming language and
data structure level.

• Programming languages allow us to refer to data
using meaningful variable names, e.g.,
int imageWidth;
instead of referring to particular memory
addresses, e.g., 4938248.

Tuesday, July 3, 12

Programming language abstractions

• Example:

void addNumbers () {
 int num1 = 13, num2 = 27;
 int num3 = num1 + num2;
}

13

27

40

ContentsAddress

9408

9412

9416

... ...

num1

num2

num3

The compiler/interpreter
implements the abstraction,
i.e., translates between
variable names and memory
addresses.

... ...

Tuesday, July 3, 12

Point to emphasize

• Abstraction provides a convenient illusion:

• The OneLongBinarySequence is more
convenient than having to know on which
memory card a particular byte is stored.

• A variable name is easier to remember
than an integer memory address.

Tuesday, July 3, 12

Point to emphasize

• Abstractions are not “real”:

• The OneLongBinarySequence is
actually divided across several memory
chips.

• A variable is actually just a region of
computer memory starting at a particular
address.

Tuesday, July 3, 12

Abstraction to hide
details.

Tuesday, July 3, 12

Data structure
abstractions

• In this course, we will study some of the
fundamental data structures of computer
science: list, stack, queue, heap, tree,
hash table, and graph.

• Each of these provides a convenient
abstraction to the programmer.

• We implement these data structures as
abstract data types (ADTs).

Tuesday, July 3, 12

Abstract data types

• An abstract data type (ADT) provides the
programmer with a convenient “container”
for storing data.

• For instance, a list is an abstraction for a
container of ordered elements that can
grow as we add more elements to it.

• The programmer interacts with the ADT
by calling various methods on it.

Tuesday, July 3, 12

Abstract data types
• The details of how the methods are implemented

are generally not visible to the “user”.

• The “user” is the programmer who wants to
use the ADT to manage his/her data.

• The user doesn’t necessarily care how the ADT
is implemented, as long as the methods work
according to the interface specification.

• This allows flexibility in the implementation
of the ADT.

Tuesday, July 3, 12

ADT example

• This discussion of abstract data types may
be getting “abstract”.

• Let’s concretify things by introducing one of
the classics: a list.

Tuesday, July 3, 12

Lists

• Sometimes you need to manage a
collection of variables:

• Students enrolled at UCSD.

• Customers who buy stuff from your
company.

• List of programs currently running on
your machine.

Tuesday, July 3, 12

Lists

• So...just use an array:

Student[] ucsdStudents = new
Student[28000];

Tuesday, July 3, 12

Linked lists

• But what if the number of students is not known
ahead of time?

• We could just allocate a really big array with
room to spare.

ucsdStudents = new Student[100000];

Tuesday, July 3, 12

Why not use an array?

• There are two problems with this:

• It is wasteful -- many elements of
ucsdStudents will never be used.

• If we try to allocate too big an array, then
the initialization may fail, due to:

• Lack of free memory; or

• Lack of contiguous free memory (i.e.,
available in one big block).

Tuesday, July 3, 12

Why not use an array?
• Ok, fine -- start out with a small array, and make it

bigger when it’s full.

• But it’s annoying for the programmer to have to
keep “enlarging the array”.

• What we want is an object that manages the array
for us.

• We don’t really care how it’s done, as long as it
works.

• We’re not concerned with the details.

Tuesday, July 3, 12

What we want

• What we want is some data structure that has
the following capabilities:

• We can add elements (e.g., Students) to it, and
it will store them.

• The data structure should automatically
“grow” itself as needed in an “efficient”
manner (much more later).

• It should not use memory wastefully.

Time cost

Space cost

Tuesday, July 3, 12

What we want

• We can retrieve a particular element specified
by index i.

• We can remove a particular element specified
by index i.

Tuesday, July 3, 12

List interface specification
• Here’s a Java specification of what we want:

class List {

 ...

 // Adds the specified element to the end of the list.
 // Takes O(1) time.
 void add (Object element) { ... }

 // Returns the element contained in the list at index
 // i if it exists. Else, throws NoSuchElementException.
 Object get (int i) throws NoSuchElementException { ... }

 // Removes the element contained in the list at index
 // i if it exists. Else, throws NoSuchElementException
 void remove (int i) throws NoSuchElementException { ... }
}

For now, just take this to mean “quickly”.

Tuesday, July 3, 12

List interface specification
• Notice the things we don’t care about:

class List {

 ...

 // Adds the specified element to the end of the list.
 // Takes O(1) time.
 void add (Object element) { ... }

 // Returns the element contained in the list at index
 // i if it exists. Else, throws NoSuchElementException.
 Object get (int i) throws NoSuchElementException { ... }

 // Removes the element contained in the list at index
 // i if it exists. Else, throws NoSuchElementException
 void remove (int i) throws NoSuchElementException { ... }
}

Don’t care about the
instance variables.

Don’t care how the
methods work.

Tuesday, July 3, 12

List interface specification
• Notice the things we do care about:

class List {

 ...

 // Adds the specified element to the end of the list.
 // Takes O(1) time.
 void add (Object element) { ... }

 // Returns the element contained in the list at index
 // i if it exists. Else, throws NoSuchElementException.
 Object get (int i) throws NoSuchElementException { ... }

 // Removes the element contained in the list at index
 // i if it exists. Else, throws NoSuchElementException
 void remove (int i) throws NoSuchElementException { ... }
}

We care about the
parameters we must pass in.

We care what the
methods do.

We care about what
the methods return.

We care what exceptions it
might throw (more later).

Tuesday, July 3, 12

List specification
• A description of methods...

• What the methods do.

• What parameters they take.

• What they return.

• What exceptions they might throw.

• ...is known as an interface.

• An interface in Java contains:

• No instance variables.

• No method bodies.

Tuesday, July 3, 12

List interface

interface List {
 // Adds the specified element to the end of the list.
 // Takes O(1) time.
 void add (Object element);

 // Returns the element contained in the list at index
 // i if it exists. Else, throws NoSuchElementException.
 Object get (int i) throws NoSuchElementException;

 // Removes the element contained in the list at index
 // i if it exists. Else, throws NoSuchElementException
 void remove (int i) throws NoSuchElementException;
}

An interface consists of method signatures.

A method signature consists of the method name,
parameters, return type, and exceptions thrown.

Tuesday, July 3, 12

Using a list

• Before we can use a List object, we first need
some class that implements the List interface.

• The List is an abstraction -- we can’t create List
objects by writing:

List list = new List(); // Won’t compile

• The reason is that List is just a description of
what a list should do -- not how it would actually
work.

Tuesday, July 3, 12

Implementing the List
interface

• In order to create an instance of List, you
must first create a (concrete) class that
implements the (abstract) List interface.

• What does this mean?

• It means that we must implement the
body of every method whose signature
was defined in the interface.

Tuesday, July 3, 12

Implementing the List
interface

class ListImpl implements List {
 private Object[] _array;
 private int _numElements;

 void add (Object element) {
 ...
 _array[_numElements++] = element;
 }

 Object get (int i) throws NoSuchElementException {
 ...
 }

 void remove (int i) throws NoSuchElementException {
 ...
 }
}

Tell the compiler explicitly
that ListImpl

implements the List
interface.

Tuesday, July 3, 12

Creating a List

• Now that we (hypothetically) have a ListImpl
implementation of List, we can create a List
object:

List list = new ListImpl(); // ok!
list.add(new Student(“Bertha”, 18));
...

Tuesday, July 3, 12

Abstraction for good
software design.

Tuesday, July 3, 12

Why separate interface
from implementation?

• So far, creating a List interface and a
ListImpl implementation hasn’t bought
us very much.

• Why is it useful?

Tuesday, July 3, 12

Why separate interface
from implementation?
1. Separating interface from implementation

facilitates a division of labor among members
of a software development team.

I’ll work on the
graphical front-end
to manage a list of
UCSD students.

Fabulous. I’ll
create the List
implementation

itself.

Photos courtesy of Google Image Search.

User Implementor

Tuesday, July 3, 12

Why separate interface
from implementation?

1. Separating interface from implementation
facilitates a division of labor among members of
a software development team.

1. Both the implementors and users of the
ADT agree on the interface.

2. The implementor implements the
interface (writes the ADT method bodies).

3. The user calls the interface methods.

Tuesday, July 3, 12

Why separate interface
from implementation?

Photos courtesy of Google Image Search.

User Implementor

List list = new ListImpl();
list.add(new Student());
...

class ListImpl implements List {
 ...
 void add (Object o) {
 _array[_numElements++] = o;
 }
}

List interface

writes: writes:

W
al

l o
f a

bs
tr

ac
tio

n

Tuesday, July 3, 12

Why separate interface
from implementation?

2. Programming an application that uses objects
of an interface type is more flexible.

• If a new, better implementation comes out,
you can switch by changing one line of code.

Tuesday, July 3, 12

Why separate interface
from implementation?

// Create the list
List list = new ListImpl();

// Do lots of stuff with the list
list.add(new Student(“Maurice”, 16));
list.add(someOtherStudent);
...
Student s = (Student) list.get(15);
...

Tuesday, July 3, 12

Why separate interface
from implementation?

// Create the list
List list = new ListImplImproved();

// Do lots of stuff with the list
list.add(new Student(“Maurice”, 16));
list.add(someOtherStudent);
...
Student s = (Student) list.get(15);
...

Substitute a different
implementation.

None of the remaining code has to change at all!
Tuesday, July 3, 12

Why not an ADT?
• There are a few situations where you would not

want to implement a data structure as an ADT.

• Encapsulating a data structure into an ADT incurs
a small amount of time cost and space cost.

• In performance-critical programs (e.g., real-time
systems, small-memory systems), this overhead
might be a real problem.

• However, in the vast majority of programming
scenarios, using data structures as ADTs is the right
choice.

Tuesday, July 3, 12

Implementing a List
ADT.

Tuesday, July 3, 12

List implementations

• Let’s finally talk about how to implement a
List with the three methods add, get,
and remove.

• We will cover two kinds of list
implementations:

•ArrayList

•LinkedList

Tuesday, July 3, 12

Array lists
• Let’s go back to our “sketch” of how to

manage a list that could “grow” when more
elements were added:

• Start with a small array.

• If it gets full, make the array larger.

• Hide these details from the “user” -- the
programmer using the ArrayList
implementation -- behind the “wall of
abstraction” provided by the List
interface.

Tuesday, July 3, 12

ArrayLists

• In our ArrayList ADT, we will store the data added
by the add(o) method in an Object[].

• This Object[] is the “underlying storage” of the ADT.

• In 1960s parlance, this is called the “backing store”
of the data structure.

• What would be the “backing store” of the
OneLongBinarySequence abstraction that the
memory controller implements?

Tuesday, July 3, 12

ArrayLists
• It is often useful to depict ADTs graphically:

0 1 2 3 4 5 6 7Element index:

// Stores the number of
// boxes actually in use
int _numStoredElements;

0

Object[]
_underlyingStorage;

ArrayList

Tuesday, July 3, 12

ArrayLists

0 1 2 3 4 5 6 7Element index:

// Stores the number of
// boxes actually in use
int _numStoredElements;

0

Object[]
_underlyingStorage;

• Consider:
Object o1 = “Object1”;
Object o2 = “Object2”;
Object o3 = “Object3”;

ArrayList

Tuesday, July 3, 12

ArrayLists

o1

0 1 2 3 4 5 6 7Element index:

// Stores the number of
// boxes actually in use
int _numStoredElements;

1

• Consider:
arrayList.add(o1);

Object[]
_underlyingStorage;

ArrayList

Tuesday, July 3, 12

ArrayLists

o1 o2

0 1 2 3 4 5 6 7Element index:

// Stores the number of
// boxes actually in use
int _numStoredElements;

2

• Consider:
arrayList.add(o1);
arrayList.add(o2);

Object[]
_underlyingStorage;

ArrayList

Tuesday, July 3, 12

ArrayLists

o1 o2 o3

0 1 2 3 4 5 6 7Element index:

// Stores the number of
// boxes actually in use
int _numStoredElements;

3

• Consider:
arrayList.add(o1);
arrayList.add(o2);
arrayList.add(o3);

Object[]
_underlyingStorage;

ArrayList

Tuesday, July 3, 12

ArrayLists
• After adding 8 objects to the

list, the array is full. (How do
we know?)

• If the user calls add again, we
must enlarge the backing
store.

o1 o2 o3 o4 o5 o6 o7 o8

0 1 2 3 4 5 6 7Element index:

// Stores the number of
// boxes actually in use
int _numStoredElements;

8

• Consider:
// More adds...

Object[]
_underlyingStorage;

Tuesday, July 3, 12

Enlarging an array

• First, what does it mean to “enlarge” an array?

• In Java, once an array is allocated, its size
cannot be changed:

Object[] array = new Object[8];
array.length++; // this is nonsense

Tuesday, July 3, 12

Enlarging an array
• Instead, we must allocate a new, larger array, and

copy the old array data into the new array.

Tuesday, July 3, 12

Enlarging an array
• Instead, we must allocate a new, larger array, and

copy the old array data into the new array:

// Allocate initial array
Object[] array = new Object[8];

... // The array gets filled up

// Create a new, larger array
Object[] largerArray = new Object[16];
// Copy the array data into the new array
for (int i = 0; i < array.length; i++) {
 largerArray[i] = array[i];
}
// Replace the old array with the new one
array = largerArray;

Tuesday, July 3, 12

Enlarging the array

• After “enlarging” the array, we have:

o1 o2 o3 o4 o5 o6 o7 o8

0 1 2 3 4 5 6 7Element index:

// Stores the number of
// boxes actually in use
int _numStoredElements;

8

8 9 10 11 12 13 14 15

Object[]
_underlyingStorage;

Tuesday, July 3, 12

Enlarging an array

• It would be a pain to do this in every
application we write in which we need a
flexibly-sized array.

• Implementing this “array resizing” in a List
ADT once-and-for-all is more efficient and
more reliable.

Tuesday, July 3, 12

Enlarging the array:
implementation issues

• When should we resize the array?

• How do we keep track of how full the
current array is?

• By how much should we enlarge the array?

Tuesday, July 3, 12

Unannounced quiz 1

Tuesday, July 3, 12

