
CSE 12:
Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Three
3 Aug 2011

Thursday, July 5, 12

Review from Lecture 2

Thursday, July 5, 12

Abstract Data Types
(ADTs)

• Some of the most important data structures
in computer programming are collections.

• One of the most common collections is the
list, which can be implemented (among other
ways) as an ArrayList or a LinkedList.

Thursday, July 5, 12

Abstract data types
(ADTs)

• Usually the user of the collection will not
care about, and not want to be bothered
with, the task of implementing the data
structure.

• This yields a natural division of labor...

Thursday, July 5, 12

User versus
implementor

Photos courtesy of Google Image Search.

User Implementor

List list = new ListImpl();
list.add(new Student());
...

class ListImpl implements List {
 ...
 void add (Object o) {
 _array[_numElements++] = o;
 }
}

List interface

writes: writes:

W
al

l o
f a

bs
tr

ac
tio

n

Thursday, July 5, 12

Interfaces
• The user and implementor must agree on

the interface of the ADT.

• The interface is a collection of method
signatures, which specify:

• what methods the ADT provides.

• what the methods do.

• what parameters they take.

• what they return

• which exceptions they throw

Thursday, July 5, 12

Interfaces

• The interface may also specify:

• how the user may call the methods, e.g.:

• “method A() must be called before
method B()”

Thursday, July 5, 12

Interface as a contract

• The interface is a contract between the
user and the implementor:

• It specifies which methods the
implementor must write, and what they
do.

• It specifies how the user may call them

Thursday, July 5, 12

Interfaces in Java

• In Java, interfaces are created with the
interface keyword. E.g., in file
MyInterface.java:

interface MyInterface {
 void method1 (Object o);
 ...
 Integer[] method5 (int a, int b);
}

Thursday, July 5, 12

Interfaces in Java

• Before an interface can be used, it must be
implemented by a concrete class, e.g., in
MyImplementation.java:

class MyImplementation implements MyInterface {
 Object _myObject;
 void method1 (Object o) {
 int a = 5;
 if (o == _myObject) {
 // blah blah
 }
 }
 ...
}

Must explicitly write
“implements...”!

Thursday, July 5, 12

List interface

interface List {
 // Adds the specified element to the end of the list.
 // Takes O(1) time.
 void add (Object element);

 // Returns the element contained in the list at index
 // i if it exists. Else, throws NoSuchElementException.
 Object get (int i) throws NoSuchElementException;

 // Removes the element contained in the list at index
 // i if it exists. Else, throws NoSuchElementException
 void remove (int i) throws NoSuchElementException;
}

Thursday, July 5, 12

Interface
implementations

• An interface may be implemented by
multiple classes, e.g.:

List list = new ArrayList();
...
list = new LinkedList();

Thursday, July 5, 12

The Java Virtual
Machine (JVM).

Thursday, July 5, 12

Why study the Java VM?

• Before studying the more complicated data
structures, it is important to understand the
relationship between a computer program
and the memory on which it operates.

• In the case of Java, this entails a discussion of
the Java Virtual Machine (JVM).

Thursday, July 5, 12

“Real machines”

• To appreciate “virtual machines”, let’s first
consider how a source program is converted to
an executable program on a “real machine”:

• The programmer writes some source code.

• He/she then compiles the source code into
machine instructions that are specific to
the particular hardware platform.

Thursday, July 5, 12

“Real machines”
• If the programmer wants her program to run on 5

different hardware platforms, she needs to:

• Write the source code only once (thank
goodness!).

• Compile the source code 5 times.

Thursday, July 5, 12

“Real machines”
Source code
class MyClass {
 void myMethod () {
 }
 ...

Intel
compiler

ARM
compiler

Snapdragon
compiler

Intel machine language ARM machine language
Snapdragon machine

language

Intel
executable

file

ARM
executable

file

Snapdragon
executable

file

Thursday, July 5, 12

Java

• In the 1990s, Sun Microsystems developed
a new programming language called “Java”.

• Motto: “Write once, run everywhere.”

• This might also be described as, “Compile
once, run everywhere.”

• Once Java code is compiled, it can run on
any platform, irrespective of CPU type.

• How is this possible?

Thursday, July 5, 12

Java Virtual Machine

• The designers of Java inserted a layer of abstraction
between the Java compiler and the hardware CPUs.

• This abstraction is called the Java Virtual Machine
(JVM).

• The JVM provides a convenient “abstract machine
language” that can run on any CPU.

• This means that a Java program need only be
compiled once, and it can run on any hardware
platform.

Thursday, July 5, 12

• The JVM was also designed from the
ground-up to provide security, e.g.:

• Bounds checking: it won’t let you access
the 9th element of an 8-element array.

• Type safety: it won’t let you treat an
Integer as a String.

Java Virtual Machine

Thursday, July 5, 12

Java Virtual Machine
Source code

Intel JVM ARM JVM Snapdragon JVM

Java compiler

Java machine language
(“bytecode”)

Java object file
(.class)

JVMs translate from bytecode into native machine code.

Thursday, July 5, 12

Java Virtual Machine
• Every compiled Java .class file will run on every

Java Virtual Machine for every hardware platform in
the same way.

• This convenience through abstraction comes at a price:

• A new JVM must be created for every hardware
platform.

• The burden of portable code has shifted from
software programmer to operating system
designer + hardware manufacturer.

Thursday, July 5, 12

Java Virtual Machine
• The Java Virtual Machines are, themselves, software

programs.

• The JVMs simulate a “Java CPU”:

• They read the “bytecode” from the .class files, and
then convert the abstract “Java instructions” to real
CPU instructions.

Thursday, July 5, 12

Java Virtual Machine

Intel JVM

x += 10;

iinc 1, 10

addl $10, -4(%rbp)

Java compiler

Java source code

Intel machine language

Java machine language
(bytecode)

JVM must convert from
bytecode to native machine

language in real time.

Thursday, July 5, 12

Java Virtual Machine

• Every instruction of bytecode must be converted
into a real instruction on the actual hardware CPU.

• This incurs a cost -- Java is typically slower than C.

• The JVM plays an analogous role to the memory
controller from last lecture -- it implements an
abstraction.

Thursday, July 5, 12

Memory management
in the JVM

Thursday, July 5, 12

Your data inside the JVM
• Compiled Java programs execute within the

Java Virtual Machine.

• All Java programs need to store some data.

• Data are manipulated in Java using variables.

• It is helpful, when learning Java in general and
data structures in particular, to understand
how the Java Virtual Machine manages these
variables and data in memory.

Thursday, July 5, 12

Variables in Java
• In Java, all variables are either of primitive or reference type.

• Primitive types:

boolean, byte, char, short, int, long, float, and
double.

E.g., float myHeight = 178.0; // cm

• Reference types:

References to Object, subclasses of Object, and all arrays:

String s = “test”;
int[] arrayOfInts = new int[16];

Thursday, July 5, 12

Variables in Java

• The JVM’s “system memory”
can be viewed as a column of
bytes, each with its own
address.

• All data (int, float, Object,
etc.) are stored somewhere in
this memory column.

• The location of each
variable/object is called its
address.

11110110

11001001

01010001

01011000

11101000

11100000

01000100

11001110

01100101

00101001

01101111

00010111

ContentsAddress

0

4

8

......

Thursday, July 5, 12

Variables in JVM Memory

• Consider a method that
declares three variables
of primitive type:

void myMethod () {
 int i;
 char c;
 double d;
}

• These might be stored
in memory as shown to
the left.

int i

char c

double d

ContentsAddress

0

4

8

......

12

Thursday, July 5, 12

• Different variables
require different
numbers of bytes for
storage:

byte, char: 1

short: 2

int, float: 4

long, double: 8

i

c

d

ContentsAddress

0

4

8

......

12

Variables in JVM Memory

i
n
t

c
h
a
r

d
o
u
b
l
e

These numbers would
correspond to a 32-bit

JVM.

Thursday, July 5, 12

Objects in JVM Memory
• Objects also (of course) take up memory.

• How much memory they need depends on the
instance variables stored in them.

class MyObject {
 int _num1, _num2;
 char _c;
}

• 2 ints + 1 char = 9 bytes (The JVM
probably rounds up to nearest multiple of 4.)

• There is also some amount of overhead (even
if your class defines no instance variables).

Thursday, July 5, 12

Variables in JVM Memory

• An object of type MyObject
may require about 12 bytes.

• The exact amount depends
on the particular JVM.

• Somewhere within those bytes
are _num1, _num2, and _c.

• The exact location depends
on the particular JVM.

ContentsAddress

8192

8196

8200

......

8204

......

i
n
t

_
n
u
m
1
,

_
n
u
m
2
;

c
h
a
r

_
c
;

M
y
O
b
j
e
c
t

Thursday, July 5, 12

References
• Consider the following code:

 MyObject obj = new MyObject();

• This code actually refers to two “things” in memory:

• The newly created object of type MyObject (about
12 bytes).

• The reference obj to that new object (just 4 bytes
-- enough to store a memory address on a 32-bit
machine).

• A reference in Java stores the location
(address) in memory of an object or array.

Thursday, July 5, 12

References
• The call to new MyObject() causes the

Java Virtual Machine to instantiate a new
object of type MyObject.

• Memory is allocated (“set aside”) for the
new object.

• The result of the “new” call is the address of
the newly created object.

• In MyObject obj = new MyObject(),
this address is then stored in the
MyObject-reference obj.

Thursday, July 5, 12

References

• If you “forget” to store the address returned by new
MyObject(), then the newly created object will be
essentially “forgotten” -- there’s no way to know
where in memory it is stored.

• Example:
new Object(); // Creates a new object, then
 // promptly forgets where it is.

• (Eventually, the garbage collector will remove it.)

Thursday, July 5, 12

Objects, and references to objects

MyObject obj = new MyObject();

ContentsAddress

6000

6004

8200

......

8204

......

......

obj: 8204
M
y
O
b
j
e
c
t

re
fe

re
nc

e
to

M
y
O
b
j
e
c
t

reference to the
new object

the new object itself

Thursday, July 5, 12

Objects, and references to objects

MyObject obj = new MyObject();

ContentsAddress

6000

6004

8200

......

8204

......

......

obj: 8204
M
y
O
b
j
e
c
t

re
fe

re
nc

e
to

M
y
O
b
j
e
c
t

reference to the
new object

the new object itself

• In effect, the reference “points to” the
newly created object by storing its address.

• This is why references are sometimes
called pointers.

JAKE -- show PrintAddr demo

Thursday, July 5, 12

Multiple references to
same object

• Consider:

MyObject obj1 = new MyObject();
MyObject obj2 = obj1;

• Object-references obj1 and obj2 now
point to the same, newly created object.

• If you modify obj1._num1, this will also
affect obj2._num1

Thursday, July 5, 12

Multiple references to same object

MyObject obj1 = new MyObject();
MyObject obj2 = obj1;

ContentsAddress

6000

6004

8200

......

8204

......

......

obj2: 8204

obj1: 8204
M
y
O
b
j
e
c
t

re
fe

re
nc

e
to

M
y
O
b
j
e
c
t

• All you’re doing in line 2 is setting the
address stored in variable obj2 to the same
address stored in variable obj1.

• This causes obj2 to “point to” the same
object that obj1 points to.

re
fe

re
nc

e
to

M
y
O
b
j
e
c
t

Thursday, July 5, 12

Multiple references to
same object

• Example:

MyObject obj1 = new MyObject();
MyObject obj2 = obj1;
obj1._num1 = 5;
obj2._num1 = 6;
System.out.println(obj1._num1);
// Prints out 6 !

Thursday, July 5, 12

== versus equals()
• The discussion of references brings up the issue of

“equality” between objects.

• String s1 = new String(“test”);
String s2 = new String(“test”);

s1.equals(s2)
s1 == s2

Thursday, July 5, 12

== versus equals()
• The discussion of references brings up the issue of

“equality” between objects.

• String s1 = new String(“test”);
String s2 = new String(“test”);

s1.equals(s2) // true
s1 == s2 // false! -- why?

• s1.equals(s2) compares the contents of the
objects pointed to by s1 and s2.

• s1 == s2 compares the addresses stored in
reference-variables s1 and s2!

Thursday, July 5, 12

== versus equals()

• s1 and s2 point
to two different
String objects.

• The contents of
the two Strings
happens to be the
same.

ContentsAddress

6000

6004

8200

......
9000

......

......

s1: 8200

s2: 9000

S
t
r
i
n
g

re
fe

re
nc

e
to

S
t
r
i
n
g

re
fe

re
nc

e
to

S
t
r
i
n
g

S
t
r
i
n
g

“t
es

t”
“t

es
t”

Thursday, July 5, 12

Dereferencing operator

• You’re already well-familiar with the
dereferencing operator . (dot).

MyObject obj = new MyObject();
obj._num1 = 3;

Left side: valid (non-
null) reference

Right side: name of
instance/class variable.

What does this really mean
in terms of memory?

Thursday, July 5, 12

Dereferencing operator

• Step 1: read the address
stored in obj (8196).

obj: 8196

_num1: 1

ContentsAddress

8192

8196

8200

......

8204

......

M
y
O
b
j
e
c
t

re
fe

re
nc

e
to

M
y
O
b
j
e
c
t

obj._num1 = 3;

Thursday, July 5, 12

Dereferencing operator

• Step 1: fetch the address
stored in obj (8196).

• Step 2: dereference (“go
to”) that address.

obj: 8196

_num1: 1

ContentsAddress

8192

8196

8200

......

8204

......

M
y
O
b
j
e
c
t

re
fe

re
nc

e
to

M
y
O
b
j
e
c
t

obj._num1 = 3;

Thursday, July 5, 12

Dereferencing operator

• Step 1: fetch the address
stored in obj (8196).

• Step 2: dereference (“go
to”) that address.

• Step 3: find where in that
MyObject the instance
variable _num1 is stored.

obj: 8196

_num1: 1

ContentsAddress

8192

8196

8200

......

8204

......

M
y
O
b
j
e
c
t

re
fe

re
nc

e
to

M
y
O
b
j
e
c
t

obj._num1 = 3;

(This is hidden from the
programmer, but the JVM

knows where it is.)

Thursday, July 5, 12

Dereferencing operator

• Step 1: fetch the address
stored in obj (8196).

• Step 2: dereference (“go
to”) that address.

• Step 3: find where in that
MyObject the instance
variable _num1 is stored.

• Step 4: set its value to 3.

obj: 8196

_num1: 3

ContentsAddress

8192

8196

8200

......

8204

......

M
y
O
b
j
e
c
t

re
fe

re
nc

e
to

M
y
O
b
j
e
c
t

obj._num1 = 3;

Thursday, July 5, 12

References inside
objects

• It is commonplace for objects to contain
instance variables that are references to
other objects.

class Student {
 String _name;
 int _age;
}

The _name instance variable of a Student
object is a reference to a String object.

Thursday, July 5, 12

References inside
objects

Student s = new Student();

_name

ContentsAddress

6000

6004

8200

......

......

......

s: 8200

re
fe

re
nc

e
to

S
t
u
d
e
n
t

S
t
u
d
e
n
t

Thursday, July 5, 12

References inside
objects

Student s = new Student();
s._name = “Priscilla”;

_name: 9000

ContentsAddress

6000

6004

8200

......
9000

......

......

s: 8200

S
t
r
i
n
g

re
fe

re
nc

e
to

S
t
u
d
e
n
t

S
t
u
d
e
n
t

“P
ri

sc
ill

a”

Thursday, July 5, 12

Simplified memory diagrams
• We’ve seen these columnar memory diagrams a lot

now.

• Let’s take a more “abstract” perspective on memory
and not worry about the particular memory
addresses as much.

• Let’s also move the objects out of the memory
column to illustrate their relationships better.

• In reality, of course, the objects are all stored
somewhere on some memory DIMM (chip) as a
sequence of 1’s and 0’s...

• Yada yada yada...

Thursday, July 5, 12

Simplified figure for
class Student

s

_name
_age

“Priscilla”

Student String

(reference to
Student)

(object) (object)

Inside the boxes: Sometimes I will write the
names of instance variables and sometimes their
values; it should be clear from the context.

Thursday, July 5, 12

Even simpler figure for
class Student

s

_name
_age

“Priscilla”

Student String

Thursday, July 5, 12

Changing s._name

s

_name
_age

“Priscilla”

Student String

s._name = “Ricardo”;

“Ricardo”

String

Thursday, July 5, 12

Here’s where things get
fun...

• It is also (sometimes) useful for an object to contain
a reference to another object of the same class.

• In this way, we can “chain” together multiple objects.

• Example:

class Node {
 Node _next;
}

Thursday, July 5, 12

Chain of Nodes
Node node = new Node();

node

_next

Node

Thursday, July 5, 12

Chain of Nodes
Node node = new Node();
node._next = new Node();

node

_next

Node
_next

Node

Thursday, July 5, 12

Chain of Nodes
Node node = new Node();
node._next = new Node();
node._next._next = new Node();

node

_next

Node
_next _next

Node Node

Thursday, July 5, 12

Loop of Nodes
We can even create a “loop”:

node._next._next._next = node;

node

_next

Node
_next _next

Node Node

Thursday, July 5, 12

Node chains and loops

• Why would we want to build these bizarre
structures?

• They are sometimes useful in
implementing ADTs.

Thursday, July 5, 12

Linked lists.

Thursday, July 5, 12

ArrayLists
• Recall from last lecture that we discussed how to

implement a reasonable List interface using an
array.

• We called this implementation an ArrayList.

• The ArrayList.add(o) method would
automatically resize its internal
_underlyingStorage array whenever it got full.

• This is more convenient for the user than having
to manage the array him/herself.

Thursday, July 5, 12

Problems with
ArrayLists

• However, the ArrayList is unsatisfying in a few
ways:

• It is still wasteful in memory -- after doubling
the size of the _underlyingStorage, about
half of the array elements are unused.

• It does not solve the contiguity problem.

Thursday, July 5, 12

 Contiguity problem

• Sometimes the pool of free memory
can become “fragmented” -- split into
small chunks.

• In this case, it may not be possible to
allocate one large, contiguous array.

Used

Used

Used

Used

Used

Used

Memory

Total free memory: 10 slots
Maximum contiguous memory: 3 slots

o1

o2

o3

o4

? I can’t store myself anywhere!

Thursday, July 5, 12

Problems with
ArrayLists

• Another disadvantage of ArrayLists arises
when you want to add an object to the front
of the list: arrayList.addToFront(o8);

o1 o2 o3 o4 o5 o6 o7

0 1 2 3 4 5 6 7Element index:

Where to insert o8
Move all these elements right by 1 space.

• We have to move all the other elements first!

Thursday, July 5, 12

Problems with
ArrayLists

• Another disadvantage of ArrayLists arises
when you want to add an object to the front
of the list: arrayList.addToFront(o8);

o8 o1 o2 o3 o4 o5 o6 o7

0 1 2 3 4 5 6 7Element index:

• We have to move all the other elements first!

• This is expensive!
Thursday, July 5, 12

Linked lists

• Linked lists provide a convenient ADT for
storing ordered data.

• Linked lists store exactly as many elements
as are needed -- no “wasted space”.

• They can be easily resized.

• Linked lists do not suffer from the
“contiguity problem”.

Thursday, July 5, 12

 Contiguity problem

• Linked lists can be stored non-
contiguously in memory by
“chaining” nodes together.

Used

Used

o1

_next

Used

o2

_next

Used

o4

_next

Used

Used

o3

_next

Memory

Total free memory: 10 slots
Maximum contiguous memory: 3 slots

Thursday, July 5, 12

Linked lists

• Let’s conceptualize a linked list by
considering one of the fundamental
operations of the LinkedList ADT:

void add (Object o);

Thursday, July 5, 12

Adding a new data element
• General strategy:

1. Store the user’s data in “nodes on a chain”:

class Node {
 Node _next;
 Object _data;
}

_next
_data

Node
_next
_data

_next
_data

Node Node

Object

Object Object

null

The data
passed to

linkedList.add()

Thursday, July 5, 12

Adding a new data element
• General strategy:

2. We also maintain pointers to the first
(“head”) and last (“tail”) node in the chain.

_next
_data

Node
_next
_data

_next
_data

Node Node

Object

Object Object

null

_head _tail

Thursday, July 5, 12

Adding a new data element
• General strategy:

3. Each time add(o) is called, we create a
new node.

_next
_data

Node
_next
_data

_next
_data

Node Node

Object

Object Object

_next
_data

Node

Object

o

null

_head _tail

Node node = new Node();

node

Thursday, July 5, 12

Adding a new data element
• General strategy:

4. We store o “inside” the new Node.

_next
_data

Node
_next
_data

_next
_data

Node Node

Object

Object Object

_next
_data

Node
null

Object

o

_head _tail

node._data = o;

node

Thursday, July 5, 12

Adding a new data element
• General strategy:

5. We connect the new Node to the rest of
the chain.

_next
_data

Node
_next
_data

_next
_data

Node Node

Object

Object Object

_next
_data

Node

null

Object

o

_head _tail

_tail._next = node;

node

Thursday, July 5, 12

Adding a new data element
• General strategy:

6. We update the _tail pointer to point to
the new node.

_next
_data

Node
_next
_data

_next
_data

Node Node

Object

Object Object

_next
_data

Node

null

Object

o

_head _tail

_tail = node;

node

Thursday, July 5, 12

Adding a new data element
• General strategy:

• Done!

_next
_data

Node
_next
_data

_next
_data

Node Node

Object

Object Object

_next
_data

Node

Object

null

_tail_head

Thursday, July 5, 12

