
CSE 12:
Basic data structures and 
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Three
3 Aug 2011

Thursday, July 5, 12



Review from Lecture 2

Thursday, July 5, 12



Abstract Data Types 
(ADTs)

• Some of the most important data structures 
in computer programming are collections.

• One of the most common collections is the 
list, which can be implemented (among other 
ways) as an ArrayList or a LinkedList.
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Abstract data types 
(ADTs)

• Usually the user of the collection will not 
care about, and not want to be bothered 
with, the task of implementing the data 
structure.

• This yields a natural division of labor...
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User versus 
implementor

Photos courtesy of Google Image Search.

User Implementor

List list = new ListImpl();
list.add(new Student());
...

class ListImpl implements List {
  ...
  void add (Object o) {
    _array[_numElements++] = o;
  }
}

List interface

writes: writes:

W
al

l o
f a

bs
tr

ac
tio

n

Thursday, July 5, 12



Interfaces
• The user and implementor must agree on 

the interface of the ADT.

• The interface is a collection of method 
signatures, which specify:

• what methods the ADT provides.

• what the methods do.

• what parameters they take.

• what they return

• which exceptions they throw
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Interfaces

• The interface may also specify:

• how the user may call the methods, e.g.:

• “method A() must be called before 
method B()”
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Interface as a contract

• The interface is a contract between the 
user and the implementor:

• It specifies which methods the 
implementor must write, and what they 
do.

• It specifies how the user may call them
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Interfaces in Java

• In Java, interfaces are created with the 
interface keyword. E.g., in file 
MyInterface.java:

interface MyInterface {
    void method1 (Object o);
    ...
    Integer[] method5 (int a, int b);
}
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Interfaces in Java

• Before an interface can be used, it must be 
implemented by a concrete class, e.g., in 
MyImplementation.java:

class MyImplementation implements MyInterface {
    Object _myObject;
    void method1 (Object o) {
        int a = 5;
        if (o == _myObject) {
           // blah blah
        }
    }
    ...
}

Must explicitly write 
“implements...”!
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List interface

interface List {
  // Adds the specified element to the end of the list.
  // Takes O(1) time.
  void add (Object element);

  // Returns the element contained in the list at index
  // i if it exists. Else, throws NoSuchElementException.
  Object get (int i) throws NoSuchElementException;

  // Removes the element contained in the list at index
  // i if it exists. Else, throws NoSuchElementException
  void remove (int i) throws NoSuchElementException;
}
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Interface 
implementations

• An interface may be implemented by 
multiple classes, e.g.:

List list = new ArrayList();
...
list = new LinkedList();
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The Java Virtual 
Machine (JVM).
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Why study the Java VM?

• Before studying the more complicated data 
structures, it is important to understand the 
relationship between a computer program 
and the memory on which it operates.

• In the case of Java, this entails a discussion of 
the Java Virtual Machine (JVM).
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“Real machines”

• To appreciate “virtual machines”, let’s first 
consider how a source program is converted to 
an executable program on a “real machine”:

• The programmer writes some source code.

• He/she then compiles the source code into 
machine instructions that are specific to 
the particular hardware platform.
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“Real machines”
• If the programmer wants her program to run on 5 

different hardware platforms, she needs to:

• Write the source code only once (thank 
goodness!).

• Compile the source code 5 times.
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“Real machines”
Source code
class MyClass {
  void myMethod () {
  }
  ...

Intel 
compiler

ARM 
compiler

Snapdragon 
compiler

Intel machine language ARM machine language
Snapdragon machine 

language

Intel 
executable 

file

ARM 
executable 

file

Snapdragon 
executable 

file
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Java

• In the 1990s, Sun Microsystems developed 
a new programming language called “Java”.

• Motto: “Write once, run everywhere.”

• This might also be described as, “Compile 
once, run everywhere.”

• Once Java code is compiled, it can run on 
any platform, irrespective of CPU type.

• How is this possible?
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Java Virtual Machine

• The designers of Java inserted a layer of abstraction 
between the Java compiler and the hardware CPUs.

• This abstraction is called the Java Virtual Machine 
(JVM).

• The JVM provides a convenient “abstract machine 
language” that can run on any CPU.

• This means that a Java program need only be 
compiled once, and it can run on any hardware 
platform.
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• The JVM was also designed from the 
ground-up to provide security, e.g.:

• Bounds checking: it won’t let you access 
the 9th element of an 8-element array.

• Type safety: it won’t let you treat an 
Integer as a String.

Java Virtual Machine
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Java Virtual Machine
Source code

Intel JVM ARM JVM Snapdragon JVM

Java compiler

Java machine language 
(“bytecode”)

Java object file 
(.class)

JVMs translate from bytecode into native machine code.
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Java Virtual Machine
• Every compiled Java .class file will run on every 

Java Virtual Machine for every hardware platform in 
the same way.

• This convenience through abstraction comes at a price:

• A new JVM must be created for every hardware 
platform.

• The burden of portable code has shifted from 
software programmer to operating system 
designer + hardware manufacturer.
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Java Virtual Machine
• The Java Virtual Machines are, themselves, software 

programs.

• The JVMs simulate a “Java CPU”:

• They read the “bytecode” from the .class files, and 
then convert the abstract “Java instructions” to real 
CPU instructions.
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Java Virtual Machine

Intel JVM

x += 10;

iinc 1, 10

addl $10, -4(%rbp)

Java compiler

Java source code

Intel machine language

Java machine language 
(bytecode)

JVM must convert from 
bytecode to native machine 

language in real time.
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Java Virtual Machine

• Every instruction of bytecode must be converted 
into a real instruction on the actual hardware CPU.

• This incurs a cost -- Java is typically slower than C.

• The JVM plays an analogous role to the memory 
controller from last lecture -- it implements an 
abstraction.
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Memory management 
in the JVM
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Your data inside the JVM
• Compiled Java programs execute within the 

Java Virtual Machine.

• All Java programs need to store some data.

• Data are manipulated in Java using variables.

• It is helpful, when learning Java in general and 
data structures in particular, to understand 
how the Java Virtual Machine manages these 
variables and data in memory.
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Variables in Java
• In Java, all variables are either of primitive or reference type.

• Primitive types:

boolean, byte, char, short, int, long, float, and 
double.

E.g., float myHeight = 178.0;  // cm

• Reference types:

References to Object, subclasses of Object, and all arrays:

String s = “test”;
int[] arrayOfInts = new int[16];
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Variables in Java

• The JVM’s “system memory” 
can be viewed as a column of 
bytes, each with its own 
address.

• All data (int, float, Object, 
etc.) are stored somewhere in 
this memory column.

• The location of each 
variable/object is called its 
address.

11110110

11001001

01010001

01011000

11101000

11100000

01000100

11001110

01100101

00101001

01101111

00010111

ContentsAddress

0

4

8

......
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Variables in JVM Memory

• Consider a method that 
declares three variables 
of primitive type:

void myMethod () {
  int i;
  char c;
  double d;
}

• These might be stored 
in memory as shown to 
the left.

int i

char c

double d

ContentsAddress

0

4

8

......

12
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• Different variables 
require different 
numbers of bytes for 
storage:

byte, char: 1

short: 2

int, float: 4

long, double: 8

i

c

d

ContentsAddress

0

4

8

......

12

Variables in JVM Memory
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These numbers would 
correspond to a 32-bit 

JVM.
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Objects in JVM Memory
• Objects also (of course) take up memory.

• How much memory they need depends on the 
instance variables stored in them.

class MyObject {
  int _num1, _num2;
  char _c;
}

• 2 ints + 1 char = 9 bytes (The JVM 
probably rounds up to nearest multiple of 4.)

• There is also some amount of overhead (even 
if your class defines no instance variables).

Thursday, July 5, 12



Variables in JVM Memory

• An object of type MyObject 
may require about 12 bytes.

• The exact amount depends 
on the particular JVM.

• Somewhere within those bytes 
are _num1, _num2, and _c.

• The exact location depends 
on the particular JVM.
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References
• Consider the following code:

  MyObject obj = new MyObject();

• This code actually refers to two “things” in memory:

• The newly created object of type MyObject (about 
12 bytes).

• The reference obj to that new object (just 4 bytes 
-- enough to store a memory address on a 32-bit 
machine).

• A reference in Java stores the location 
(address) in memory of an object or array.
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References
• The call to new MyObject() causes the 

Java Virtual Machine to instantiate a new 
object of type MyObject.

• Memory is allocated (“set aside”) for the 
new object.

• The result of the “new” call is the address of 
the newly created object.

• In MyObject obj = new MyObject(), 
this address is then stored in the 
MyObject-reference obj.
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References

• If you “forget” to store the address returned by new 
MyObject(), then the newly created object will be 
essentially “forgotten” -- there’s no way to know 
where in memory it is stored.

• Example:
new Object();  // Creates a new object, then
               // promptly forgets where it is.

• (Eventually, the garbage collector will remove it.)
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Objects, and references to objects

MyObject obj = new MyObject();
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Objects, and references to objects

MyObject obj = new MyObject();

ContentsAddress
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the new object itself

• In effect, the reference “points to” the 
newly created object by storing its address.

• This is why references are sometimes 
called pointers.

JAKE -- show PrintAddr demo
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Multiple references to 
same object

• Consider:

MyObject obj1 = new MyObject();
MyObject obj2 = obj1;

• Object-references obj1 and obj2 now 
point to the same, newly created object.

• If you modify obj1._num1, this will also 
affect obj2._num1
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Multiple references to same object

MyObject obj1 = new MyObject();
MyObject obj2 = obj1;
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• All you’re doing in line 2 is setting the 
address stored in variable obj2 to the same 
address stored in variable obj1.

• This causes obj2 to “point to” the same 
object that obj1 points to.
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Multiple references to 
same object

• Example:

MyObject obj1 = new MyObject();
MyObject obj2 = obj1;
obj1._num1 = 5;
obj2._num1 = 6;
System.out.println(obj1._num1);
// Prints out 6 !
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== versus equals()
• The discussion of references brings up the issue of 

“equality” between objects.

• String s1 = new String(“test”);
String s2 = new String(“test”);

s1.equals(s2)
s1 == s2
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== versus equals()
• The discussion of references brings up the issue of 

“equality” between objects.

• String s1 = new String(“test”);
String s2 = new String(“test”);

s1.equals(s2)  // true
s1 == s2       // false! -- why?

• s1.equals(s2) compares the contents of the 
objects pointed to by s1 and s2.

• s1 == s2 compares the addresses stored in 
reference-variables s1 and s2!
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== versus equals()

• s1 and s2 point 
to two different 
String objects.

• The contents of 
the two Strings 
happens to be the 
same.
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Dereferencing operator

• You’re already well-familiar with the 
dereferencing operator  .  (dot).

MyObject obj = new MyObject();
obj._num1 = 3; 

Left side: valid (non-
null) reference

Right side: name of 
instance/class variable.

What does this really mean 
in terms of memory?
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Dereferencing operator

• Step 1: read the address 
stored in obj (8196).

obj: 8196

_num1: 1
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obj._num1 = 3; 
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Dereferencing operator

• Step 1: fetch the address 
stored in obj (8196).

• Step 2: dereference (“go 
to”) that address.

obj: 8196

_num1: 1
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Dereferencing operator

• Step 1: fetch the address 
stored in obj (8196).

• Step 2: dereference (“go 
to”) that address.

• Step 3: find where in that 
MyObject the instance 
variable _num1 is stored.

obj: 8196

_num1: 1
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obj._num1 = 3; 

(This is hidden from the 
programmer, but the JVM 

knows where it is.)
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Dereferencing operator

• Step 1: fetch the address 
stored in obj (8196).

• Step 2: dereference (“go 
to”) that address.

• Step 3: find where in that 
MyObject the instance 
variable _num1 is stored.

• Step 4: set its value to 3.

obj: 8196

_num1: 3
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References inside 
objects

• It is commonplace for objects to contain 
instance variables that are references to 
other objects.

class Student {
  String _name;
  int _age;
}

The _name instance variable of a Student 
object is a reference to a String object.

Thursday, July 5, 12



References inside 
objects

Student s = new Student();

_name
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References inside 
objects

Student s = new Student();
s._name = “Priscilla”;

_name: 9000
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Simplified memory diagrams
• We’ve seen these columnar memory diagrams a lot 

now.

• Let’s take a more “abstract” perspective on memory 
and not worry about the particular memory 
addresses as much.

• Let’s also move the objects out of the memory 
column to illustrate their relationships better.

• In reality, of course, the objects are all stored 
somewhere on some memory DIMM (chip) as a 
sequence of 1’s and 0’s...

• Yada yada yada...
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Simplified figure for 
class Student

s

_name
_age

“Priscilla”

Student String

(reference to 
Student)

(object) (object)

Inside the boxes: Sometimes I will write the 
names of instance variables and sometimes their 
values; it should be clear from the context.
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Even simpler figure for 
class Student

s

_name
_age

“Priscilla”

Student String
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Changing s._name

s

_name
_age

“Priscilla”

Student String

s._name = “Ricardo”;

“Ricardo”

String
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Here’s where things get 
fun...

• It is also (sometimes) useful for an object to contain 
a reference to another object of the same class.

• In this way, we can “chain” together multiple objects.

• Example:

class Node {
  Node _next;
}
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Chain of Nodes
Node node = new Node();

node

_next

Node
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Chain of Nodes
Node node = new Node();
node._next = new Node();

node

_next

Node
_next

Node

Thursday, July 5, 12



Chain of Nodes
Node node = new Node();
node._next = new Node();
node._next._next = new Node();

node

_next

Node
_next _next

Node Node
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Loop of Nodes
We can even create a “loop”:

node._next._next._next = node;

node

_next

Node
_next _next

Node Node
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Node chains and loops

• Why would we want to build these bizarre 
structures?

• They are sometimes useful in 
implementing ADTs.
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Linked lists.
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ArrayLists
• Recall from last lecture that we discussed how to 

implement a reasonable List interface using an 
array.

• We called this implementation an ArrayList.

• The ArrayList.add(o) method would 
automatically resize its internal 
_underlyingStorage array whenever it got full.

• This is more convenient for the user than having 
to manage the array him/herself.
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Problems with 
ArrayLists

• However, the ArrayList is unsatisfying in a few 
ways:

• It is still wasteful in memory -- after doubling 
the size of the _underlyingStorage, about 
half of the array elements are unused.

• It does not solve the contiguity problem.
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 Contiguity problem

• Sometimes the pool of free memory 
can become “fragmented” -- split into 
small chunks.

• In this case, it may not be possible to 
allocate one large, contiguous array.

Used

Used

Used

Used

Used

Used

Memory

Total free memory: 10 slots
Maximum contiguous memory: 3 slots

o1

o2

o3

o4

? I can’t store myself anywhere!

Thursday, July 5, 12



Problems with 
ArrayLists

• Another disadvantage of ArrayLists arises 
when you want to add an object to the front 
of the list:  arrayList.addToFront(o8);

o1 o2 o3 o4 o5 o6 o7

0 1 2 3 4 5 6 7Element index:

Where to insert o8
Move all these elements right by 1 space.

• We have to move all the other elements first!

Thursday, July 5, 12



Problems with 
ArrayLists

• Another disadvantage of ArrayLists arises 
when you want to add an object to the front 
of the list:  arrayList.addToFront(o8);

o8 o1 o2 o3 o4 o5 o6 o7

0 1 2 3 4 5 6 7Element index:

• We have to move all the other elements first!

• This is expensive!
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Linked lists

• Linked lists provide a convenient ADT for 
storing ordered data.

• Linked lists store exactly as many elements 
as are needed -- no “wasted space”.

• They can be easily resized.

• Linked lists do not suffer from the 
“contiguity problem”.
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 Contiguity problem

• Linked lists can be stored non-
contiguously in memory by 
“chaining” nodes together.

Used

Used

o1

_next

Used

o2

_next

Used

o4

_next

Used

Used

o3

_next

Memory

Total free memory: 10 slots
Maximum contiguous memory: 3 slots
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Linked lists

• Let’s conceptualize a linked list by 
considering one of the fundamental 
operations of the LinkedList ADT:

void add (Object o);
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Adding a new data element
• General strategy:

1. Store the user’s data in “nodes on a chain”:

class Node {
  Node _next;
  Object _data;
}

_next
_data

Node
_next
_data

_next
_data

Node Node

      
Object

                  
Object Object

null

The data 
passed to 

linkedList.add()
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Adding a new data element
• General strategy:

2. We also maintain pointers to the first 
(“head”) and last (“tail”) node in the chain.

_next
_data

Node
_next
_data

_next
_data

Node Node

      
Object

                  
Object Object

null

_head _tail
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Adding a new data element
• General strategy:

3. Each time add(o) is called, we create a 
new node.

_next
_data

Node
_next
_data

_next
_data

Node Node

      
Object

                  
Object Object

_next
_data

Node

      
Object

o

null

_head _tail

Node node = new Node();

node
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Adding a new data element
• General strategy:

4. We store o “inside” the new Node.

_next
_data

Node
_next
_data

_next
_data

Node Node

      
Object

                  
Object Object

_next
_data

Node
null

      
Object

o

_head _tail

node._data = o;

node
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Adding a new data element
• General strategy:

5. We connect the new Node to the rest of 
the chain.

_next
_data

Node
_next
_data

_next
_data

Node Node

      
Object

                  
Object Object

_next
_data

Node

null

      
Object

o

_head _tail

_tail._next = node;

node

Thursday, July 5, 12



Adding a new data element
• General strategy:

6. We update the _tail pointer to point to 
the new node.

_next
_data

Node
_next
_data

_next
_data

Node Node

      
Object

                  
Object Object

_next
_data

Node

null

      
Object

o

_head _tail

_tail = node;

node
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Adding a new data element
• General strategy:

• Done!

_next
_data

Node
_next
_data

_next
_data

Node Node

      
Object

                  
Object Object

_next
_data

Node

      
Object

null

_tail_head
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