
CSE 12:
Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Four
4 Aug 2011

Monday, July 9, 12

Linked lists, continued.

Monday, July 9, 12

Review from last lecture
• Last lecture we looked briefly at how a linked list

could be conceptualized as a “chain” of nodes.

• A Node is simply a “link” in the chain.

_next
_data

Node
_next
_data

_next
_data

Node Node

Object

Object Object

null

_head _tail

Monday, July 9, 12

Review from last lecture
• Each Node contains a reference to an Object that

the user wants to store (node._data).

• Each Node also contains a reference to the next
“link” (Node) in the chain (node._next).

_next
_data

Node
_next
_data

_next
_data

Node Node

Object

Object Object

null

_head _tail

Monday, July 9, 12

Nodes
• Nodes in a LinkedList play an analogous

role to the “slots” (elements) of an array in
an ArrayList.

o1 o2 o3

o1

Node Node Node
null

o2 o3

int _numElements: 3

_head

ArrayList

LinkedList

Object[] _underlyingStorage

list.add(o1);
list.add(o2);
list.add(o3);

Monday, July 9, 12

Elements of an array
• In an array, there is no need to link the

elements using pointers because array elements
are always adjacent to each other in memory.

• For an Object[] array, the address of
element 1 is just 4 bytes more than the
address of element 0.

o1 o2 o3

_numElements: 3

ArrayList

_underlyingStorage

Monday, July 9, 12

Elements of an array

o1

o2

o3

ContentsAddress

8192

8196

8200

......

8204

......

Object[] _underlyingStorage

• Arrays are always stored contiguously in
memory (in one big chunk):

• Addr of element i = BaseAddr + i * 4

• Easy to jump to a particular index
using the [] operator.

Monday, July 9, 12

Nodes of a linked list
• With linked lists, nodes can be allocated

anywhere in memory.

• No need for contiguity; hence, more
flexible.

• However, this means that it takes more
effort to compute the address of any
particular node.

• We must “iterate through” all nodes
before it.

Monday, July 9, 12

Finding a particular node
• Let’s assume we have a linked list containing 3 nodes.

• We have a _head pointer to the first node.

• How do we access the _data contained in the 3rd node?

_next
_data

Node
_next
_data

_next
_data

Node Node
null

_head _tail

Monday, July 9, 12

Finding a particular node

final Object thirdElement = _head._next._next._data;

_next
_data

Node
_next
_data

_next
_data

Node Node
null

_head _tail

Monday, July 9, 12

Finding a particular node
• Alternatively, we could use a for-loop:

Node cursor = _head;
for (int i = 0; i < 2; i++) { // Why only 2?
 cursor = cursor._next;
}
final Object thirdElement = cursor._data;

_next
_data

Node
_next
_data

_next
_data

Node Node
null

_head _tail

Monday, July 9, 12

Iterating through the whole list
• Suppose we wish to iterate through the entire

list and print out the _data in each node?

_next
_data

Node
_next
_data

_next
_data

Node Node
null

_head

...

Monday, July 9, 12

Iterating through the whole list
• Suppose we wish to iterate through the entire

list and print out the _data in each node?

Node cursor = _head;

_next
_data

Node
_next
_data

_next
_data

Node Node
null

_head

...

Monday, July 9, 12

Iterating through the whole list
• Suppose we wish to iterate through the entire

list and print out the _data in each node?

Node cursor = _head;
while () {

}

_next
_data

Node
_next
_data

_next
_data

Node Node
null

_head

...

Monday, July 9, 12

Iterating through the whole list
• Suppose we wish to iterate through the entire

list and print out the _data in each node?

Node cursor = _head;
while (cursor != null) {

}

_next
_data

Node
_next
_data

_next
_data

Node Node
null

_head

...

Monday, July 9, 12

Iterating through the whole list
• Suppose we wish to iterate through the entire

list and print out the _data in each node?

Node cursor = _head;
while (cursor != null) {
 System.out.println(cursor._data);

}

_next
_data

Node
_next
_data

_next
_data

Node Node
null

_head

...

Monday, July 9, 12

Iterating through the whole list
• Suppose we wish to iterate through the entire

list and print out the _data in each node?

Node cursor = _head;
while (cursor != null) {
 System.out.println(cursor._data);
 cursor = cursor._next;
}
// Done!

_next
_data

Node
_next
_data

_next
_data

Node Node
null

_head

...

Monday, July 9, 12

Iterating through the whole list
• Alternatively, we could use a for-loop:

for (Node cursor = _head;
 cursor != null;
 cursor = cursor._next) {
 System.out.println(cursor._data);
}
// Done!

_next
_data

Node
_next
_data

_next
_data

Node Node
null

_head

...

Monday, July 9, 12

Adding a new node

• The “iteration” code described above
assumes that a linked list already exists.

• How is the “chain of nodes” actually
constructed?

Monday, July 9, 12

class SinglyLinkedList

• Before discussing how to implement the add(o)
method, let’s first “concretify” the linked list
class itself.

• Let’s create a SinglyLinkedList class that
implements an (expanded) List interface...

Monday, July 9, 12

public interface List {
 // Adds o to the “back” of the list, i.e.,
 // o becomes the element with the highest
 // index in the List.
 void add (Object o);

 // Returns the element stored at the specified
 // index.
 Object get (int index)
 throws IndexOutOfBoundsException;

 // Removes the element stored at the specified
 // index.
 void remove (int index)
 throws IndexOutOfBoundsException;

 // Returns the number of elements stored in
 // the List.
 int size ();
}

Monday, July 9, 12

class SinglyLinkedList

• We will implement the Node class as an inner-
class of SinglyLinkedList.

• More on inner-classes later.

• We will use two instance variables:
Node _head, _tail;

Monday, July 9, 12

class SinglyLinkedList
• Note the slight inconsistency with previous slides:

• In our SinglyLinkedList implementation, we
will be using “dummy nodes” for the head and tail.

• These nodes will simplify the implementation.

• Dummy nodes are Nodes whose _data fields are
always null -- they contain no data from the “user”.

• The dummy nodes will always exist, even if the user
hasn’t added any data yet.

• Nodes for the user’s data will be created between
the dummy head and tail nodes.

Monday, July 9, 12

public class SinglyLinkedList implements List {
 class Node { // Inner-class
 Node _next;
 Object _data;
 }
 private Node _head, _tail;

 SinglyLinkedList () {
 // Instantiate dummy head and tail nodes
 _head = new Node();
 _tail = new Node();

 // Link _head to _tail
 _head._next = _tail;
 }

 void add (Object o) { ... }
 Object get (int index)
 throws IndexOutOfBoundsException { ... }
 void remove (int index)
 throws IndexOutOfBoundsException { ... }
 int size () { ... }
}

Monday, July 9, 12

After construction

• After the constructor has been called, our
SinglyLinkedList object looks like this:

_next
_data

Node
_next
_data

Node

_head _tail

SinglyLinkedList

Monday, July 9, 12

• Let’s consider how to implement the add(o)
method.

• As a “rule” when implementing add(o), we will
maintain the invariant that _head and _tail point
to dummy nodes.

• We will never use them to store real user data.

• An invariant is a condition that always holds true.

void add (Object o)

Monday, July 9, 12

void add (Object o)
• Given the dummy head and tail nodes, we

can add a new node to our chain in 4 steps:

1. Instantiate a new Node object.

2. Set its _data field to equal o.

3. Iterate a “cursor” from the dummy head
towards the tail, stopping just before the
dummy tail.

4. Insert the new Node just after cursor.

Monday, July 9, 12

1. Instantiate a new Node object.

_next
_data

Node
_next
_data

Node

_head _tail

SinglyLinkedList _next
_data

Node

final Node node = new Node();

node

dummy dummy

void add (Object o)

Monday, July 9, 12

2. Set its _data field to equal o.

_next
_data

Node
_next
_data

Node

_head _tail

_next
_data: o

Node

node._data = o;

SinglyLinkedList

node

dummy dummy

void add (Object o)

Monday, July 9, 12

3. Iterate from the head towards the tail,
stopping just before the tail.

_next
_data

Node
_next
_data

Node

_head _tail

_next
_data: o

Node
SinglyLinkedList

Node cursor = _head;
while (cursor._next != _tail) { // Why?
 cursor = cursor._next;
}

cursor

node

dummy dummy

void add (Object o)

Monday, July 9, 12

4. Insert the new Node just after cursor.

_next
_data

Node
_next
_data

Node

_head _tail

_next
_data: o

Node
SinglyLinkedList

cursor

node

node._next = cursor._next;

dummy dummy

void add (Object o)

Monday, July 9, 12

4. Insert the new Node just after cursor.

_next
_data

Node
_next
_data

Node

_head _tail

_next
_data: o

Node
SinglyLinkedList

cursor

node

node._next = cursor._next;
cursor._next = node;

dummy dummy

void add (Object o)

Monday, July 9, 12

Done!

If we pull the chain “taut”...

_next
_data

Node
_next
_data

Node

_head _tail

_next
_data: o

Node
SinglyLinkedList

dummy dummy

void add (Object o)

Monday, July 9, 12

...it will look more like what we started with...

Notice: _head and _tail still point to the
dummy nodes, and they contain no “real” data
-- as intended.

_next
_data

Node
_next
_data

Node

_head _tail

_next
_data: o

Node

SinglyLinkedList

dummy dummy

void add (Object o)

Monday, July 9, 12

Reality check

• Why do we need to iterate the cursor to
the node just before the dummy tail?

_next
_data

Node
_next
_data

Node

_head _tail

_next
_data: o

Node

SinglyLinkedList

dummy dummy

Monday, July 9, 12

Let’s add one more node...

_next
_data

Node
_next
_data

Node

_head _tail

_next
_data: o

Node

SinglyLinkedList

dummy dummy

1. Instantiate a new Node object.
final Node node = new Node();

Node

node
_next
_data:

Monday, July 9, 12

Let’s add one more node...

_next
_data

Node
_next
_data

Node

_head _tail

_next
_data: o

Node

SinglyLinkedList

dummy dummy

_next
_data: o2

Node

node

2. Set its _data field to equal o2.
node._data = o;

Monday, July 9, 12

Let’s add one more node...

_next
_data

Node
_next
_data

Node

_head _tail

_next
_data: o

Node

SinglyLinkedList

dummy dummy

_next
_data: o2

Node

node

3. Iterate from the head towards the tail,
stopping just before the tail.
Node cursor = _head;
while (cursor._next != _tail) {
 cursor = cursor._next;
}

cursor

Monday, July 9, 12

Let’s add one more node...

_next
_data

Node
_next
_data

Node

_head _tail

_next
_data: o

Node

SinglyLinkedList

dummy dummy

_next
_data: o2

Node

node

cursor

4. Insert the new Node just after cursor.

node._next = cursor._next;

Monday, July 9, 12

Let’s add one more node...

_next
_data

Node
_next
_data

Node

_head _tail

_next
_data: o

Node

SinglyLinkedList

dummy dummy

_next
_data: o2

Node

node

cursor

4. Insert the new Node just after cursor.

node._next = cursor._next;
cursor._next = node;

Monday, July 9, 12

Let’s add one more node...

_next
_data

Node
_next
_data

Node

_head _tail

_next
_data: o

Node

SinglyLinkedList

dummy dummy

_next
_data: o2

Node

Done (and pulled taut again)!

Notice: Object o2 is stored just “after” o, as
required by add(o) specification in our List
interface.

Monday, July 9, 12

Reality check

• Which objects should get(0) and get(1)
return on this list below?

_next
_data

Node
_next
_data

Node

_head _tail

_next
_data: o

Node

SinglyLinkedList

dummy dummy

_next
_data: o2

Node

Monday, July 9, 12

• Now let’s consider how to implement the
remove(index) method:

1. Iterate a cursor from the dummy head
towards the dummy tail until just before the
node corresponding to index.

• Index 0 is just after the dummy head.

• Index size-1 is just before the dummy tail.

2. “Unlink” the cursor._next node from the
chain.

void remove (int index)

Monday, July 9, 12

• Now let’s consider how to implement the
remove(index) method:

• As an example, let’s show how remove(1)
works on the SinglyLinkedList to which
we just added two elements.

void remove (int index)

_next
_data

Node
_next
_data

Node

_head _tail

_next
_data: o

Node

SinglyLinkedList

dummy dummy

_next
_data: o2

Node

Monday, July 9, 12

1. Iterate until just before the node
corresponding to index.

_next
_data

Node
_next
_data

Node

_head _tail

_next
_data: o

Node

SinglyLinkedList

dummy dummy

_next
_data: o2

Node

void remove (int index)

Node cursor = _head;
for (int i = 0; i < index; i++) {
 cursor = cursor._next;
}

Let’s assume for now
that index is valid.

cursor

Monday, July 9, 12

1. “Unlink” cursor._next from the chain.

_next
_data

Node
_next
_data

Node

_head _tail

_next
_data: o

Node

SinglyLinkedList

dummy dummy

_next
_data: o2

Node

void remove (int index)

cursor._next = cursor._next._next;

cursor

Monday, July 9, 12

1. “Unlink” cursor._next from the chain.

_next
_data

Node
_next
_data

Node

_head _tail

_next
_data: o

Node

SinglyLinkedList

dummy dummy

_next
_data: o2

Node

void remove (int index)

cursor._next = cursor._next._next;

cursor

Notice that nothing points to the Node we just unlinked;
hence, the JVM garbage collector will eventually remove it...

Monday, July 9, 12

Done! (You can pull it taut yourself.)

_next
_data

Node
_next
_data

Node

_head _tail

_next
_data: o

Node

SinglyLinkedList

dummy dummy

void remove (int index)

cursor

Monday, July 9, 12

• If you followed the add(o) and remove(index)
methods, then this one should be straightforward.

Object get (int index)
 throws IndexOutOfBoundsException {
 // TODO: check whether index is valid

 Node cursor = _head._next;
 for (int i = 0; i < index; i++) {
 cursor = cursor._next;
 }
 return cursor._data;
}

Object get (int index)

Monday, July 9, 12

• Finally, we need to implement a simple size()
method.

• Two possible strategies:

1. Add another instance variable int _size to
SinglyLinkedList, which we increment/
decrement whenever add/remove is called.

2. Don’t add another variable; instead, count the
number of nodes between the head and the
tail whenever size() is called.

• Each strategy has its advantages &
disadvantages.

int size ()

Monday, July 9, 12

• On the one hand:

• Using a _size instance variable is much faster --
whenever size() is called, we can return the
result immediately.

• Without a _size variable, we have to iterate
over the whole list -- slow!

• On the other hand:

• Adding a new variable always creates code
complexity. In a sense, _size is redundant -- the
size is already implicitly encoded in the number of
nodes in the list. Maintaining a “copy” of the size in
a _size variable gives us more opportunities to
mess up.

int size ()

Monday, July 9, 12

• In a linked list, updating _size is fairly easy.

• In this case, it’s probably worth adding a _size
variable to reduce the time cost of the size()
method, especially if we expect size() to be
called frequently by the user.

int size ()

Monday, July 9, 12

SinglyLinkedList ADT

• Now that we know how to implement the four
operations add, remove, get, and size, we can
complete our SinglyLinkedList class.

• We now have two complete implementations of List:

• ArrayList

• LinkedList

• The “user” can use either implementation of List by
calling the same methods.

Monday, July 9, 12

List interface

final List list = new LinkedList();

list.add(“first”);
list.add(“second”);
list.add(“third”);
System.out.println(list.get(1)); // “second”
list.remove(0);
System.out.println(list.get(1)); // “third”

Monday, July 9, 12

List interface

The user can change from a LinkedList to an ArrayList
by changing one line of code. None of the remaining
code need change at all.

final List list = new ArrayList();

list.add(“first”);
list.add(“second”);
list.add(“third”);
System.out.println(list.get(1)); // “second”
list.remove(0);
System.out.println(list.get(1)); // “third”

Monday, July 9, 12

Confetti demo

Monday, July 9, 12

Dummy nodes, revisited
• Let’s now go back to our SinglyLinkedList

ADT and consider how to implement it without
dummy nodes.

• In this case, the _head points to the first node,
and _tail points to the last node.

• All nodes are “real” -- their _data pointers
all point to data the user added.

Monday, July 9, 12

Dummy nodes, revisited

• But what if the list is empty? What should
_head and _tail point to?

_head

SinglyLinkedList

?

_tail

?
Monday, July 9, 12

Dummy nodes, revisited

• If the list is empty, let’s just set them both to
null.

• Let’s now consider how to implement add(o)
without the dummy nodes.

_head

SinglyLinkedList

null

_tail

null
Monday, July 9, 12

_head

SinglyLinkedList

null

final Node node = new Node();
node._data = o;

... // ??

_tail

null

add(o) without dummy nodes
• What if add(o) is being called for the first time

(i.e., on an empty list)?

• To which node should the new Node be linked?

Monday, July 9, 12

_head

SinglyLinkedList

• What if add(o) is being called for the first time
(i.e., on an empty list)?

• To which node should the new Node be linked?

• None -- there is no other Node yet.

• We just set _head and _tail to the new Node.

_tail

_next
_data: o

Node

add(o) without dummy nodes

Monday, July 9, 12

• What if add(o) is being called for the second (or
later) time?

• To which Node should the new Node be linked?

• The tail -- now it actually exists.

_head

SinglyLinkedList

_tail

_next
_data: o

Node
_next
_data: o2

Node

add(o) without dummy nodes

Monday, July 9, 12

• Without dummy nodes, the add(o) method must
be implemented with an if-statement:

final Node node = new Node();
node._data = o;
if (_head == null) { // List is empty
 _head = _tail = node;
} else { // List is not empty
 _tail._next = node;
 _tail = node;
}

• The if-statement makes the add(o) method more
complicated than when using dummy nodes.

add(o) without dummy nodes

Monday, July 9, 12

SinglyLinkedList
without dummy nodes

• Similarly, when implementing remove(index)
without dummy nodes, there must be an if-
statement to distinguish two cases:

• Removing a node from a list of size 1.

• Removing a node from a list of size >1.

• The dummy nodes require a bit more space
(two “wasted” nodes), but they make the
programming easier -- a worthwhile trade-off.

Monday, July 9, 12

Doubly linked lists.

Monday, July 9, 12

Problems with singly-
linked lists

• Singly-linked list ADTs are useful because
they:

1. Grow automatically as the user adds
more data.

2. Do not suffer from the “contiguity”
problem like ArrayLists do.

3. Store only as many nodes as required
(maybe +2 dummy nodes, but 2 nodes is
not a big cost).

Monday, July 9, 12

Problems with singly-
linked lists

• However, singly-linked list ADT also suffer
from a few drawbacks:

1. Expensive to “jump” to particular element
index.

• Have to iterate from the head towards
the tail.

Monday, July 9, 12

Problems with singly-
linked lists

• However, singly-linked list ADT also suffer
from a few drawbacks:

1. Expensive to “jump” to particular element
index.

• Have to iterate from the head towards
the tail.

• “Iterating” to the desired element is
fundamental to linked lists -- there’s no
real way to avoid this.

Monday, July 9, 12

Problems with singly-
linked lists

2. There’s no easy way to iterate backwards.

• Each node only contains a _next pointer.

Monday, July 9, 12

Problems with singly-
linked lists

2. There’s no easy way to iterate backwards.

• Each node only contains a _next pointer.

• This can be remedied using a doubly-
linked list.

Monday, July 9, 12

Doubly-linked lists

• In a doubly-linked list, each Node object has
both a _next and a _prev pointer:

class Node {
 Node _next, _prev;
 Object _data;
}

Monday, July 9, 12

Doubly-linked lists

• A doubly-linked list containing 2 “real”
nodes, and using 2 dummy nodes, would
look like:

_prev
_next
_data

Node

_prev
_next
_data

Node

_head _tail

_prev
_next
_data: o

Node

DoublyLinkedList

dummy dummy

_prev
_next
_data: o2

Node

Monday, July 9, 12

Doubly-linked lists

• With doubly-linked lists, it’s very fast to access
nodes close to the tail, e.g.:
Object lastElement = _tail._prev._data;

_prev
_next
_data

Node

_prev
_next
_data

Node

_head _tail

_prev
_next
_data: o

Node

DoublyLinkedList

dummy dummy

_prev
_next
_data: o2

Node

Monday, July 9, 12

Doubly-linked lists

• In particular, it is fast to remove an element
from either end of the list.

• Just “unlink” the node _tail._prev.

• No need to “iterate through” the list
(starting at the head) to get to the tail.

Monday, July 9, 12

Linked list variants

• There exist other linked-list “variants” as
well, e.g., circular lists.

• We will cover these later this week.

Monday, July 9, 12

• In programming project 1, you must
implement a doubly-linked list to
implement the List12 interface.

• It’s up to you whether you use dummy
nodes or not. (I recommend you do
because it simplifies the code.)

• Make sure to carefully adhere to the
List12 interface specification.

P1

Monday, July 9, 12

• As a specific requirement, your addToFront(),
addToBack(), removeFront(), and removeBack()
methods must operate “efficiently”.

• Since you are implementing a doubly-linked list,
there is no need to always “iterate through” the
list starting at the head.

• If you’re implementing addToFront() or
removeFront(), start at the head.

• If you’re implementing addToBack() or
removeBack(), start at the tail.

P1

Monday, July 9, 12

P1

• One of the requirements of a class
implementing the List12 interface is the
iterator() method.

• But what is an Iterator?

Monday, July 9, 12

Iterators.

Monday, July 9, 12

Iterating over elements
of a data structure.

• Many ADTs offer the user the ability to iterate
over all of their elements in some “natural order”.

• With the simple List interface defined during
lectures, this is already possible using the
get(index) methods:

final int size = linkedList.size();
for (int i = 0; i < size; i++) {
 System.out.println(linkedList.get(i));
}

Monday, July 9, 12

Iterating over elements
of a data structure.

• However, that approach will also be very slow:

• linkedList.get(0)
dummy dummy

Monday, July 9, 12

Iterating over elements
of a data structure.

• However, that approach will also be very slow:

• linkedList.get(0)
dummy dummy

Monday, July 9, 12

Iterating over elements
of a data structure.

• However, that approach will also be very slow:

• linkedList.get(0)

• linkedList.get(1)
dummy dummy

Monday, July 9, 12

Iterating over elements
of a data structure.

• However, that approach will also be very slow:

• linkedList.get(0)

• linkedList.get(1)
dummy dummy

Monday, July 9, 12

Iterating over elements
of a data structure.

• However, that approach will also be very slow:

• linkedList.get(0)

• linkedList.get(1)
dummy dummy

Monday, July 9, 12

Iterating over elements
of a data structure.

• However, that approach will also be very slow:

• linkedList.get(0)

• linkedList.get(1)

• linkedList.get(2)

dummy dummy

Monday, July 9, 12

Iterating over elements
of a data structure.

• However, that approach will also be very slow:

• linkedList.get(0)

• linkedList.get(1)

• linkedList.get(2)

dummy dummy

Monday, July 9, 12

Iterating over elements
of a data structure.

• However, that approach will also be very slow:

• linkedList.get(0)

• linkedList.get(1)

• linkedList.get(2)

dummy dummy

Monday, July 9, 12

Iterating over elements
of a data structure.

• However, that approach will also be very slow:

• linkedList.get(0)

• linkedList.get(1)

• linkedList.get(2)

dummy dummy

We keep “re-iterating” -- starting from
scratch back at the head. This is
computationally wasteful. Why can’t we
just pick up where we left off?

Monday, July 9, 12

Iterators: performance
benefits

• An “iterator” object helps us to avoid this
wasted computation.

• An iterator is a “helper object” with which
the user can iterate across all elements in a
data structure.

• The iterator will “remember” where it left
off.

Monday, July 9, 12

Iterators: software
design gain

• Iterators are also useful because they offer
a uniform way of accessing all of a data
structure’s elements.

• Even very different data structures --
e.g., graphs and lists -- can both support
iterators.

Monday, July 9, 12

interface Iterator

• In Java, the Iterator interface contains
three method signatures:

boolean hasNext();
Object next();
void remove();

Monday, July 9, 12

How Iterators are used

• Here’s how the “user” would use an Iterator
to print out every element in a linked list.

final Iterator iterator = linkedList.iterator();
while (iterator.hasNext()) {
 System.out.println(iterator.next());
}

Monday, July 9, 12

• Here’s how the “user” would use an Iterator
to print out every element in a linked list.

final Iterator iterator = linkedList.iterator();
while (iterator.hasNext()) {
 System.out.println(iterator.next());
}

User calls hasNext() to “ask” the Iterator
if there’s another element to fetch.

User calls next() to actually fetch the
next element from the Iterator.

How Iterators are used

Monday, July 9, 12

hasNext() and next()

• Note that the user is not “required” by the
Iterator interface to call the hasNext()
method.

• next() will still work correctly without
previously calling hasNext().

• (But practically speaking, how else will
the user know he/she is “done”
iterating?)

Monday, July 9, 12

remove()

• The Iterator interface also gives the user the ability
to remove elements from the linked list while
iterating through them.

Monday, July 9, 12

• E.g., consider a linked list containing 5 objects (o1,
o2, o3, o4, o5).

final Iterator iterator = linkedList.iterator();
iterator.next(); // returns o1
iterator.next(); // returns o2
iterator.next(); // returns o3
iterator.remove();// removes o3
iterator.next(); // returns o4
iterator.next(); // returns o5

• If you subsequently called linkedList.size(),
you would get 4 -- the linked list itself has changed.

• The Iterator object returned by
linkedList.iterator() is “tied” to the
underlying LinkedList object.

remove()

Monday, July 9, 12

• Before the user is “allowed” to call the
remove() method, he/she must first call the
next() method.

• If he/she does not, the Iterator must
throw an InvalidStateException.

Restrictions on using an
Iterator

Monday, July 9, 12

• The Iterator interface also specifies that
“the behavior of an iterator is unspecified if
the underlying collection is modified while
the iteration is in progress in any way other
than by calling this method.”

Restrictions on using an
Iterator

Monday, July 9, 12

Iterator interface

• The Iterator interface also specifies that
“the behavior of an iterator is unspecified if
the underlying collection is modified while
the iteration is in progress in any way other
than by calling this method.”

Modifications in the case of DoublyLinkedList12
mean addToFront(), removeFront(), etc. --
anything that changes the contents of the list.

Unspecified means that the implementor is “absolved of
any responsibility” for maintaining correct functionality
in the Iterator if the user modifies the
DoublyLinkedList12 while he/she is iterating over it.

Monday, July 9, 12

Interface as a “contract”

• An interface specification serves as a
contract between user and implementor of
the interface.

• The method signatures specify to the user
what each method does, and how it is
called (i.e., parameters).

• The comments describe to the
implementor what each method must do
and what values to return.

Monday, July 9, 12

• The comments may also prescribe to the user various
constraints on how the methods are called, e.g., “next()
must be called before remove().

• If the user does not adhere to these constraints, then he/
she is in violation of contract.

• If the user violates the contract, then the implementor may:

• Throw an exception (e.g., InvalidStateException).

• Be “absolved of responsibility” to keep working correctly
(“behavior is...unspecified”).

• E.g., calls to next()/remove()/hasNext() may stop
working correctly, and this is no longer the implementor’s
fault.

Interface as a “contract”

Monday, July 9, 12

Implementing Iterators

• The tricky thing about implementing an Iterator is
that “you the implementor” do not get to decide
when to traverse from one node to the next (e.g.,
node = node._next) -- the user decides that.

• The Iterator objects that your linked-list
constructs (and returns in iterator()) must
remember their position in the linked list -- and pick
off where it left off when the user calls next()
again.

Monday, July 9, 12

Iterator schematic
class StudentDatabaseApplication {
 void doSomethingInteresting () {
 List12 list =
 new DoublyLinkedList12();

 ...

 list.add(new Student(“Bob”));
 list.add(new Student(“Lulu));

 ...

 }
}

Monday, July 9, 12

Iterator schematic
class StudentDatabaseApplication {
 void doSomethingInteresting () {
 List12 list =
 new DoublyLinkedList12();

 ...

 list.add(new Student(“Bob”));
 list.add(new Student(“Lulu));

 ...

 }
}

class DoublyLinkedList12 implements List12
{
 static class Node {
 ...
 }

 void add (Object o) { ... }
 int size () { ... }

 ...

 Iterator iterator () {
 ...
 }
}

Monday, July 9, 12

Iterator schematic
class StudentDatabaseApplication {
 void doSomethingInteresting () {
 List12 list =
 new DoublyLinkedList12();

 ...

 list.add(new Student(“Bob”));
 list.add(new Student(“Lulu));

 ...

 Iterator iter = list.iterator();
 while (iter.hasNext()) {
 Student s = (Student) iter.next();
 System.out.println(s._name);
 }
 }
}

class DoublyLinkedList12 implements List12
{
 static class Node {
 ...
 }

 void add (Object o) { ... }
 int size () { ... }

 ...

 Iterator iterator () {
 ...
 }
}

Monday, July 9, 12

Iterator schematic
class StudentDatabaseApplication {
 void doSomethingInteresting () {
 List12 list =
 new DoublyLinkedList12();

 ...

 list.add(new Student(“Bob”));
 list.add(new Student(“Lulu));

 ...

 Iterator iter = list.iterator();
 while (iter.hasNext()) {
 Student s = (Student) iter.next();
 System.out.println(s._name);
 }
 }
}

class DoublyLinkedList12 implements List12
{
 static class Node {
 ...
 }

 void add (Object o) { ... }
 int size () { ... }

 ...

 Iterator iterator () {
 return new Iterator();
 }
}

Won’t compile
because Iterator is

an interface, not a
class!

Monday, July 9, 12

Iterator schematic
class StudentDatabaseApplication {
 void doSomethingInteresting () {
 List12 list =
 new DoublyLinkedList12();

 ...

 list.add(new Student(“Bob”));
 list.add(new Student(“Lulu));

 ...

 Iterator iter = list.iterator();
 while (iter.hasNext()) {
 Student s = (Student) iter.next();
 System.out.println(s._name);
 }
 }
}

class DoublyLinkedList12 implements List12
{
 static class Node {
 ...
 }

 void add (Object o) { ... }
 int size () { ... }

 ...

 Iterator iterator () {
 return new DLL12Iterator();
 }
}

Monday, July 9, 12

Iterator schematic
class StudentDatabaseApplication {
 void doSomethingInteresting () {
 List12 list =
 new DoublyLinkedList12();

 ...

 list.add(new Student(“Bob”));
 list.add(new Student(“Lulu));

 ...

 Iterator iter = list.iterator();
 while (iter.hasNext()) {
 Student s = (Student) iter.next();
 System.out.println(s._name);
 }
 }
}

class DoublyLinkedList12 implements List12
{
 static class Node {
 ...
 }

 class DLL12Iterator implements Iterator {

 }

 void add (Object o) { ... }
 int size () { ... }

 ...

 Iterator iterator () {
 return new DLL12Iterator();
 }
}

Monday, July 9, 12

Iterator schematic
class StudentDatabaseApplication {
 void doSomethingInteresting () {
 List12 list =
 new DoublyLinkedList12();

 ...

 list.add(new Student(“Bob”));
 list.add(new Student(“Lulu));

 ...

 Iterator iter = list.iterator();
 while (iter.hasNext()) {
 Student s = (Student) iter.next();
 System.out.println(s._name);
 }
 }
}

class DoublyLinkedList12 implements List12
{
 static class Node {
 ...
 }

 class DLL12Iterator implements Iterator {
 boolean hasNext() { ... }
 Object next () { ... }
 void remove () { ... }

 }

 void add (Object o) { ... }
 int size () { ... }

 ...

 Iterator iterator () {
 return new DLL12Iterator();
 }
}

Monday, July 9, 12

Iterator schematic
class StudentDatabaseApplication {
 void doSomethingInteresting () {
 List12 list =
 new DoublyLinkedList12();

 ...

 list.add(new Student(“Bob”));
 list.add(new Student(“Lulu));

 ...

 Iterator iter = list.iterator();
 while (iter.hasNext()) {
 Student s = (Student) iter.next();
 System.out.println(s._name);
 }
 }
}

class DoublyLinkedList12 implements List12
{
 static class Node {
 ...
 }

 class DLL12Iterator implements Iterator {
 boolean hasNext() { ... }
 Object next () { ... }
 void remove () { ... }

 }

 void add (Object o) { ... }
 int size () { ... }

 ...

 Iterator iterator () {
 return new DLL12Iterator();
 }
}

Somewhere in next() will be code
“cursor = cursor._next;”

Monday, July 9, 12

Iterator schematic
class StudentDatabaseApplication {
 void doSomethingInteresting () {
 List12 list =
 new DoublyLinkedList12();

 ...

 list.add(new Student(“Bob”));
 list.add(new Student(“Lulu));

 ...

 Iterator iter = list.iterator();
 while (iter.hasNext()) {
 Student s = (Student) iter.next();
 System.out.println(s._name);
 }
 }
}

class DoublyLinkedList12 implements List12
{
 static class Node {
 ...
 }

 class DLL12Iterator implements Iterator {
 boolean hasNext() { ... }
 Object next () { ... }
 void remove () { ... }

 }

 void add (Object o) { ... }
 int size () { ... }

 ...

 Iterator iterator () {
 return new DLL12Iterator();
 }
}

Somewhere in next() will be code
“cursor = cursor._next;”

But when this is called is determined by
when the user calls “iter.next();”.

Monday, July 9, 12

END

Monday, July 9, 12

