
CSE 12:
Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Five
8 Aug 2011

Wednesday, July 11, 12

More on interfaces.

Wednesday, July 11, 12

List12 interface

• In P1, your DoublyLinkedList12 must
implement the List12 interface.

• List12 extends the Iterable interface.

• This implies that your
DoublyLinkedList12 must implement
every method both in List12 and in
Iterable.

Wednesday, July 11, 12

Review of Iterable and
Iterator interfaes

• Recall: If a class X is to implement the Iterable
interface, then it must implement a method called
iterator() which returns an object of type
Iterator.

• Iterator itself is an interface, not a class; hence,
X.iterator() can return an object of any class
that implements the Iterator interface.

Wednesday, July 11, 12

• A class can implement the Iterator interface if it
implements the following three methods:

// Returns true if the iteration has more
// elements.
boolean hasNext ();

// Returns the next element in the iteration.
Object next ();

// Removes from the underlying collection the
// last element returned by the iterator
// (optional operation).
void remove ();

In the case of the List12 interface: “The Iterator returned by
iterator() must support the remove() method.”

Iterator interface

Wednesday, July 11, 12

• The user of the Iterator can call these methods
whenever he/she wants, subject to the following
constraints (as defined in the Iterator interface) on
remove():

• This method can be called only once per call to
next.

• remove() should throw an IllegalStateException
if the next method has not yet been called, or the
remove method has already been called after the last
call to the next method.

Iterator interface

Wednesday, July 11, 12

Java interfaces
• Java facilitates the division-of-labor between user

and implementor using interfaces.

• An interface contains no method bodies and no
instance variables.

• An interface may, however, contain static
constants, e.g.,
interface List {
 static final int INITIAL_CAPACITY = 100;
 ...
}

• Any class that implements an interface
automatically can also access the interface’s static
variables.

Wednesday, July 11, 12

Static variables in
interfaces

• Example:

final ArrayList list = new ArrayList();
System.out.println(
 “Initial capacity of list is “ +
 ArrayList.INITIAL_CAPACITY
);

INITIAL_CAPACITY is a class variable, not an instance variable;
hence, we specify the class, not an object.

In my coding style, I use all-capital
variable names to indicate a static
constant.

Wednesday, July 11, 12

Java interfaces
• In Java, a class may implement any number of

interfaces as long as it defines method bodies
for all methods whose signatures appear in
those interfaces, e.g.:

class X implements A, B {
 void a () { System.out.println(“a!”); }
 int b () { return 123; }
}

• Note that the programmer must explicitly
write “implements” -- just implementing the
methods themselves is not enough.

interface A {
 // Do something
 void a ();
}

interface B {
 // Return something
 int b ();
}

Wednesday, July 11, 12

Java interfaces
• Example of class implementing multiple interfaces:

class String implements Comparable, Serializable {
 ...
}

• A Comparable object is one that can be compared
(using compareTo) to other objects (e.g.,
“str1”.compareTo(“str2”)).

• Useful for sorting a list of objects.

• A Serializable object is one that can be
converted into a byte[] using the serialize
method (recall the Google Earth example from
Lecture 1).

Wednesday, July 11, 12

Java interfaces

• Implementing multiple interfaces places no
constraints on the class structure of the
implementing class:

• E.g., String doesn’t have to “inherit”
from some “Serializable” class.

• This gives flexibility to the implementor --
he/she can subclass whatever class he/she
wants (if any).

Wednesday, July 11, 12

Subinterfaces

• In Java, an interface Y can “subinterface”
another interface X.

• This is analogous to a class B subclassing
another class A.

• An interface Y that is a subinterface of X
automatically contains all of X’s method
signatures and static variables.

Wednesday, July 11, 12

Subinterfaces
• Example:

interface X {
 void method ();
}
interface Y extends X {
 void anotherMethod ();
}

• Interface Y implicitly contains method as well.

• Hence, if class C implements Y, then it must
implement both method and
anotherMethod.

Wednesday, July 11, 12

Interfaces as types
• In Java, an interface can serve as the type in a variable

declaration, e.g.,

List12 list;

• The list variable can be initialized to any class that
implements the List12 interface (e.g.,
DoublyLinkedList12).

• However, one cannot instantiate an interface type -- one
can only instantiate a concrete (non-abstract) class type:

List12 list = new DoublyLinkedList12(); // ok
List12 list = new List12(); // not ok

Wednesday, July 11, 12

Interfaces as types

• Recall that an object of class B can be referenced
by a variable declared of class B or any parent
class of B, e.g.:

class A { ... }
class B extends A { ... }

B b = new B();
A a = b; // ok -- A is parent class of B

Wednesday, July 11, 12

Interfaces as types

• An object of class B can also be referenced by a
variable declared of any interface type that B
implements, e.g.:

interface X { ... }
interface Y { ... }
interface Z { ... }
class A implements X { ... }
class B extends A implements Y { ... }

B b = new B();
X x = b; // ok -- B extends A, and A implements X
Y y = b; // ok -- B implements Y directly
Z z = b; // not ok -- neither A nor B implements Z

Wednesday, July 11, 12

Interfaces as types
• Why would you care about being able to refer to a

DoublyLinkedList12 as an Iterable?

• Because it offers programmers more flexibility, e.g.:

void printAllData (Iterable iterable) {
 final Iterator it = iterable.iterator();
 while (it.hasNext()) {
 System.out.println(it.next());
 }
}

Wednesday, July 11, 12

Interfaces as types
• Why would you care about being able to refer to a

DoublyLinkedList12 as an Iterable?

• Because it offers programmers more flexibility, e.g.:

void printAllData (Iterable iterable) {
 final Iterator it = iterable.iterator();
 while (it.hasNext()) {
 System.out.println(it.next());
 }
}

The implementor of printAllData doesn’t care if the
argument passed in is a DoublyLinkedList12,
ArrayList12, or even a List12 -- he/she only cares that it
supports the iterator method.

Wednesday, July 11, 12

Interfaces versus superclasses
• Some languages, such as C++, offer no support for

interfaces -- they only offer classes.

• In C++, if you wanted a type Iterable that
guaranteed all objects of that type supported an
iterator() method, then Iterable would have to
be a class.

• This means that any object o passed to
printAllData would have to be of a class C that
subclasses Iterable.

• This is less flexible than in Java.

• But C++ offers multiple inheritance instead.
<== complex!

Wednesday, July 11, 12

Abstract classes.

Wednesday, July 11, 12

Abstract classes

• In addition to interfaces, Java also supports abstract
classes.

• In contrast to a “concrete” class, an abstract class
does not have to implement all of its methods.

• It must simply list their method signatures
(similarly to an interface) and define those
methods to be abstract.

• An abstract class can, however, implement some of
its methods.

Wednesday, July 11, 12

Abstract classes
• Example:

abstract class BasicArrayList {
 final Object[] _underlyingStorage;
 BasicArrayList () {
 _underlyingStorage = new Object[128];
 }
 ...
 public abstract void sort ();
}

An abstract method contains no body.

A class with at least one abstract
method must be declared abstract.

Wednesday, July 11, 12

Abstract classes
• Example:

abstract class AbstractArrayList {
 final Object[] _underlyingStorage;
 BasicArrayList () {
 _underlyingStorage = new Object[128];
 }
 ...
 public abstract void sort ();
}

An abstract class may contain a constructor,
instance variables, as well as “concrete”
methods (methods with bodies).

Wednesday, July 11, 12

Abstract class example
• Abstract classes are useful when several subclasses in

a class hierarchy have substantial code in common,
e.g.:

• For a drawing program, classes Rectangle,
Ellipse, and Line may all inherit from a common
Shape superclass.

• All classes in the hierarchy should support a
getColor() method.

• No point in copying+pasting code through all three
subclasses -- just implement once in Shape class.

Wednesday, July 11, 12

Abstract class example

• However, a Shape object cannot draw
itself because it doesn’t know what kind of
shape it is.

• Hence, we make the draw() method
abstract -- we delay implementing this
method until we subclass the Shape
class.

Wednesday, July 11, 12

Abstract class example
abstract class Shape {
 Color _color;
 Color getColor () {
 return _color;
 }
 abstract void draw ();
}
class Rectangle extends Shape {
 void draw () {
 // Actually draw the rectangle
 ...
 }
}
class Ellipse extends Shape {
 void draw () {
 // Actually draw the ellipse
 ...
 }
}

Wednesday, July 11, 12

Abstract classes as types

• Like interfaces, abstract classes in Java can be used
as types, but cannot be instantiated directly:

AbstractArrayList list =
 new SomeConcreteArrayList(); // ok
list = new AbstractArrayList(); // not ok

Wednesday, July 11, 12

Abstract classes

• In order to be useful, abstract classes must be
subclassed by “concrete” classes, i.e., classes that
implement all the abstract methods, e.g.:

class SomeConcreteArrayList extends AbstractArrayList
{
 ...
 public void sort () { // Concrete implementation
 // Sort the data in _underlyingStorage
 // ...
 }
}

Wednesday, July 11, 12

Interfaces versus abstract classes

• Interfaces and abstract classes can both contain
method signatures without bodies.

• Classes can be subclassed; interfaces can be
“subinterfaced”.

• An abstract class is allowed to implement some
methods; an interface can never implement any of
them.

• An abstract class can contain instance variables; an
interface cannot.

Wednesday, July 11, 12

• Abstract classes and interfaces are both useful when
creating multiple implementations of the same
“abstract idea” (e.g., a list, a collection, a shape).

• When should one use an interface versus an abstract
class?

• Abstract classes are useful when there is substantial
code (i.e., implemented methods) or data (i.e.,
instance variables) that all subclasses should inherit.

• Otherwise, interfaces should generally be used
because they are more flexible.

Interfaces versus abstract classes

Wednesday, July 11, 12

Inner classes.

Wednesday, July 11, 12

Inner classes
• Java offers the ability to define a class

within another class, e.g.:
class A {
 int _x;

 ...

 class B {
 Object _o;
 }
}

class A {
 int _x;

 ...

 static class B {
 Object _o;
 }
}

or

Static inner class Non-static inner class

• Static and non-static inner classes have
slightly different semantics.

Wednesday, July 11, 12

Static inner classes
• A static inner class B inside class A is similar to a

completely separate class B, e.g.:
class A {
}
class B {
}

• However, in contrast to separately defined classes, the
instance variables of inner class B are always
accessible to outer class A, even if they are private, e.g.:
class A {
 static class B {
 private int _x;
 }
 void method () {
 final B b = new B();
 b._x = 7; // This works!
 }
}

Wednesday, July 11, 12

Static inner classes
• There are several reasons for using a static inner

class:

1. To provide convenience to class A to access B’s
private instance variables, but prevent all other
classes from doing so.

2. To structure your code to emphasize a tight
coupling between A and B.

3. To prevent outside classes from accessing/
instantiating class B. In this case, we can make B
a private inner class.

Wednesday, July 11, 12

Static inner classes: example
• Consider making the Node class a static

inner class of DoublyLinkedList12:

• The Nodes and the DoublyLinkedList12
are tightly coupled:

• Without the Nodes, the
DoublyLinkedList12 class cannot be
implemented.

• Without the DoublyLinkedList12, the
Nodes have little relevance.

Wednesday, July 11, 12

Static inner classes: example
• It will be convenient for the

DoublyLinkedList12 to access the
Nodes’ instance variables directly.

• We may also wish to make the Node
inner class private.

• We don’t want any external class
dealing with Nodes.

• From the user’s perspective, the Node
class is irrelevant; we should hide this
detail from the user.

Wednesday, July 11, 12

Instantiating objects of static
inner classes

• Objects of type B, where B is a static inner class of A, can
be instantiated as:

class A {
 static class B {
 }
 void method () {
 B b = new B();
 }
}

or (from an external class) as:

class C {
 void otherMethod () {
 A.B b = new A.B();
 }
}

Not possible if B is
defined to be private.

Wednesday, July 11, 12

Non-static inner classes
• Non-static inner classes offer an even “tighter

coupling” of instances of the inner class and an
instance of the outer class.

• An instance of a non-static inner class B can access the
private instance variables of the outer class A, e.g.:

class A {
 private int _num = 5;
 class B {
 void m () {
 _num = 6; // Ok! -- Inner classes can access
 // private variables of outer class.
 }
 }
}

Wednesday, July 11, 12

Non-static inner classes
class A {
 private int _num = 5;
 class B {
 void m () {
 _num = 6; // Ok! -- Inner classes can access
 // private variables of outer class.
 }
 }
}

• What does this really mean?

• Of which instance of A does method m() alter the
_num instance variable?

Wednesday, July 11, 12

Non-static inner classes
class A {
 private int _num = 5;
 class B {
 void m () {
 _num = 6; // Ok! -- Inner classes can access
 // private variables of outer class.
 }
 }
}

• What does this really mean?

• Of which instance of A does method m() alter the
_num instance variable?

• The enclosing instance. This is the instance of A that
the instances of B are “linked to” via an implicit
reference.

Wednesday, July 11, 12

Non-static inner classes
• Consider inner class

B inside of A:
class A {
 int _num = 5;
 class B {
 String _s;
 B (String s) {
 _s = s;
 }
 void m () {
 _num = 17;
 }
 }

 public void n () {
 B b1 = new B(“inst1”);
 B b2 = new B(“inst2”);
 b1.m();
 }
}

• Now, consider code from
some other class C:

...

final A a = new A();
a.n();

...

• How are objects a, b1, and b2 related in memory?
Wednesday, July 11, 12

_num: 5

_s:
enclosing inst.:

_s:
enclosing inst.:

A

a

“inst1”

String
“inst2”

String

A.B A.B

b2b1

...

final A a = new A();
a.n();

...

class A {
 int _num = 5;
 class B {
 String _s;
 B (String s) {
 _s = s;
 }
 void m () {
 _num = 17;
 }
 }

 public void n () {
 B b1 = new B(“inst1”);
 B b2 = new B(“inst2”);
 b1.m();
 }
}

Although not visible in the class declaration,
each B contains an implicit reference to the
enclosing instance of A.

Wednesday, July 11, 12

_num: 17

_s:
enclosing inst.:

_s:
enclosing inst.:

A

a

“inst1”

String
“inst2”

String

A.B A.B

b2b1

...

final A a = new A();
a.n();

...

class A {
 int _num = 5;
 class B {
 String _s;
 B (String s) {
 _s = s;
 }
 void m () {
 _num = 17;
 }
 }

 public void n () {
 B b1 = new B(“inst1”);
 B b2 = new B(“inst2”);
 b1.m();
 }
}

Although not visible in the class declaration,
each B contains an implicit reference to the
enclosing instance of A.

Wednesday, July 11, 12

Static versus non-static
inner classes

• In contrast to non-static inner classes, it makes no
sense to try to instantiate an object of the inner
class without an enclosing instance of the outer
class. For example, from an external class C:

class C {
 void otherMethod () {
 A.B b = new A.B(); // Will not compile
 }

}

• In this context, there is no instance of A; hence, an
instance of B has no “enclosing instance”.

• This code will not compile.
Wednesday, July 11, 12

Static versus non-static
inner classes

• When to use static versus non-static inner
classes?

• Use non-static inner classes if the
instances need to reference instance
variables of the outer class.

• Otherwise, use static inner classes -- they
are faster and take less memory.

Wednesday, July 11, 12

Anonymous classes.

Wednesday, July 11, 12

Anonymous classes

• There’s one more kind of class in Java --
anonymous classes.

• Anonymous classes are useful when you
intend to instantiate only one instance of
the class, ever.

• When would this situation arise?

Wednesday, July 11, 12

Anonymous classes:
example

• One particular use of anonymous classes in Java is for
callbacks.

• A callback is a method m that you pass to another
method with a request to call m at some later time.

• Consider the class java.util.Timer:

• Timers are useful for scheduling an event in the
future, perhaps at a regular interval.

• For example, in the Confetti simulator, the positions/
velocities of all particles are updated every 5 msec.

Wednesday, July 11, 12

Anonymous classes:
example

• To use a Timer, one has to create a
callback object of type TimerTask.

• TimerTask is an abstract class that
contains an abstract method void run().

• The user of a Timer will implement a
concrete class that subclasses TimerTask.

• The user’s implementation of run() will
perform whatever task the user wants.

Wednesday, July 11, 12

Anonymous classes:
example

• Instead of declaring a whole new class -- either
in its own file, or as an inner class -- we can be
even more “compact” and define an anonymous
class:
java.util.Timer timer = new java.util.Timer();
timer.schedule(new TimerTask() {
 public void run () {
 // Do whatever you want
 }
}, 0, 5); // 5 msec This defines an anonymous class

that extends TimerTask.

Wednesday, July 11, 12

Anonymous classes:
example

• Without anonymous classes, we’d have to be
more verbose:
class MyTimerTask extends TimerTask {
 public void run () {
 public void run () {
 // Do whatever you want
 }
 }
}

java.util.Timer timer = new java.util.Timer();
timer.schedule(new MyTimerTask(), 0, 5);

This is the only instance
we will ever create.

Wednesday, July 11, 12

Implementing an
Iterator.

Wednesday, July 11, 12

Iterator for ArrayList

• Given this new “infrastructure” for writing
object-oriented Java code, let’s implement
an Iterator for the ArrayList we created
in previous lectures.

Wednesday, July 11, 12

• We need to create a class to implement the Iterator --
let’s call it ArrayListIterator.

• The ArrayListIterator and the ArrayList are
coupled:

• The ArrayList needs to return an instance of
ArrayListIterator.

• An ArrayListIterator should never be instantiated
outside of ArrayList.

Iterator for ArrayList

Wednesday, July 11, 12

• We need to create a class to implement the Iterator --
let’s call it ArrayListIterator.

• The ArrayListIterator and the ArrayList are
coupled:

• The ArrayList needs to return an instance of
ArrayListIterator.

• An ArrayListIterator should never be instantiated
outside of ArrayList.

• Hence, let’s make it a private inner class.

Iterator for ArrayList

Wednesday, July 11, 12

Static or non-static?

• The ArrayListIterator needs to access
the individual data stored in
_underlyingStorage of the “enclosing”
ArrayList.

• It also needs to be able to modify the
enclosing ArrayList object.

• Hence, we need a non-static inner class.

Wednesday, July 11, 12

ArrayListIterator
class ArrayList implements List {
 private Object[] _underlyingStorage;
 private int _numElements;

 private class ArrayListIterator implements Iterator {
 ... // What variables do we need?
 public boolean hasNext () {
 ...
 }
 public Object next () {
 ...
 }
 public void remove () {
 ...
 }
 }

 public Iterator iterator () {
 return new ArrayListIterator();
 }
}

Wednesday, July 11, 12

• Let’s define an int _currentIndex instance variable to
keep track of which object we should return in next().

• We initialize _currentIndex to -1 to indicate we haven’t
returned the first element yet.

• Each call to next() both increments _currentIndex and
returns the object _underlyingStorage[currentIndex].

• Make sure to increment before fetching the object!

• We also need a variable boolean _hasNextBeenCalled.

ArrayListIterator

Wednesday, July 11, 12

ArrayListIterator.
hasNext()

• To implement hasNext(), we simply
compare _currentIndex to
_numElements, which is contained in the
enclosing instance of ArrayList.

• This is only possible because
ArrayListIterator is an inner class!

• Without inner classes, we’d have to
either make _numElements public (bad
idea), or create an accessor method
(verbose).

Wednesday, July 11, 12

• To remove the element we last returned (in
next()), we need to “shift over” all the
elements of _underlyingStorage to the
left by 1.

• We implemented this already in
ArrayList.remove().

• Hence, we can just call
ArrayList.remove() in
ArrayListIterator.remove().

ArrayListIterator.
remove()

Wednesday, July 11, 12

ArrayListIterator code
class ArrayListIterator {
 private boolean _hasNextBeenCalled = false;
 private int _currentIndex = -1;

 public Object next () {
 _currentIndex++;
 _hasNextBeenCalled = true;
 return _underlyingStorage[_currentIndex];
 }
 public boolean hasNext () {
 return _currentIndex < _numElements - 1;
 }
 public void remove () {
 if (! _hasNextBeenCalled) {
 throw new InvalidStateException();
 }
 ArrayList.this.remove(_currentIndex);
 _currentIndex--;
 _hasNextBeenCalled = false;
 }
}

Implementor

Wednesday, July 11, 12

class ArrayListIterator {
 private boolean _hasNextBeenCalled = false;
 private int _currentIndex = -1;

 public Object next () {
 _currentIndex++;
 _hasNextBeenCalled = true;
 return _underlyingStorage[_currentIndex];
 }
 public boolean hasNext () {
 return _currentIndex < _numElements - 1;
 }
 public void remove () {
 if (! _hasNextBeenCalled) {
 throw new InvalidStateException();
 }
 ArrayList.this.remove(_currentIndex);
 _currentIndex--;
 _hasNextBeenCalled = false;
 }
}

Call remove()
method of outer class

on the enclosing
instance.

Make sure next call to next() works properly.

Make sure initialization and increment of
_currentIndex cooperate properly.

ArrayListIterator code
Implementor

Wednesday, July 11, 12

Adhering to contract

• What will happen in the following code?

final ArrayList arrayList = new ArrayList();
arrayList.add(new Integer(123));
final Iterator iterator = arrayList.iterator();
arrayList.remove(0);
final Object obj = iterator.next();

In the particular case of ArrayList (given how we implemented it), this call to
next() will actually be benign -- it will return the Integer object (123) that we
initially inserted.

However, in general, calling next() after modifying the underlying container class
could have unpredictable effects, e.g., a NullPointerException or
IndexOutOfBoundsException. It is best to guard against these.

User

Wednesday, July 11, 12

Concurrent
modification

• In this case, the user made the mistake of
concurrent modification.

• According to Iterator specification, once
an iteration is in progress, only the
Iterator.remove() method may be used
to modify the list.

• Hence, the IndexOutOfBoundsException is
not the implementor’s fault.

Wednesday, July 11, 12

Concurrent modification

• However, to be a “more friendly” implementor, we can
help the user identify his/her error by guarding against
this condition.

• We will keep track of any changes the user makes to
the ArrayList while iteration is underway.

• We can add a variable int _numModifications to
the outer ArrayList.

• We increment this counter whenever the user
modifies from the ArrayList (in
ArrayList.add(), ArrayList.remove()).

Wednesday, July 11, 12

Concurrent modification

• We also add int _expectedNumModifications to
the ArrayListIterator itself.

• Initialize upon construction to _numModifications
(current value of instance variable of outer
ArrayList class).

• In next(), we check whether _numModifications
== _expectedNumModifications.

• Have to adjust _expectedNumModifications in
ArrayListIterator.remove()!

Wednesday, July 11, 12

Concurrent modification

• Here’s the punchline:

• If, in ArrayListIterator.next(), we find
that _expectedNumModifications !=
_numModifications, then we throw a
ConcurrentModificationException.

• This informs the user explicitly that he/she messed
up.

Wednesday, July 11, 12

class ArrayList {
 Object[] _underlyingStorage;
 int _numElements;
 int _numModifications;

 ArrayList () {
 _underlyingStorage =
 new Object[128];
 _numElements = 0;
 _numModifications = 0;
 }
 void add (Object o) {
 ...
 _numModifications++;
 }
 void remove (int index) {
 ...
 _numModifications++;
 }

 class ArrayListIterator
 implements Iterator {
 int _currentIdx;
 boolean _hasNextBeenCalled;
 int _expectedNumModifications;

 ArrayListIterator () {
 _currentIdx = 0;
 _hasNextBeenCalled = false;
 _expectedNumModifications =
 _numModifications;
 }

 boolean hasNext () {
 ...
 }
 Object next () {
 if (_numModifications !=
 _expectedNumModifications) {
 throw new CMException();
 }
 ...
 }
 void remove () {
 if (_numModifications !=
 _expectedNumModifications) {
 throw new CMException();
 }
 ...
 ArrayList.this.remove(index);
 _expectedNumModifications++;
 }
 }
}

Abbreviation just
for slides!

Calling remove() is a valid way
to modify the list during

iteration -- we must account for
this.

Save a local copy (inside the Iterator)
of what _numModifications should be.

Implementor

Wednesday, July 11, 12

DoublyLinkedList12
Iterator

• Hopefully the ArrayListIterator example will
provide some guidance for finishing the Iterator in
P1.

• Important case to consider:

final List list = new DoublyLinkedList12();
list.add(“a”);
list.add(“b”);
list.add(“c”);
final Iterator iterator = list.iterator();
iterator.next();
iterator.remove();
iterator.next(); // What should this return?

Wednesday, July 11, 12

DoublyLinkedList12
Iterator

• Hopefully the ArrayListIterator example will
provide some guidance for finishing the Iterator in
P1.

• Important case to consider:

final List list = new DoublyLinkedList12();
list.add(“a”);
list.add(“b”);
list.add(“c”);
final Iterator iterator = list.iterator();
iterator.next();
iterator.remove();
iterator.next(); // What should this return? “b”

Wednesday, July 11, 12

