CSE 12:

Basic data structures and object-oriented design

Jacob Whitehill jake@mplab.ucsd.edu

Lecture Six 9 Aug 2011

Type-safety and casting.

- As mentioned in Lecture Three, Java was designed from the ground up to offer security.
- One aspect of security is ensuring that a variable that, for example, is supposed to point to a String doesn't actually point to an Integer.

```
// Won't compile
final String s = new Integer(6);
```

• This form of security is known as type-safety.

 That example was somewhat obvious; let's look at a more subtle one...

```
final Object o = new Integer();
final String s = (String) o;
```

This code will compile ok, ...

 That example was somewhat obvious; let's look at a more subtle one...

```
final Object o = new Integer();
final String s = (String) o; // Compiles ok
```

...but at run-time, the second statement will trigger a ClassCastException -- an Integer is never also a String!

Type-safety

- Java and the JVM enforce type-safety:
 - Every Object knows what kind of class it is, what its parent class is, and all the interfaces that it implements.
 - If you attempt to "cast" an object into a type with which it is not compatible, then this will trigger a ClassCastException.
 - Your program will terminate.

Casting

 In object-oriented languages like Java, objects are cast into different classes/interfaces when we assign them to reference variables of different types.

```
Consider:
   class A { ...
}

class B extends A { ...
}

B b = new B();
A a = b;  // Upcast from B to A.
B b2 = (B) a; // Downcast from A to B.
```

The terms upcast and downcast have to do with the class hierarchy, in which parent classes are "above" child classes.

Upcasting

```
class A { ...
}
class B extends A { ...
}
```

- If class B is a subclass of A, and we convert a reference of type B to a reference of type
 A, then we are upcasting, e.g.: A a = b;
 - Since all objects of type B are implicitly also of type A, this cast is guaranteed to succeed.
 - Every object of type B can also be treated as an object of type A.
 - All methods and instance variables of A are guaranteed to be accessible.

Downcasting class A { ...

```
class A { ...
}
class B extends A { ...
}
```

- If class B is a subclass of A, and we convert a reference of type A to a reference of type B, then we are downcasting, e.g.: B b = (B) a;
 - Since objects of type A are not guaranteed to always also be of type B, we must explicitly inform the compiler that we "know" that b is of class B.
 - We must explicitly "request" the cast by writing (B).

Downcasting

- At run-time, before performing the cast from class A to B, the JVM will check whether b is actually a B object.
 - If it is, then execution proceeds merrily.
 - If not, then the JVM will throw a ClassCastException.

Example I

```
class Animal { ...
class Snake extends Animal { ...
class Plant { ...
class Test1 {
  public static void main (String[] args)
    Animal animal = new Animal();
    Snake snake = animal;
```

Example I

Compilation error

```
class Animal { ...
class Snake extends Animal { ...
class Plant { ...
class Test2 {
  public static void main (String[] args)
    Animal animal = new Animal();
    Snake snake = (Snake) animal;
                Here we attempt to downcast from
                Animal to Snake. We "promise" the
               compiler that animal is really a Snake.
```

Compiles ok

```
Jacobs-MacBook-Pro:tmp jake$ java Test2
Exception in thread "main"
java.lang.ClassCastException: Animal cannot be cast to Snake
   at Test2.main(Test2.java:4)
```

Jacobs-MacBook-Pro:tmp jake\$ javac Test2.java

Run-time error -- our "promise" to the compiler was incorrect.

```
class Animal { ...
class Snake extends Animal { ...
class Plant { ...
class Test3 {
  public static void main (String[] args)
    Snake snake = new Snake();
    Animal animal = snake;
               Upcast from Snake to Animal -- this can
              never fail because Snake subclasses Animal.
                   Hence, no "promise" is required.
```

```
Jacobs-MacBook-Pro:tmp jake$ javac Test3.java Compiles ok Jacobs-MacBook-Pro:tmp jake$ java Test3

Jacobs-MacBook-Pro:tmp jake$ Runs ok
```

Assume the following class definitions:

```
class Animal { ... }
class Snake extends Animal { ... }
class Plant { ... }
```

Which of the following cause compiler errors?

```
• Animal animal = new Animal();
   Snake snake = (Snake) animal;
• Animal animal = new Snake();
   Snake snake = (Snake) animal;
Snake snake = new Snake();
   Animal animal = snake;
• Animal animal = new Snake();
Snake snake = new Animal();
Snake snake = new Snake();
   Animal animal = (Animal) snake;
Plant plant = new Snake();
   Animal animal = (Snake) plant;
```

Assume the following class definitions:

```
class Animal { ... }
class Snake extends Animal { ... }
class Plant { ... }
```

Which of the following cause compiler errors?

```
• Animal animal = new Animal();
   Snake snake = (Snake) animal;
• Animal animal = new Snake();
   Snake snake = (Snake) animal;
Snake snake = new Snake();
   Animal animal = snake;
• Animal animal = new Snake();
Snake snake = new Animal();
Snake snake = new Snake();
   Animal animal = (Animal) snake;
Plant plant = new Snake();
  Animal animal = (Snake) plant;
```

Assume the following class definitions:

```
class Animal { ... }
class Snake extends Animal { ... }
class Plant { ... }
```

Which of the following cause runtime errors?

```
• Animal animal = new Animal();
   Snake snake = (Snake) animal;
• Animal animal = new Snake();
   Snake snake = (Snake) animal;
Snake snake = new Snake();
   Animal animal = snake;
• Animal animal = new Snake();
Snake snake = new Animal();
Snake snake = new Snake();
   Animal animal = (Animal) snake;
Plant plant = new Snake();
   Animal animal = (Snake) plant;
```

Assume the following class definitions:

```
class Animal { ... }
class Snake extends Animal { ... }
class Plant { ... }
```

Which of the following cause runtime errors?

```
• Animal animal = new Animal();
   Snake snake = (Snake) animal;
• Animal animal = new Snake();
   Snake snake = (Snake) animal;
Snake snake = new Snake();
   Animal animal = snake;
• Animal animal = new Snake();
Snake snake = new Animal();
Snake snake = new Snake();
   Animal animal = (Animal) snake;
Plant plant = new Snake();
   Animal animal = (Snake) plant;
```

Casting to interfaces

• We can also cast to an interface type, e.g.:

```
Object o = new DoublyPlant12();
Iterable iterable = (Iterable) o;
```

- Since not every object of Object class is guaranteed to implement the Iterable interface, we must "downcast" to Iterable.
- At run-time, the JVM will check whether o is of some class that implements Iterable, and throw a ClassCastException if it is not.

Importance of type-safety

- Not all languages (e.g., C++) are type-safe.
- Imagine what would happen if the JVM didn't catch the class-cast error in the following code:

Here, we "force" the compiler to treat the Integer pointer as a Student pointer.

```
Integer integer = new Integer(123);
Student student = (Student) integer;
student._age = 23;
```

Here we attempt to modify the _age instance variable of a "Student" object. But student actually points to an Integer object!

- The outcome of this program can't be good
 -- we're trying to modify the "_age" of an
 Integer object!
- What's going on here in terms of memory?
- Let's first convert this example to Java...

• Let's assume the following class definitions:

```
class Integer {    // 4 bytes total
    int _value;
}

class Student {    // 8 bytes total
    String _name;
    int _age;
}
```



```
Integer integer = new Integer(123);
Student student = (Student) integer;
```



```
Integer integer = new Integer(123);
Student student = (Student) integer;
```

Let's also suppose a "real"

Student object would look like
this:


```
Integer integer = new Integer(123);
Student student = (Student) integer;
student._age = 85;
```

- In the last line of code, the program attempts to modify the "_age" instance variable of the "Student" object pointed to by student.
 - _age would be stored at 8204.
- In reality, student actually points to an Integer object.
 - That Integer object does not own address 8204!
 - Something Important has been clobbered.

Clobbering memory

- When you write data outside of a variable's "proper bounds", you are "clobbering memory".
- In the previous example, treating the Integer like a Student caused the statement student._age = 85 to overwrite Something Important.
- Without Java's protective type safety, this could cause your program to:
 - Crash.
 - Behave in unexpected ways at some indeterminate point in the future. <== Often worse than crashing.

Clobbering memory

- In some settings (e.g., a web server application that processes data sent from user), treating a variable as an object of the wrong type could be exploited by an attacker.
 - By causing your code to "clobber" the right memory, an attacker might gain control of your entire machine.:-(

- Java and the JVM help to prevent such attacks.
- All downcasts are checked by the JVM to make sure they are valid before execution proceeds.
- As always, this added security comes at a cost:
 - A downcast in Java is slower than a downcast in C++.

Java collections before generics.

Java Collections Framework

- Since Java version 1.2, the JDK has offered pre-built "collections" of various types as part of the Java Collections Framework (JCF).
- The JCF includes such classes as:
 - ArrayList
 - Vector
 - HashTree
 - Set
 - etc., etc.

CSE12 Collections

- In this course, we have worked on two "collections" -- ArrayList, and DoublyLinkedList12.
- Similar to the JCF collections in Java 1.2, our collections have dealt with Objects:
 - public void add (Object o);
 - public Object get (int index);
- Every object in Java is of type Object; hence, these collections can store variables of any type.

Collections of Objects

 Hence, the same class ArrayList can be used to create a list of Strings as well as a list of Integers:

```
final ArrayList listOfStrings = new ArrayList();
listOfStrings.add("yo");

final ArrayList listOfIntegers = new ArrayList();
listOfIntegers.add(new Integer(32));
```

• This is convenient -- we don't have to create a two different classes to store Strings versus Integers.

Downside of downcasting

 Unfortunately, the fact that the List12 interface takes and returns Objects also means that we have to downcast the Object every time we call get (index):

```
listOfStrings.add("hello");
...
final String s = (String) listOfStrings.get(0);
```

 Having to downcast every time is both tedious and distracting because it litters the code with parentheses and class names.

Downside of downcasting

- There's also a security reason why downcasting an Object returned by a collection is bad:
 - We may accidentally try to downcast an Object to an incompatible type.

 Consider a method in which you use several collections to store data of several types:

```
ArrayList list1, list2, list3;
list1 = new ArrayList(); // for Strings
list2 = new ArrayList(); // for Integers
list3 = new ArrayList(); // for Students
list1.add("test");
list2.add(new Integer(17));
list2.add(new Integer(42));
list3.add(new Student());
list1.add(new Student());
list2.add(new Integer(4));
list1.add("another string");
```

 Consider a method in which you use several collections to store data of several types:

```
ArrayList list1, list2, list3;
list1 = new ArrayList(); // for Strings
list2 = new ArrayList(); // for Integers
list3 = new ArrayList(); // for Students
list1.add("test");
list2.add(new Integer(17));
list2.add(new Integer(42));
list3.add(new Student());
list1.add(new Student()); // Wrong list!
list2.add(new Integer(4));
list1.add("another string");
```

• If we later retrieve an Object from list1 and assume (incorrectly) that it contains only Strings, our program will crash:

• It is still nice that the JVM catches our mistake at run-time, but it would be even nicer for the Java compiler to catch our mistake at compile-time.

- Unfortunately, with collections of Objects, this is not really possible.
- The compiler has no way of "knowing" that list1 was intended "only for Strings".
 - ArrayList.add(o) is happy to accept any Object o.

More plausible example

• A more plausible example of the problem above might occur if you are implementing a method that takes a collection as a *parameter*:

```
// Specified list should contain only Strings.
// Returns ArrayList of appended strings.
List12 appendStrings (List12 strList) {
  List12 appendedStrList = new ArrayList();
  final Iterator iterator = strList.iterator();
 while (iterator.hasNext()) {
    appendedStrList.add(
      "appendage" + (String) list.next()
  return appendedStrList;
```

More plausible example

• A more plausible example of the problem above might occur if you are implementing a method that takes a collection as a parameter:

```
// Specified list should contain only Strings.
// Returns ArrayList of appended strings.
List12 appendStrings (List12 strList) {
  List12 appendedStrList = new ArrayList();
  final Iterator iterator = strList.iterator();
  while (iterator.hasNext()) {
    appendedStrList.add(
      "appendage" + (String) list.next()
                                If user passed in ArrayList that
                               contained any non-String object,
  return appendedStrList;
                                     then we'll get a
                                   ClassCastException.
```

Naive fix

- How can we fix the problems of tedium, ugly code, and potential ClassCastExceptions?
- One naive strategy is to define a different
 ArrayList for every class we want to store in

Naive fix

- However, this "naive fix" is very tedious -- we
 have to create another version of the
 ArrayList for every class we want to support.
- "Copying+pasting code" would save some time, but this is never a good idea.
 - Inevitably, one of the ArrayListOfX classes will change, and you'll forget to change the other ones correspondingly.
- Let's take another look at those "related classes"...

Better fix: factor out the type

```
class ArrayListOfStrings {
  public void add (String s) { ... }
  public String get (int index) { ... }
}
class ArrayListOfIntegers {
  public void add (Integer i) { ... }
  public Integer get (int index) { ... }
}
class ArrayListOfShapes {
  public void add (Shape s) { ... }
  public Shape get (int index) { ... }
}
```

- The only place these class definitions differ is in the type of the objects they hold.
- It seems like there should be a way to "factor out" the type...

Java generics.

Java generics

- Since Java 1.5, Java has offered the ability to parameterize a class by a type.
 - For example, when writing a "collection" class such as ArrayList, we can give it a type parameter T.
 - As with data parameters, the type parameter is up to the "user" programmer.
 - Type parameters are typically given one-letter names:
 - K for "key", V for "value", E for "element, etc.

Generics for "ArrayListOfX"

- Consider our problem of writing multiple
 ArrayListOfX classes to store data of different types:
 - With Java generics, we can write just one version of the class and parameterize it by type T, the type of data the ArrayList should contain.

Generics for "ArrayListOfX"

```
class ArrayList<T> implements List<T> {
  T[] underlyingStorage;
                                        Interfaces too can be
  int numElements;
                                       parameterized by a type.
  void add (T element) {
     underlyingStorage[ numElements] = element;
    numElements++;
  T get (int index) {
    return underlyingStorage[index];
               The type parameter T is specified in angled
               brackets just after the classname. Thereafter,
```

it can be used inside the class anywhere a

type is expected. (Almost -- more later.)

Generics for "ListOfX"

 Similarly to classes, interfaces too can be parameterized by a type:

```
interface List<T> {
  void add (T element);
  T get (int index);
  void remove (int index);
}
```

Generics for "ArrayListOfX"

- In short: (almost) everywhere in our previous versions of List and ArrayList, we replace the type Object with the type parameter T.
- To instantiate the "generic" ArrayList<T> in code:

When we instantiate the generic collection, we must specify the *value* of the type parameter.

```
ArrayList<Student> list = new ArrayList<Student>();
```

Instantiating the ArrayList with type parameter
 T=Student can be conceptualized as doing a "search-and-replace" to change <T> to <Student>:

```
class ArrayList<T> ... {
  void add (T element) { ...
  }
  T get (int index) { ...
  }
}
class ArrayList ... {
  void add (Student element) { ...
  }
  Student get (int index) { ...
  }
}
```

Generics for "ArrayListOfX"

 Now, our list can only be populated with Student data (or any subclass of Student):

 What happens if we try to break this rule and add a non-Student object to list?

```
list.add("error"); // not ok -- compiler catches this!
```

Generics for "ListOfX"

 Now, our list can only be populated with Student data (or any subclass of Student):

```
list.add(new Student()); // -- ok by definition
list.add(new UCSDStudent()); // -- ok if it's a subclass
```

 What happens if we try to break this rule and add a non-Student object to list?

```
list.add("error"); // not ok -- compiler catches this!
```

- With Java generics, the compiler will catch this error -- it knows that "error" is a String, and that list is of type
 ArrayList<Student>.
 - Since ArrayList<Student>'s add (element) method expects a Student, there is a type mismatch -- compiletime error.

Benefits of generics

- It is preferable for the compiler to catch this mistake rather than the JVM:
 - We fix the bug before the program crashes.
 - The compiler rules out the possibility that we mismatch container type and element type.
- With generics, we also no longer have to downcast the return value of get (index):

```
final ArrayList<String> list = new ArrayList<String>();
list.add("hello");
final String s = list.get(0); // No downcast necessary
```

 This is because the result of get(index) is guaranteed to be of type String -- we don't have to additionally "promise" the compiler anything.

Making List generic

- The benefits of a generic *interface* are exactly analogous to the benefits of a generic *class*:
 - When you use a variable of the interface type, the compiler will check that the types are consistent:

```
final List<Integer> list = ... // some concrete impl
list.add(new Integer(5)); // ok
list.add("test"); // not ok -- compile-time error
```

Making List generic

- As described before, when writing a generic List, we include a type parameter at the start of the class definition.
 - The type parameter tells the generic List interface which type of element the list can accept.
- We can define a generic List interface as follows:

```
interface List<T> {
  int size ();
  void add (T element);
  T get (int index);
  void remove (int index);
}
```

• Let's examine more carefully how the syntax works:

```
interface List<T> {
  int size ();
  void add (T element);
  T get (int index);
  void remove (int index);
}
```

• Let's examine more carefully how the syntax works:

```
interface List<T> {
      int size ();
      void add (T element);
      T get (int index);
      void remove (int index);
                                         This is analogous, in a Java
  When we write angled
                                       method signature, to declaring
brackets just after the type
                                       a data parameter and giving it
name, we are declaring a type
                                           the name student.
parameter and giving it the
                             void method (Student student) {
        name T.
                                student.setAge(24);
                                student.printAddress();
```

Let's examine more carefully how the syntax works:

```
interface List<T> {
      int size ();
      void add (T element);
      T get (int index);
      void remove (int index);
Following the declaration of
                                      This is analogous, in a Java method
type parameter T, whenever
                                       signature, to using that parameter
we write T, we are using the
                                          inside the method body.
  type parameter's value.
                            void method (Student student) {
                               student.setAge(24);
                               student.printAddress();
```

• Now, suppose we want the List interface to extend the Iterable interface. We could write:

```
interface List<T> extends Iterable<T> {
  int size ();
  void add (T element);
  T get (int index);
  void remove (int index);
}
```

Despite the angled brackets, we are actually "using" T, not declaring T. We are "passing T to the generic Iterable interface."

```
This is analogous, in a Java method, to passing the parameter to another method void method (Student student) { student.setAge(24); student.printAddress(); otherMethod(student); }
```

 Bear in mind that type parameters are passed to a generic class at compile-time, whereas data parameters are passed to a method at run-time.

Making ArrayList generic

- Now that we have a generic List, we can define a generic ArrayList.
 - As mentioned last lecture, this consists mostly of replacing "Object" with "T":

```
class ArrayList<T> implements List<T> {
  T[] underlyingStorage;
  int numElements;
 public void add (T element) { ... }
 public T get (int index) { ... }
 public Iterator<T> iterator () {
 private class ArrayListIterator implements Iterator<T> {
     T next () { ... }
     void remove () { ... }
    boolean hasNext () { ... }
```

Making ArrayList generic

- There is one important exception, however:

 - The Java compiler will give an error: "generic array creation".
 - It would also be illegal to try to write: final T element = new T();
 - Why?
 - It has to do with how generics are implemented "under the hood".

- Java generics are implemented based on the principle of erasure.
- In one sentence:
 - After the Java compiler checks that the generic types are ok, it erases the type parameters associated with generic classes/methods and replaces them with just "Object".

^{*} Not quite true -- it actually replaces them with the upper bound of the type parameter.

- Let's now define erasure more leisurely. Consider:
 final List<String> list = new ArrayList<String>();
- The List was instantiated with a type parameter set to String.
- This means that list.add(o) now expects o to be of String type. It will then verify that variables passed to add(o) have the correct type:

```
list.add("yup"); // ok
list.add(new Object()); // will not compile
```

- Now, after verifying that all type parameters are compatible with the generic List, the compiler proceeds to compile your code.
 - The compile strips away ("erases") all of the type parameters.
 - The code

```
final List<String> list = new ArrayList<String>();
is essentially replaced by:
final List list = new ArrayList();
```

 We're right back where we started -- an List of Objects!

- Actually, not quite -- we still get two big benefits:
 - The compiler already verified that in all calls to add (o), o was compatible with the list's type.
 - No possibility of adding non-strings to ArrayList that's supposed to contain only Strings.
 - We didn't have to cast the result of get(index) to be String.

- However, the erasure does have some suboptimal side effects:
 - We cannot instantiate an object of generic type T:
 final T t = new T(); // won't compile
 - Reason: After stripping away the type information T, the JVM wouldn't know which constructor to call.
 - We also cannot instantiate arrays of generic type:
 final T[] array = new T[]; // won't compile

Arrays of generic type

```
final T[] array = new T[]; // won't compile
```

 As a work-around, we have to instantiate an array of a particular (non-generic) type. An array of Objects will actually be sufficient for ArrayList:

```
final T[] array = (T[]) new Object[128];
```

- The ugly downcast is back.
- However, we only have to do this once in all of ArrayList.
- Since this one line of code is an implementation of ArrayList, the user need never be bothered by it.

- FYI: C++ offers "templates" (analogous to generics).
 - Templates are not implemented using erasure.
 - Instead, the compiler essentially compiles a separate version of your generic class for every type parameter you use.
 - In C++, it is legal to write new T();

Circular linked lists.

Circular linked lists

- Before moving on to other data structures, we will discuss one more variant of the basic "linked list" concept.
- A circular linked list is a list where the tail's "next" pointer points back to the head.
 - If the linked list is doubly-linked, then the head's "previous" pointer also points back to the *tail*.

CircularDoublyLinkedList

CircularDoublyLinkedList

Instead, all we really care about is whether we add to the front of the list (to the "right" of _head), or to the back of the list (to the "left" of _head).

- The utility of circular linked lists is perhaps most clearly illustrated when there are no dummy nodes.
- Empty list: head = null.
- List of size I:

• List of size 2:

Iterating through a circular linked list

- As long as a circular linked list is non-empty, an Iterator can iterate forever.
 - Just keep following the current Node's _next pointer.

```
class CircularListIterator {
  Node _current;
  ...
  boolean hasNext () {
    return _listSize > 0;
  }
  Object next () {
    _current = _current._next;
    return _current._data;
  }
}
```

- Circular linked lists are most useful for storing a collection of objects in which "looping forever" is an intuitive and useful operation.
- Examples:
 - Looping around vertices of a polygon.

- CPU scheduling:
 - One CPU core can only execute one computer program at any given time.
 - On a single-core machine, to simulate "multitasking", each program is given a small "timeslice" (few milliseconds) to run on the CPU.
 - After the timeslice expires, the next program in the list of processes is selected, and so on.
 - After all programs in the list have received their timeslice, the CPU scheduler goes back to the first process.

Circular linked lists for CPU scheduling

Stacks and queues.

Stacks and queues.

- Let's now bring in two more fundamental data structures into the course.
- So far we have covered lists -- array-based lists and linked-lists.
 - These are both linear data structures -- each element in the container has at most one successor and one predecessor.
- Lists are most frequently used when we wish to store objects in a container, and probably never remove them from it.
 - E.g., if Amazon uses a list to store its huge collection of customers, it has no intention of "removing" a customer (except at program termination).

Stacks and queues

- Stacks and queues, on the other hand, are examples of *linear* data structures in which every object inserted into it will generally be removed:
 - The stack/queue is intended only as "temporary" storage.
- Both stacks and queues allow the user to add and remove elements.
- Where they differ is the order in which elements are removed relative to when they were added.

- Stacks are last-in-first-out (LIFO) data structures.
- The classic analogy for a "stack" is a pile of dishes:
 - Suppose you've already added dishes A, B, and C to the "stack" of dishes.

- Stacks are last-in-first-out (LIFO) data structures.
- The classic analogy for a "stack" is a pile of dishes:
 - Suppose you've already added dishes A, B, and C to the "stack" of dishes.
 - Now you add one more, D.

- Stacks are last-in-first-out (LIFO) data structures.
- The classic analogy for a "stack" is a pile of dishes:
 - Suppose you've already added dishes A, B, and C to the "stack" of dishes.
 - Now you add one more, D.
 - Now you remove one dish -- you get D back.

- Stacks are last-in-first-out (LIFO) data structures.
- The classic analogy for a "stack" is a pile of dishes:
 - Suppose you've already added dishes A, B, and C to the "stack" of dishes.
 - Now you add one more, D.
 - Now you remove one dish -- you get D back.
 - If you remove another, you get C, and so on.
- With stacks, you can only add to/remove from the top of the stack.


```
Stack stack<String> = new Stack<String>();
stack.push("a");
stack.push("b");
stack.push("c");
                          push adds an object to the stack
stack.push("d");
String s;
s = stack.pop(); // returns "d"
                                         pop both gets
                                        and removes the
                                        "last" object from
                                           the stack
```

```
Stack stack<String> = new Stack<String>();
stack.push("a");
stack.push("b");
stack.push("c");
                         push adds an object to the stack
stack.push("d");
String s;
s = stack.pop(); // returns "d"
                                        pop both gets
s = stack.pop(); // returns "c"
                                       and removes the
                                       "last" object from
                                          the stack
```

```
Stack stack<String> = new Stack<String>();
stack.push("a");
stack.push("b");
stack.push("c");
                         push adds an object to the stack
stack.push("d");
String s;
s = stack.pop(); // returns
                                       pop both gets
s = stack.pop(); // returns "c"
                                      and removes the
s = stack.pop(); // returns "b"
                                      "last" object from
                                         the stack
```

```
Stack stack<String> = new Stack<String>();
stack.push("a");
stack.push("b");
stack.push("c");
                        push adds an object to the stack
stack.push("d");
String s;
s = stack.pop();
                    // returns
                                       pop both gets
s = stack.pop(); //
                       returns
                                "c"
                                      and removes the
s = stack.pop(); // returns "b"
                                      "last" object from
s = stack.pop(); // returns
                                "a"
                                         the stack
```

- Stacks find many uses in computer science, e.g.:
 - Implementing procedure calls.
- Consider the following code:

Von Neumann machine

- On all modern machines, a program's instructions and its data are stored together somewhere in the computer's long sequence of bits (Von Neumann architecture).
 - Just by "glancing" at the contents of computer memory, one would have no idea whether a certain byte contains code or data -- it's all just bits.
- To keep track of which instruction in memory is currently being executed, the CPU maintains an Instruction Pointer (IP).

- Suppose the IP is 8:
 - Then the next instruction to execute is num=4;
- The CPU then advances the IP to the next instruction (4) bytes later) to 12.

- The return instructions tells the CPU to move the IP back to where it was before the current method was called.
- But where is that?

• The return call at address 40 should cause the CPU to jump to address 28 -- the next instruction in g.

 And now we have to return to where the caller of g left off (address 16).

 What we need is a last-in-firstout data structure ("stack") to remember all the return addresses:

- Rule 1: Before method x calls method y, method x first adds its "return address" to the stack.
- Rule 2:When method y
 "returns" to its caller, it
 removes the top of the stack
 and sets the IP to that address.
- Let's see this work in practice...

Stack ADT

 To support the last-in-first-out adding/removal of elements, a stack must adhere to the following interface:

```
interface Stack<T> {
    // Adds the specified object to the top of the stack.
    void push (T o);

    // Removes the top of the stack and returns it.
    T pop ();

    // Returns the top of the stack without removing it.
    T peek ();
}
```