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Stacks and queues.
• Let’s now bring in two more fundamental data structures 

into the course.

• So far we have covered lists -- array-based lists and linked-
lists.

• These are both linear data structures -- each element in 
the container has at most one successor and one 
predecessor.

• Lists are most frequently used when we wish to store 
objects in a container, and probably never remove them from it.

• E.g., if Amazon uses a list to store its huge collection of 
customers, it has no intention of “removing” a customer 
(except at program termination).
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Stacks and queues
• Stacks and queues, on the other hand, are 

examples of linear data structures in which every 
object inserted into it will generally be removed:

• The stack/queue is intended only as 
“temporary” storage.

• Both stacks and queues allow the user to add and 
remove elements.

• Where they differ is the order in which elements 
are removed relative to when they were added.
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Stacks.
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Stacks
• Stacks are last-in-first-out (LIFO) data structures.

• The classic analogy for a “stack” is a pile of dishes:

• Suppose you’ve already added dishes A, B, and C 
to the “stack” of dishes.

If you try to remove a middle dish, you get that annoying clanging sound.

A

B

C
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Stacks
• Stacks are last-in-first-out (LIFO) data structures.

• The classic analogy for a “stack” is a pile of dishes:

• Suppose you’ve already added dishes A, B, and C 
to the “stack” of dishes.

• Now you add one more, D.

If you try to remove a middle dish, you get that annoying clanging sound.

A

B

C

D
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Stacks
• Stacks are last-in-first-out (LIFO) data structures.

• The classic analogy for a “stack” is a pile of dishes:

• Suppose you’ve already added dishes A, B, and C 
to the “stack” of dishes.

• Now you add one more, D.

• Now you remove one dish -- you get D back.

If you try to remove a middle dish, you get that annoying clanging sound.

A

B

C
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Stacks
• Stacks are last-in-first-out (LIFO) data structures.

• The classic analogy for a “stack” is a pile of dishes:

• Suppose you’ve already added dishes A, B, and C 
to the “stack” of dishes.

• Now you add one more, D.

• Now you remove one dish -- you get D back.

• If you remove another, you get C, and so on.

• With stacks, you can only add to/remove from the 
top of the stack.

If you try to remove a middle dish, you get that annoying clanging sound.

A

B
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Usage example of stacks
Stack<String> stack = new Stack<String>();
stack.push(“a”);
stack.push(“b”);
stack.push(“c”);
stack.push(“d”);
...
String s;
s = stack.pop();  // returns “d”

push adds an object to the stack

pop both gets 
and removes the 
“last” object from 

the stack
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Usage example of stacks
Stack<String> stack = new Stack<String>();
stack.push(“a”);
stack.push(“b”);
stack.push(“c”);
stack.push(“d”);
...
String s;
s = stack.pop();  // returns “d”
s = stack.pop();  // returns “c”

push adds an object to the stack

pop both gets 
and removes the 
“last” object from 

the stack
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Usage example of stacks
Stack<String> stack = new Stack<String>();
stack.push(“a”);
stack.push(“b”);
stack.push(“c”);
stack.push(“d”);
...
String s;
s = stack.pop();  // returns “d”
s = stack.pop();  // returns “c”
s = stack.pop();  // returns “b”

push adds an object to the stack

pop both gets 
and removes the 
“last” object from 

the stack
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Usage example of stacks
Stack<String> stack = new Stack<String>();
stack.push(“a”);
stack.push(“b”);
stack.push(“c”);
stack.push(“d”);
...
String s;
s = stack.pop();  // returns “d”
s = stack.pop();  // returns “c”
s = stack.pop();  // returns “b”
s = stack.pop();  // returns “a”

push adds an object to the stack

pop both gets 
and removes the 
“last” object from 

the stack
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Stacks
• Stacks find many uses in computer science, e.g.:

• Implementing procedure calls.

• Consider the following code:
void f () {
  _num = 4;
  g();
  _num++;
}
void g () {
  h();
  _num = 7;
}
void h () {
  System.out.println(“Yup!”);
}

How does the CPU know to “jump” from 
f to g, g to h, then h back to g, and finally 

g back to f?
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Von Neumann machine

• On all modern machines, a program’s instructions and its 
data are stored together somewhere in the computer’s 
long sequence of bits (Von Neumann architecture).

• Just by “glancing” at the contents of computer 
memory, one would have no idea whether a certain 
byte contains code or data -- it’s all just bits.

• To keep track of which instruction in memory is 
currently being executed, the CPU maintains an 
Instruction Pointer (IP).
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Code execution

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• Suppose the IP is 8:

• Then the next instruction 
to execute is _num=4;

• The CPU then advances the 
IP to the next instruction (4 
bytes later) to 12.

IP

_
n
u
m
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4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• The next instruction is 
call g().

• The CPU must now 
“move” the IP to address 
24 (start of g’s code) so g 
can start.

IP

_
n
u
m

Code execution
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4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• g has now started.

• The first thing g does is 
call h.

• We have to move the IP 
again.

IP
_
n
u
m

Code execution
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4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• h now prints out “yup!”.
IP

_
n
u
m

Code execution
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4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• The return instructions 
tells the CPU to move 
the IP back to where it 
was before the current 
method was called.

• But where is that?

IP

_
n
u
m

Code execution
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4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• The return call at address 
40 should cause the CPU 
to jump to address 28 -- 
the next instruction in g.

IP

_
n
u
m

Code execution
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7

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• We then execute 
_num=7;IP

_
n
u
m

Code execution
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7

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• And now we have to 
return to where the caller 
of g left off (address 16).IP

_
n
u
m

Code execution
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7

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• How does the CPU know which 
address to “return” to?

• We need some kind of data 
structure to manage the “return 
addresses” for us.

_
n
u
m

Code execution

IP
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7

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• What we need is a last-in-first-
out data structure (“stack”) to 
remember all the return 
addresses:

• Rule 1: Before method x calls 
method y, method x first adds 
its “return address” to the 
stack.

• Rule 2: When method y 
“returns” to its caller, it 
removes the top of the stack 
and sets the IP to that address.

• Let’s see this work in practice...

_
n
u
m

Code execution

IP
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Code execution

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• “Return address” stack:

IP

_
n
u
m

(bottom of stack)
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Code execution

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

IP

_
n
u
m

(bottom of stack)

16

“push” 16 onto stack

• “Return address” stack:
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Code execution

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

IP
_
n
u
m

(bottom of stack)

16
28

“push” 28 onto stack

• “Return address” stack:
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Code execution

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

IP

_
n
u
m

(bottom of stack)

16
28

• “Return address” stack:
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Code execution

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...
IP

_
n
u
m

(bottom of stack)

16

“pop” 28 off the stack...

28

• “Return address” stack:
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Code execution

7

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

IP
_
n
u
m

(bottom of stack)

16

...and jump to that address.

• “Return address” stack:
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Code execution

7

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

IP

_
n
u
m

(bottom of stack)

“pop” 16 off the stack...

16

• “Return address” stack:
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Code execution

7

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

IP

_
n
u
m

(bottom of stack)

...and jump to that address.

• “Return address” stack:
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Stack ADT

• To support the last-in-first-out adding/removal of 
elements, a stack must adhere to the following interface:

interface Stack<T> {
  // Adds the specified object to the top of the stack.
  void push (T o);

  // Removes the top of the stack and returns it.
  T pop ();

  // Returns the top of the stack without removing it.
  T peek ();
}
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Review of stacks
• Stacks are a last-in-first-out (LIFO) data structure 

designed primarily to store data temporarily.

• Data are always added to/removed from the top of the 
stack.

• Stack ADT interface:

interface Stack<T> {
  // Adds the specified object to the top of the stack.
  void push (T o);

  // Removes the top of the stack and returns it.
  T pop () throws NoSuchElementException;

  // Returns the top of the stack without removing it.
  T peek () throws NoSuchElementException;
}
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Stack implementations
• A stack can be implemented straightforwardly using 

two kinds of backing stores/underlying storage.

• Array

• More efficient for stacks of a fixed maximum 
capacity.

• Linked list

• More flexible for stacks with a growable 
capacity.
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Array-based stacks
• Arrays offer a natural implementation of stacks:

• Use T[] _underlyingStorage to hold elements added to stack.

• Maximum capacity is _underlyingStorage.length

• Keep track of “height” of stack using _numElements instance 
variable.

a b c x y z w

0
_numElements - 1

T[] _underlyingStorage; 

Bottom Top

...
_stack.push(y);
_stack.push(z);
_stack.push(w);

_numElements: 7
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Array-based stacks

• In every call to push(o), e.g., _stack.push(q);

• _numElements is incremented.

• o is stored at index _numElements - 1.

a b c x y z w q

0
_numElements - 1

T[] _underlyingStorage; 

Bottom Top

_numElements: 8
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Array-based stacks
• In every call to peek():

• The element stored at index _numElements 
- 1 is saved to a local variable top.

• top is returned.

a b c x y z w q

0
_numElements - 1

T[] _underlyingStorage; 

Bottom Top

_numElements: 8

q
top
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Array-based stacks
• In every call to pop():

• The element stored at index _numElements 
- 1 is saved to a local variable top.

• _numElements is decremented.

• top is returned.

a b c x y z w q

0
_numElements - 1

T[] _underlyingStorage; 

Bottom Top

_numElements: 7

q
top
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Exceptions

• If a stack has reached its maximum capacity 
(i.e., _numElements == 
_underlyingStorage.length) and the user 
calls push(o), then the stack will 
overflow.

• If a stack is empty (_numElements == 0) 
and the user calls pop(), then the stack will 
underflow.
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Linked list-based stacks
• A stack can also be implemented using a 

linked-list of nodes:

a b c

a

Node Node Node

null
b c

int _numElements:  3

_bottom or 
_head

Array-
based stack

Linked list-
based stack

T[] _underlyingStorage

_top or 
_tail
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Linked list-based stacks
• Each call to push(o) adds a new Node to 

the _top of the stack (or _tail of the list), 
e.g.:

_stack.push(d);

a

Node Node Node

null
b d

_bottom or 
_head

Linked list-
based stack

_top or 
_tail

Node

c
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Linked list-based stacks

• Each call to peek() simply returns the data 
referenced by _top (or _tail):

final T top = _stack.peek(); // d

a

Node Node Node

null
b d

_bottom or 
_head

Linked list-
based stack

_top or 
_tail

Node

c
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Linked list-based stacks
• Each call to pop() removes the Node at the 

_top of the stack (or _tail of the list) and 
returns the data it referenced, e.g.:

final T top = _stack.pop(); // d

a

Node Node Node

null
b c

_bottom or 
_head

Linked list-
based stack

_top or 
_tail
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Linked list-based stacks
• A linked list-based stack ADT could be 

implemented by defining a static inner-class Node 
and essentially “re-implementing” the 
DoublyLinkedList12 functionality.

• But this would be wasteful -- we already have a 
functioning DoublyLinkedList12 ADT.

• We can save time and the possibility of human 
error by “adapting” the DoublyLinkedList12 
ADT to a Stack ADT.
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“Adapter” design pattern

• In software engineering, one of the classic “design 
patterns” is the adapter.

• An adapter is a class that “converts” from the interface 
of one ADT -- the one we’re trying to implement -- to 
the interface of another ADT that already exists.

• If we adapt an ADT B to implement another ADT A, 
then every method of A must be “converted” into a 
related call of B.

• In particular, we can adapt the List12 ADT 
(implemented by DoublyLinkedList12) to satisfy the 
Stack ADT interface specification...
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Stack as adaptation of 
linked list

class StackImpl<T> implements Stack<T> {
  private DoublyLinkedList _list;
  StackImpl () {
    _list = new DoublyLinkedList();
  }

  void push (T o) {
    _list.addToBack(o);
  }

  T pop () {
    return _list.removeBack();
  }
  ...
}
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Queues.
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Queues
• Queues are a first-in-first-out (FIFO) data 

structure used typically for temporary data 
storage.

• Instead of add, get, and remove 
methods, queues offer enqueue and 
dequeue methods.

• The first object to be enqueued is the 
first object to be dequeued.

• Similarly to a train entering a tunnel, the 
first car to enter the tunnel is the first car 
to exit the tunnel.
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Usage example of queues
Queue<String> queue = new Queue<String>();
queue.enqueue(“a”);
queue.enqueue(“b”);
queue.enqueue(“c”);
queue.enqueue(“d”);
...
String s;
s = queue.dequeue();  // returns “a”
s = queue.dequeue();  // returns “b”
...

enqueue adds an object to the queue

dequeue both gets and 
removes the “earliest” 
object from the queue
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Queue example
• Consider enrollment lists for a UCSD course. 

Suppose max enrollment = 80:
class Course {
  private static final int MAX_ENROLLMENT = 80;
  private List<Student> _enrolledStudents;
  private Queue<Student> _waitingList;
  ...
  boolean enroll (Student s) {
    ...
  }
  void addToWaitingList (Student s) {
    ...
  }
  void drop (Student s) {
    ...
  }
}
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Queue example

• A student can enroll only if course size is less 
than max enrollment:
boolean enroll (Student s) {
  if (_enrolledStudents.size() == MAX_ENROLLMENT) {
    return false;  // course full -- can’t enroll!
  }
  _enrolledStudents.add(s);
}
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Queue example

• If course is full, students can place their name on 
a waiting list:

void addToWaitingList (Student s) {
  _waitingList.enqueue(s);
}
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Queue example

• If a student drops the course, then we can enroll 
a student from the waiting list:
void drop (Student s) {
  _list.remove(s);
  if (_waitingList.size() > 0) {
    _enrolledStudents.add(_waitingList.dequeue());
  }
}

The Queue interface ensures 
that the first Student to be 
dequeued is always the first 

student who enqueued.
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Queue ADT

• The interface for a Queue ADT looks as follows:

interface Queue<T> {
  // Adds o to the back of the queue.
  void enqueue (T o);

  // Removes the object at the front of the
  // queue.
  T dequeue () throws NoSuchElementException;

  // Returns number of elements in queue
  int size ();
}
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Implementing a queue
• A queue can probably be most easily 

conceptualized and implemented as a linked list.

• The head of the list is the front of the queue.

• The tail is the back of the queue.

• Calls to enqueue(o) add a new Node to the back.

• Calls to dequeue() remove a Node (and return its 
data) from the front.

o3

Node Node Node

null
o2 o1

_front or 
_head

Linked list-
based queue

_back 
or 

_tail
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Adapting a 
DoublyLinkedList12

• As with the Stack ADT, the Queue ADT also lends 
itself to adapting the existing DoublyLinkedList12 
ADT to suit its needs:

• Instantiate _dll = new DoublyLinkedList12<T>();

• Calls to enqueue(o): _dll.addToBack(o);

• Calls to dequeue(): return _dll.removeFront();
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Array-based queue
• Like stacks, queues too can be implemented using an 

array as the underlying storage.

• However, arriving at at an efficient solution is non-trivial.

• Assume following instance variables:

• T[] _underlyingStorage

• int _frontIdx, _backIdx -- indices into 
_underlyingStorage of where the front and back 
of the queue are located.
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Array-based queue
• enqueue(o): Append to the back of the array:

• This is easy:

_backIdx++;
_underlyingStorage[_backIdx] = o;

o1 o2 o3 o4 o5 o6 o7T[] _underlyingStorage; 

_frontIdx _backIdx

0 1 2 3 4 5 6
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Array-based queue
• enqueue(o): Append to the back of the array:

• This is easy:

_backIdx++;
_underlyingStorage[_backIdx] = o;

• Example:  _queue.enqueue(o8);

o1 o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage; 

_frontIdx _backIdx

0 1 2 3 4 5 6 7
Monday, July 16, 12



Array-based queue
• dequeue(): Remove from the front of the array:

• This is harder -- what happens when we 
remove o1?

• There are several ways one can attempt to 
implement this method...

o1 o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage; 

_frontIdx _backIdx

0 1 2 3 4 5 6 7
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dequeue() -- Attempt #1

o1 o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage; 

_frontIdx _backIdx

0 1 2 3 4 5 6 7

• One possibility is to “shift down” by 1 the entire 
queue after the front has been removed:

final T front = _underlyingStorage[0];
for (int i = _frontIdx+1; i <= _backIdx; i++) {
  _underlyingStorage[i-1] = _underlyingStorage[i];
}
_backIdx--;  // The back has “moved up” by 1
return front;
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dequeue() -- Attempt #1

o1 o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage; 

_frontIdx _backIdx

0 1 2 3 4 5 6 7

• One possibility is to “shift down” by 1 the entire 
queue after the front has been removed:

final T front = _underlyingStorage[0];
for (int i = _frontIdx+1; i <= _backIdx; i++) {
  _underlyingStorage[i-1] = _underlyingStorage[i];
}
_backIdx--;  // The back has “moved up” by 1
return front;

• Example: _queue.dequeue();

o1
front
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dequeue() -- Attempt #1

o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage; 

_frontIdx _backIdx

0 1 2 3 4 5 6 7

o1
front

• One possibility is to “shift down” by 1 the entire 
queue after the front has been removed:

final T front = _underlyingStorage[0];
for (int i = 1; i < _backIdx; i++) {
  _underlyingStorage[i-1] = _underlyingStorage[i];
}
_backIdx--;  // The back has “moved up” by 1
return front;

• Example: _queue.dequeue();
_frontIdx never changes -- always 1!
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dequeue() -- Attempt #2
• Another possibility is to allocate a huge array for the 

_underlyingStorage, and then just keep advancing 
_frontIdx by 1 whenever dequeue() is called.

final T front = _underlyingStorage[_frontIdx];
_frontIdx++;
return front;

o1 o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage; 

_frontIdx _backIdx

0 1 2 3 4 5 6 7

front
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• Let’s consider this implementation strategy when 
enqueue(o) and dequeue() are called many times...

_queue.enqueue(o9);
_queue.dequeue();
_queue.enqueue(o10);
_queue.dequeue();

...

o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage; 

_frontIdx _backIdx

0 1 2 3 4 5 6 7 8 9

dequeue() -- Attempt #2
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• Let’s consider this implementation strategy when 
enqueue(o) and dequeue() are called many times...

_queue.enqueue(o9);
_queue.dequeue();
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• This implementation of dequeue() is elegant and 
efficient.

• The queue keeps “moving” to the right.

• Even though the length of the queue may be 
small, the array would have to be of infinite length 
to accommodate the eternal “sliding down”.

o4 o5 o6 o7 o8 o9 o10T[] _underlyingStorage; 

_frontIdx

0 1 2 3 4 5 6 7

_backIdx

8 9

dequeue() -- Attempt #2
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• Let’s try one more time...

• Let’s assume that the maximum length of the queue is 
bounded, i.e., it will never exceed some MAX_LENGTH.

• Note -- in general, MAX_LENGTH and 
_underlyingStorage could be different.

• We can simulate an “infinite array” by implementing a 
ring buffer.

• In a ring buffer, the back of the array is connected 
to the front of the array by “bending the array into 
a circle”.

dequeue() -- Attempt #3
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• Example: T[] _ringBuffer = (T[]) new Object[8];

• In a ring buffer, the array indices 7 and 0 are adjacent.

• The index “before” 0 is 7.

• The index “after” 7 is 0.

dequeue() -- Attempt #3
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• A ring buffer is a convenient programming abstraction.

• With ring buffers, when we wish to “iterate around” the array, we can use an 
index variable currentIdx.

• Each time we wish to retrieve the “next” element, we return 
_ringBuffer[currentIdx];

• We then must “increment” currentIdx.

• If currentIdx < 7, then: currentIdx++;

• If currentIdx == 7, then: currentIdx = 0;

dequeue() -- Attempt #3
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• Similar logic applies to iterating “backwards”:

• Each time we wish to retrieve the “previous” element, we return 
_ringBuffer[currentIdx];

• We then must “decrement” currentIdx.

• If currentIdx > 0, then: currentIdx--;

• If currentIdx == 0, then: currentIdx = 7;

dequeue() -- Attempt #3
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• Ring buffers are useful when implementing queues because they allow 
us to keep “moving the queue to the right” without actually requiring 
infinite storage.

• Consider the queue below (initially _frontIdx = 2 and _backIdx = 4).

• We can call enqueue and dequeue repeatedly -- the queue will appear 
to “slide around” the ring buffer.

• As long as dequeue() is called frequently enough (compared to 
enqueue(o)), the ring buffer will never get full.

dequeue() -- Attempt #3
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• Using a ring buffer as the underlying storage, a queue can be 
implemented so that both enqueue(o) and dequeue() 
operate efficiently.

• The disadvantage compared to a linked list-based 
implementation is that the maximum length of the queue 
must be known in advance.

• When the queue is “full” and the user calls enqueue(o), 
then either:

• The queue will block -- hang until some other 
program/thread calls dequeue; or

• Throw an exception.

• With linked lists, the queue can grow arbitrarily long.

dequeue() -- Attempt #3
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