
CSE 12:
Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Seven
16 July 2012

Monday, July 16, 12

Stacks and queues.

Monday, July 16, 12

Stacks and queues.
• Let’s now bring in two more fundamental data structures

into the course.

• So far we have covered lists -- array-based lists and linked-
lists.

• These are both linear data structures -- each element in
the container has at most one successor and one
predecessor.

• Lists are most frequently used when we wish to store
objects in a container, and probably never remove them from it.

• E.g., if Amazon uses a list to store its huge collection of
customers, it has no intention of “removing” a customer
(except at program termination).

Monday, July 16, 12

Stacks and queues
• Stacks and queues, on the other hand, are

examples of linear data structures in which every
object inserted into it will generally be removed:

• The stack/queue is intended only as
“temporary” storage.

• Both stacks and queues allow the user to add and
remove elements.

• Where they differ is the order in which elements
are removed relative to when they were added.

Monday, July 16, 12

Stacks.

Monday, July 16, 12

Stacks
• Stacks are last-in-first-out (LIFO) data structures.

• The classic analogy for a “stack” is a pile of dishes:

• Suppose you’ve already added dishes A, B, and C
to the “stack” of dishes.

If you try to remove a middle dish, you get that annoying clanging sound.

A

B

C

Monday, July 16, 12

Stacks
• Stacks are last-in-first-out (LIFO) data structures.

• The classic analogy for a “stack” is a pile of dishes:

• Suppose you’ve already added dishes A, B, and C
to the “stack” of dishes.

• Now you add one more, D.

If you try to remove a middle dish, you get that annoying clanging sound.

A

B

C

D

Monday, July 16, 12

Stacks
• Stacks are last-in-first-out (LIFO) data structures.

• The classic analogy for a “stack” is a pile of dishes:

• Suppose you’ve already added dishes A, B, and C
to the “stack” of dishes.

• Now you add one more, D.

• Now you remove one dish -- you get D back.

If you try to remove a middle dish, you get that annoying clanging sound.

A

B

C

Monday, July 16, 12

Stacks
• Stacks are last-in-first-out (LIFO) data structures.

• The classic analogy for a “stack” is a pile of dishes:

• Suppose you’ve already added dishes A, B, and C
to the “stack” of dishes.

• Now you add one more, D.

• Now you remove one dish -- you get D back.

• If you remove another, you get C, and so on.

• With stacks, you can only add to/remove from the
top of the stack.

If you try to remove a middle dish, you get that annoying clanging sound.

A

B

Monday, July 16, 12

Usage example of stacks
Stack<String> stack = new Stack<String>();
stack.push(“a”);
stack.push(“b”);
stack.push(“c”);
stack.push(“d”);
...
String s;
s = stack.pop(); // returns “d”

push adds an object to the stack

pop both gets
and removes the
“last” object from

the stack

Monday, July 16, 12

Usage example of stacks
Stack<String> stack = new Stack<String>();
stack.push(“a”);
stack.push(“b”);
stack.push(“c”);
stack.push(“d”);
...
String s;
s = stack.pop(); // returns “d”
s = stack.pop(); // returns “c”

push adds an object to the stack

pop both gets
and removes the
“last” object from

the stack

Monday, July 16, 12

Usage example of stacks
Stack<String> stack = new Stack<String>();
stack.push(“a”);
stack.push(“b”);
stack.push(“c”);
stack.push(“d”);
...
String s;
s = stack.pop(); // returns “d”
s = stack.pop(); // returns “c”
s = stack.pop(); // returns “b”

push adds an object to the stack

pop both gets
and removes the
“last” object from

the stack

Monday, July 16, 12

Usage example of stacks
Stack<String> stack = new Stack<String>();
stack.push(“a”);
stack.push(“b”);
stack.push(“c”);
stack.push(“d”);
...
String s;
s = stack.pop(); // returns “d”
s = stack.pop(); // returns “c”
s = stack.pop(); // returns “b”
s = stack.pop(); // returns “a”

push adds an object to the stack

pop both gets
and removes the
“last” object from

the stack

Monday, July 16, 12

Stacks
• Stacks find many uses in computer science, e.g.:

• Implementing procedure calls.

• Consider the following code:
void f () {
 _num = 4;
 g();
 _num++;
}
void g () {
 h();
 _num = 7;
}
void h () {
 System.out.println(“Yup!”);
}

How does the CPU know to “jump” from
f to g, g to h, then h back to g, and finally

g back to f?

Monday, July 16, 12

Von Neumann machine

• On all modern machines, a program’s instructions and its
data are stored together somewhere in the computer’s
long sequence of bits (Von Neumann architecture).

• Just by “glancing” at the contents of computer
memory, one would have no idea whether a certain
byte contains code or data -- it’s all just bits.

• To keep track of which instruction in memory is
currently being executed, the CPU maintains an
Instruction Pointer (IP).

Monday, July 16, 12

Code execution

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• Suppose the IP is 8:

• Then the next instruction
to execute is _num=4;

• The CPU then advances the
IP to the next instruction (4
bytes later) to 12.

IP

_
n
u
m

Monday, July 16, 12

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• The next instruction is
call g().

• The CPU must now
“move” the IP to address
24 (start of g’s code) so g
can start.

IP

_
n
u
m

Code execution

Monday, July 16, 12

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• g has now started.

• The first thing g does is
call h.

• We have to move the IP
again.

IP
_
n
u
m

Code execution

Monday, July 16, 12

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• h now prints out “yup!”.
IP

_
n
u
m

Code execution

Monday, July 16, 12

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• The return instructions
tells the CPU to move
the IP back to where it
was before the current
method was called.

• But where is that?

IP

_
n
u
m

Code execution

Monday, July 16, 12

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• The return call at address
40 should cause the CPU
to jump to address 28 --
the next instruction in g.

IP

_
n
u
m

Code execution

Monday, July 16, 12

7

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• We then execute
_num=7;IP

_
n
u
m

Code execution

Monday, July 16, 12

7

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• And now we have to
return to where the caller
of g left off (address 16).IP

_
n
u
m

Code execution

Monday, July 16, 12

7

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• How does the CPU know which
address to “return” to?

• We need some kind of data
structure to manage the “return
addresses” for us.

_
n
u
m

Code execution

IP

Monday, July 16, 12

7

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• What we need is a last-in-first-
out data structure (“stack”) to
remember all the return
addresses:

• Rule 1: Before method x calls
method y, method x first adds
its “return address” to the
stack.

• Rule 2: When method y
“returns” to its caller, it
removes the top of the stack
and sets the IP to that address.

• Let’s see this work in practice...

_
n
u
m

Code execution

IP

Monday, July 16, 12

Code execution

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

• “Return address” stack:

IP

_
n
u
m

(bottom of stack)

Monday, July 16, 12

Code execution

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

IP

_
n
u
m

(bottom of stack)

16

“push” 16 onto stack

• “Return address” stack:

Monday, July 16, 12

Code execution

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

IP
_
n
u
m

(bottom of stack)

16
28

“push” 28 onto stack

• “Return address” stack:

Monday, July 16, 12

Code execution

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

IP

_
n
u
m

(bottom of stack)

16
28

• “Return address” stack:

Monday, July 16, 12

Code execution

4

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...
IP

_
n
u
m

(bottom of stack)

16

“pop” 28 off the stack...

28

• “Return address” stack:

Monday, July 16, 12

Code execution

7

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

IP
_
n
u
m

(bottom of stack)

16

...and jump to that address.

• “Return address” stack:

Monday, July 16, 12

Code execution

7

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

IP

_
n
u
m

(bottom of stack)

“pop” 16 off the stack...

16

• “Return address” stack:

Monday, July 16, 12

Code execution

7

_num=4;

call g();

_num++;

return;

call h();

_num = 7;

return;

...println(“yup!”);

return;

Memory

f
g

h

Address

0

4

8

12

16

20

24

28

32

36

40

...

IP

_
n
u
m

(bottom of stack)

...and jump to that address.

• “Return address” stack:

Monday, July 16, 12

Stack ADT

• To support the last-in-first-out adding/removal of
elements, a stack must adhere to the following interface:

interface Stack<T> {
 // Adds the specified object to the top of the stack.
 void push (T o);

 // Removes the top of the stack and returns it.
 T pop ();

 // Returns the top of the stack without removing it.
 T peek ();
}

Monday, July 16, 12

Review of stacks
• Stacks are a last-in-first-out (LIFO) data structure

designed primarily to store data temporarily.

• Data are always added to/removed from the top of the
stack.

• Stack ADT interface:

interface Stack<T> {
 // Adds the specified object to the top of the stack.
 void push (T o);

 // Removes the top of the stack and returns it.
 T pop () throws NoSuchElementException;

 // Returns the top of the stack without removing it.
 T peek () throws NoSuchElementException;
}

Monday, July 16, 12

Stack implementations
• A stack can be implemented straightforwardly using

two kinds of backing stores/underlying storage.

• Array

• More efficient for stacks of a fixed maximum
capacity.

• Linked list

• More flexible for stacks with a growable
capacity.

Monday, July 16, 12

Array-based stacks
• Arrays offer a natural implementation of stacks:

• Use T[] _underlyingStorage to hold elements added to stack.

• Maximum capacity is _underlyingStorage.length

• Keep track of “height” of stack using _numElements instance
variable.

a b c x y z w

0
_numElements - 1

T[] _underlyingStorage;

Bottom Top

...
_stack.push(y);
_stack.push(z);
_stack.push(w);

_numElements: 7

Monday, July 16, 12

Array-based stacks

• In every call to push(o), e.g., _stack.push(q);

• _numElements is incremented.

• o is stored at index _numElements - 1.

a b c x y z w q

0
_numElements - 1

T[] _underlyingStorage;

Bottom Top

_numElements: 8

Monday, July 16, 12

Array-based stacks
• In every call to peek():

• The element stored at index _numElements
- 1 is saved to a local variable top.

• top is returned.

a b c x y z w q

0
_numElements - 1

T[] _underlyingStorage;

Bottom Top

_numElements: 8

q
top

Monday, July 16, 12

Array-based stacks
• In every call to pop():

• The element stored at index _numElements
- 1 is saved to a local variable top.

• _numElements is decremented.

• top is returned.

a b c x y z w q

0
_numElements - 1

T[] _underlyingStorage;

Bottom Top

_numElements: 7

q
top

Monday, July 16, 12

Exceptions

• If a stack has reached its maximum capacity
(i.e., _numElements ==
_underlyingStorage.length) and the user
calls push(o), then the stack will
overflow.

• If a stack is empty (_numElements == 0)
and the user calls pop(), then the stack will
underflow.

Monday, July 16, 12

Linked list-based stacks
• A stack can also be implemented using a

linked-list of nodes:

a b c

a

Node Node Node

null
b c

int _numElements: 3

_bottom or
_head

Array-
based stack

Linked list-
based stack

T[] _underlyingStorage

_top or
_tail

Monday, July 16, 12

Linked list-based stacks
• Each call to push(o) adds a new Node to

the _top of the stack (or _tail of the list),
e.g.:

_stack.push(d);

a

Node Node Node

null
b d

_bottom or
_head

Linked list-
based stack

_top or
_tail

Node

c

Monday, July 16, 12

Linked list-based stacks

• Each call to peek() simply returns the data
referenced by _top (or _tail):

final T top = _stack.peek(); // d

a

Node Node Node

null
b d

_bottom or
_head

Linked list-
based stack

_top or
_tail

Node

c

Monday, July 16, 12

Linked list-based stacks
• Each call to pop() removes the Node at the

_top of the stack (or _tail of the list) and
returns the data it referenced, e.g.:

final T top = _stack.pop(); // d

a

Node Node Node

null
b c

_bottom or
_head

Linked list-
based stack

_top or
_tail

Monday, July 16, 12

Linked list-based stacks
• A linked list-based stack ADT could be

implemented by defining a static inner-class Node
and essentially “re-implementing” the
DoublyLinkedList12 functionality.

• But this would be wasteful -- we already have a
functioning DoublyLinkedList12 ADT.

• We can save time and the possibility of human
error by “adapting” the DoublyLinkedList12
ADT to a Stack ADT.

Monday, July 16, 12

“Adapter” design pattern

• In software engineering, one of the classic “design
patterns” is the adapter.

• An adapter is a class that “converts” from the interface
of one ADT -- the one we’re trying to implement -- to
the interface of another ADT that already exists.

• If we adapt an ADT B to implement another ADT A,
then every method of A must be “converted” into a
related call of B.

• In particular, we can adapt the List12 ADT
(implemented by DoublyLinkedList12) to satisfy the
Stack ADT interface specification...

Monday, July 16, 12

Stack as adaptation of
linked list

class StackImpl<T> implements Stack<T> {
 private DoublyLinkedList _list;
 StackImpl () {
 _list = new DoublyLinkedList();
 }

 void push (T o) {
 _list.addToBack(o);
 }

 T pop () {
 return _list.removeBack();
 }
 ...
}

Monday, July 16, 12

Queues.

Monday, July 16, 12

Queues
• Queues are a first-in-first-out (FIFO) data

structure used typically for temporary data
storage.

• Instead of add, get, and remove
methods, queues offer enqueue and
dequeue methods.

• The first object to be enqueued is the
first object to be dequeued.

• Similarly to a train entering a tunnel, the
first car to enter the tunnel is the first car
to exit the tunnel.

Monday, July 16, 12

Usage example of queues
Queue<String> queue = new Queue<String>();
queue.enqueue(“a”);
queue.enqueue(“b”);
queue.enqueue(“c”);
queue.enqueue(“d”);
...
String s;
s = queue.dequeue(); // returns “a”
s = queue.dequeue(); // returns “b”
...

enqueue adds an object to the queue

dequeue both gets and
removes the “earliest”
object from the queue

Monday, July 16, 12

Queue example
• Consider enrollment lists for a UCSD course.

Suppose max enrollment = 80:
class Course {
 private static final int MAX_ENROLLMENT = 80;
 private List<Student> _enrolledStudents;
 private Queue<Student> _waitingList;
 ...
 boolean enroll (Student s) {
 ...
 }
 void addToWaitingList (Student s) {
 ...
 }
 void drop (Student s) {
 ...
 }
}

Monday, July 16, 12

Queue example

• A student can enroll only if course size is less
than max enrollment:
boolean enroll (Student s) {
 if (_enrolledStudents.size() == MAX_ENROLLMENT) {
 return false; // course full -- can’t enroll!
 }
 _enrolledStudents.add(s);
}

Monday, July 16, 12

Queue example

• If course is full, students can place their name on
a waiting list:

void addToWaitingList (Student s) {
 _waitingList.enqueue(s);
}

Monday, July 16, 12

Queue example

• If a student drops the course, then we can enroll
a student from the waiting list:
void drop (Student s) {
 _list.remove(s);
 if (_waitingList.size() > 0) {
 _enrolledStudents.add(_waitingList.dequeue());
 }
}

The Queue interface ensures
that the first Student to be
dequeued is always the first

student who enqueued.

Monday, July 16, 12

Queue ADT

• The interface for a Queue ADT looks as follows:

interface Queue<T> {
 // Adds o to the back of the queue.
 void enqueue (T o);

 // Removes the object at the front of the
 // queue.
 T dequeue () throws NoSuchElementException;

 // Returns number of elements in queue
 int size ();
}

Monday, July 16, 12

Implementing a queue
• A queue can probably be most easily

conceptualized and implemented as a linked list.

• The head of the list is the front of the queue.

• The tail is the back of the queue.

• Calls to enqueue(o) add a new Node to the back.

• Calls to dequeue() remove a Node (and return its
data) from the front.

o3

Node Node Node

null
o2 o1

_front or
_head

Linked list-
based queue

_back
or

_tail
Monday, July 16, 12

Adapting a
DoublyLinkedList12

• As with the Stack ADT, the Queue ADT also lends
itself to adapting the existing DoublyLinkedList12
ADT to suit its needs:

• Instantiate _dll = new DoublyLinkedList12<T>();

• Calls to enqueue(o): _dll.addToBack(o);

• Calls to dequeue(): return _dll.removeFront();

Monday, July 16, 12

Array-based queue
• Like stacks, queues too can be implemented using an

array as the underlying storage.

• However, arriving at at an efficient solution is non-trivial.

• Assume following instance variables:

• T[] _underlyingStorage

• int _frontIdx, _backIdx -- indices into
_underlyingStorage of where the front and back
of the queue are located.

Monday, July 16, 12

Array-based queue
• enqueue(o): Append to the back of the array:

• This is easy:

_backIdx++;
_underlyingStorage[_backIdx] = o;

o1 o2 o3 o4 o5 o6 o7T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6
Monday, July 16, 12

Array-based queue
• enqueue(o): Append to the back of the array:

• This is easy:

_backIdx++;
_underlyingStorage[_backIdx] = o;

• Example: _queue.enqueue(o8);

o1 o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6 7
Monday, July 16, 12

Array-based queue
• dequeue(): Remove from the front of the array:

• This is harder -- what happens when we
remove o1?

• There are several ways one can attempt to
implement this method...

o1 o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6 7
Monday, July 16, 12

dequeue() -- Attempt #1

o1 o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6 7

• One possibility is to “shift down” by 1 the entire
queue after the front has been removed:

final T front = _underlyingStorage[0];
for (int i = _frontIdx+1; i <= _backIdx; i++) {
 _underlyingStorage[i-1] = _underlyingStorage[i];
}
_backIdx--; // The back has “moved up” by 1
return front;

Monday, July 16, 12

dequeue() -- Attempt #1

o1 o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6 7

• One possibility is to “shift down” by 1 the entire
queue after the front has been removed:

final T front = _underlyingStorage[0];
for (int i = _frontIdx+1; i <= _backIdx; i++) {
 _underlyingStorage[i-1] = _underlyingStorage[i];
}
_backIdx--; // The back has “moved up” by 1
return front;

• Example: _queue.dequeue();

o1
front

Monday, July 16, 12

dequeue() -- Attempt #1

o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6 7

o1
front

• One possibility is to “shift down” by 1 the entire
queue after the front has been removed:

final T front = _underlyingStorage[0];
for (int i = 1; i < _backIdx; i++) {
 _underlyingStorage[i-1] = _underlyingStorage[i];
}
_backIdx--; // The back has “moved up” by 1
return front;

• Example: _queue.dequeue();
_frontIdx never changes -- always 1!

Monday, July 16, 12

dequeue() -- Attempt #2
• Another possibility is to allocate a huge array for the

_underlyingStorage, and then just keep advancing
_frontIdx by 1 whenever dequeue() is called.

final T front = _underlyingStorage[_frontIdx];
_frontIdx++;
return front;

o1 o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6 7

front

Monday, July 16, 12

dequeue() -- Attempt #2
• Another possibility is to allocate a huge array for the

_underlyingStorage, and then just keep advancing
_frontIdx by 1 whenever dequeue() is called.

final T front = _underlyingStorage[_frontIdx];
_frontIdx++;
return front;

• Example: _queue.dequeue();

o1 o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6 7

o1
front

Monday, July 16, 12

dequeue() -- Attempt #2
• Another possibility is to allocate a huge array for the

_underlyingStorage, and then just keep advancing
_frontIdx by 1 whenever dequeue() is called.

final T front = _underlyingStorage[_frontIdx];
_frontIdx++;
return front;

• Example: _queue.dequeue();

o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6 7
Monday, July 16, 12

• Let’s consider this implementation strategy when
enqueue(o) and dequeue() are called many times...

_queue.enqueue(o9);
_queue.dequeue();
_queue.enqueue(o10);
_queue.dequeue();

...

o2 o3 o4 o5 o6 o7 o8T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6 7 8 9

dequeue() -- Attempt #2

Monday, July 16, 12

• Let’s consider this implementation strategy when
enqueue(o) and dequeue() are called many times...

_queue.enqueue(o9);
_queue.dequeue();
_queue.enqueue(o10);
_queue.dequeue();

...

o2 o3 o4 o5 o6 o7 o8 o9T[] _underlyingStorage;

_frontIdx _backIdx

0 1 2 3 4 5 6 7 8 9

dequeue() -- Attempt #2

Monday, July 16, 12

• Let’s consider this implementation strategy when
enqueue(o) and dequeue() are called many times...

_queue.enqueue(o9);
_queue.dequeue();
_queue.enqueue(o10);
_queue.dequeue();

...

o2 o3 o4 o5 o6 o7 o8 o9T[] _underlyingStorage;

_frontIdx

0 1 2 3 4 5 6 7

_backIdx

8 9

dequeue() -- Attempt #2

Monday, July 16, 12

• Let’s consider this implementation strategy when
enqueue(o) and dequeue() are called many times...

_queue.enqueue(o9);
_queue.dequeue();
_queue.enqueue(o10);
_queue.dequeue();

...

o3 o4 o5 o6 o7 o8 o9 o10T[] _underlyingStorage;

_frontIdx

0 1 2 3 4 5 6 7

_backIdx

8 9

dequeue() -- Attempt #2

Monday, July 16, 12

• Let’s consider this implementation strategy when
enqueue(o) and dequeue() are called many times...

_queue.enqueue(o9);
_queue.dequeue();
_queue.enqueue(o10);
_queue.dequeue();

...

o3 o4 o5 o6 o7 o8 o9 o10T[] _underlyingStorage;

_frontIdx

0 1 2 3 4 5 6 7

_backIdx

8 9

dequeue() -- Attempt #2

Monday, July 16, 12

• Let’s consider this implementation strategy when
enqueue(o) and dequeue() are called many times...

_queue.enqueue(o9);
_queue.dequeue();
_queue.enqueue(o10);
_queue.dequeue();

o4 o5 o6 o7 o8 o9 o10T[] _underlyingStorage;

_frontIdx

0 1 2 3 4 5 6 7

_backIdx

8 9

dequeue() -- Attempt #2

Monday, July 16, 12

• This implementation of dequeue() is elegant and
efficient.

• The queue keeps “moving” to the right.

• Even though the length of the queue may be
small, the array would have to be of infinite length
to accommodate the eternal “sliding down”.

o4 o5 o6 o7 o8 o9 o10T[] _underlyingStorage;

_frontIdx

0 1 2 3 4 5 6 7

_backIdx

8 9

dequeue() -- Attempt #2

Monday, July 16, 12

• Let’s try one more time...

• Let’s assume that the maximum length of the queue is
bounded, i.e., it will never exceed some MAX_LENGTH.

• Note -- in general, MAX_LENGTH and
_underlyingStorage could be different.

• We can simulate an “infinite array” by implementing a
ring buffer.

• In a ring buffer, the back of the array is connected
to the front of the array by “bending the array into
a circle”.

dequeue() -- Attempt #3

Monday, July 16, 12

• Example: T[] _ringBuffer = (T[]) new Object[8];

• In a ring buffer, the array indices 7 and 0 are adjacent.

• The index “before” 0 is 7.

• The index “after” 7 is 0.

dequeue() -- Attempt #3

a b c d e f g h

0 1 2 3 4 5 6 7

0

1

2

34

5

6

7
a

b

c
de

f

g
h

“Bend” into a circle

Monday, July 16, 12

• A ring buffer is a convenient programming abstraction.

• With ring buffers, when we wish to “iterate around” the array, we can use an
index variable currentIdx.

• Each time we wish to retrieve the “next” element, we return
_ringBuffer[currentIdx];

• We then must “increment” currentIdx.

• If currentIdx < 7, then: currentIdx++;

• If currentIdx == 7, then: currentIdx = 0;

dequeue() -- Attempt #3

a b c d e f g h

0 1 2 3 4 5 6 7

0

1

2

34

5

6

7
a

b

c
de

f

g
h

“Bend” into a circle

Monday, July 16, 12

• Similar logic applies to iterating “backwards”:

• Each time we wish to retrieve the “previous” element, we return
_ringBuffer[currentIdx];

• We then must “decrement” currentIdx.

• If currentIdx > 0, then: currentIdx--;

• If currentIdx == 0, then: currentIdx = 7;

dequeue() -- Attempt #3

a b c d e f g h

0 1 2 3 4 5 6 7

0

1

2

34

5

6

7
a

b

c
de

f

g
h

“Bend” into a circle

Monday, July 16, 12

• Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

• Consider the queue below (initially _frontIdx = 2 and _backIdx = 4).

• We can call enqueue and dequeue repeatedly -- the queue will appear
to “slide around” the ring buffer.

• As long as dequeue() is called frequently enough (compared to
enqueue(o)), the ring buffer will never get full.

dequeue() -- Attempt #3

0

1

2

34

5

6

7

c
de

_frontIdx

_backIdx

enqueue(f);
enqueue(g);
dequeue();
enqueue(h);
enqueue(i);
dequeue();

Monday, July 16, 12

• Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

• Consider the queue below (initially _frontIdx = 2 and _backIdx = 4).

• We can call enqueue and dequeue repeatedly -- the queue will appear
to “slide around” the ring buffer.

• As long as dequeue() is called frequently enough (compared to
enqueue(o)), the ring buffer will never get full.

dequeue() -- Attempt #3

0

1

2

34

5

6

7

c
de

_frontIdx_backIdx

enqueue(f);
enqueue(g);
dequeue();
enqueue(h);
enqueue(i);
dequeue();

f

Monday, July 16, 12

• Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

• Consider the queue below (initially _frontIdx = 2 and _backIdx = 4).

• We can call enqueue and dequeue repeatedly -- the queue will appear
to “slide around” the ring buffer.

• As long as dequeue() is called frequently enough (compared to
enqueue(o)), the ring buffer will never get full.

dequeue() -- Attempt #3

0

1

2

34

5

6

7

c
de

_frontIdx

_backIdx

enqueue(f);
enqueue(g);
dequeue();
enqueue(h);
enqueue(i);
dequeue();

f

g

Monday, July 16, 12

• Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

• Consider the queue below (initially _frontIdx = 2 and _backIdx = 4).

• We can call enqueue and dequeue repeatedly -- the queue will appear
to “slide around” the ring buffer.

• As long as dequeue() is called frequently enough (compared to
enqueue(o)), the ring buffer will never get full.

dequeue() -- Attempt #3

0

1

2

34

5

6

7

c
de

_frontIdx

_backIdx

enqueue(f);
enqueue(g);
dequeue();
enqueue(h);
enqueue(i);
dequeue();

f

g

Monday, July 16, 12

• Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

• Consider the queue below (initially _frontIdx = 2 and _backIdx = 4).

• We can call enqueue and dequeue repeatedly -- the queue will appear
to “slide around” the ring buffer.

• As long as dequeue() is called frequently enough (compared to
enqueue(o)), the ring buffer will never get full.

dequeue() -- Attempt #3

0

1

2

34

5

6

7

de

_frontIdx

_backIdx
enqueue(f);
enqueue(g);
dequeue();
enqueue(h);
enqueue(i);
dequeue();

f

g
h

Monday, July 16, 12

• Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

• Consider the queue below (initially _frontIdx = 2 and _backIdx = 4).

• We can call enqueue and dequeue repeatedly -- the queue will appear
to “slide around” the ring buffer.

• As long as dequeue() is called frequently enough (compared to
enqueue(o)), the ring buffer will never get full.

dequeue() -- Attempt #3

0

1

2

34

5

6

7

de

_frontIdx

_backIdx
enqueue(f);
enqueue(g);
dequeue();
enqueue(h);
enqueue(i);
dequeue();

f

g
h i

Monday, July 16, 12

• Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

• Consider the queue below (initially _frontIdx = 2 and _backIdx = 4).

• We can call enqueue and dequeue repeatedly -- the queue will appear
to “slide around” the ring buffer.

• As long as dequeue() is called frequently enough (compared to
enqueue(o)), the ring buffer will never get full.

dequeue() -- Attempt #3

0

1

2

34

5

6

7

de

_frontIdx

_backIdx
enqueue(f);
enqueue(g);
dequeue();
enqueue(h);
enqueue(i);
dequeue();

f

g
h i

Monday, July 16, 12

• Ring buffers are useful when implementing queues because they allow
us to keep “moving the queue to the right” without actually requiring
infinite storage.

• Consider the queue below (initially _frontIdx = 2 and _backIdx = 4).

• We can call enqueue and dequeue repeatedly -- the queue will appear
to “slide around” the ring buffer.

• As long as dequeue() is called frequently enough (compared to
enqueue(o)), the ring buffer will never get full.

dequeue() -- Attempt #3

0

1

2

34

5

6

7

e

_frontIdx

_backIdx
enqueue(f);
enqueue(g);
dequeue();
enqueue(h);
enqueue(i);
dequeue();

f

g
h i

Monday, July 16, 12

• Using a ring buffer as the underlying storage, a queue can be
implemented so that both enqueue(o) and dequeue()
operate efficiently.

• The disadvantage compared to a linked list-based
implementation is that the maximum length of the queue
must be known in advance.

• When the queue is “full” and the user calls enqueue(o),
then either:

• The queue will block -- hang until some other
program/thread calls dequeue; or

• Throw an exception.

• With linked lists, the queue can grow arbitrarily long.

dequeue() -- Attempt #3

Monday, July 16, 12

