
CSE 12:
Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Ate
18 July 2012

Wednesday, July 18, 12

Data structures: a
quantitative perspective.

Wednesday, July 18, 12

Data structures so far

• Up to now, we’ve focused on data
structures from a software construction
perspective:

• Data structures as ADTs.

• Separation of implementation from
interface.

• Encoding of the user’s data in a sequence
of bits.

Wednesday, July 18, 12

Data structures: a
quantitative analysis

• Just as important is the quantitative performance of
those structures, e.g.:

• Time cost: If I have a linked list of 100 elements,
how long will it take to find a particular element?
What if the list is 1000 elements long? 10,000?

• Space cost: How much overhead (e.g., in Nodes)
is there in a DoublyLinkedList12 versus an
ArrayList?

Wednesday, July 18, 12

Data structures: a
quantitative analysis

• In this lecture we will discuss algorithmic
analysis, in particular, methods of estimating the
time cost of algorithms.

• Data structures and algorithms are invariably
coupled:

• Without an algorithm, the data are useless.

• Without a data structure, the algorithm can’t
accomplish anything -- they need “space” to
execute.

Wednesday, July 18, 12

Measuring time cost
• Instead of measuring time cost in terms of seconds,

milliseconds, etc., we will count the “number of abstract
operations”.

• Examples of “abstract operations” include:

• i = i + 1; // Assignment and/or arithmetic

• if (i > 5) { // Comparison

• On the other hand, calling another method -- i.e., another
algorithm -- would not be considered a single, abstract
operation:

• otherMethod(); // Have to look inside otherMethod!

Wednesday, July 18, 12

Measuring time cost

• The number of “abstract operations” is largely
independent of:

• The particular computer on which an algorithm is
running

• The particular programming language in which an
algorithm was implemented

Wednesday, July 18, 12

Measuring time cost
• We are interested in how the time cost grows as the

size of the input to the algorithm grows:

• For instance, if we want to sort a list of numbers,
and the size of the list is n, then we want to
describe, as a function of n, how many operation
the sort procedure will take.

• Possible answers might include:

• 2n + 3

• n2 + 3n - 1

• ...

Wednesday, July 18, 12

Measuring time cost
• We are interested in how the time cost grows as the

size of the input to the algorithm grows:

• When analyzing data structures and their
associated add/get/remove algorithms, the
input size n will often be the number of data
already stored in the ADT.

Wednesday, July 18, 12

Three cases

• When estimating the time cost of an
algorithm on an input of size n, we will
consider three cases:

1. Worst case: how many operations will
the algorithm take on the “hardest”
possible input (of size n)?

Wednesday, July 18, 12

Three cases

• When estimating the time cost of an
algorithm on an input of size n, we will
consider three cases:

2. Best case: how many operations will
the algorithm take on the “easiest”
possible input (of size n)?

Wednesday, July 18, 12

Three cases

• When estimating the time cost of an
algorithm on an input of size n, we will
consider three cases:

3. Average case: compute how long the
algorithm would take on every possible
input of size n; then, compute the sum of
these time costs weighted by how
probable each input would arise.

Wednesday, July 18, 12

Three cases

• When estimating the time cost of an
algorithm on an input of size n, we will
consider three cases:

3. Average case: compute how long the
algorithm would take on every possible
input of size n; then, compute the sum of
these time costs weighted by how
probable each input would arise.

Typically very difficult to compute exactly.

Wednesday, July 18, 12

Example 1

• Let’s count the number of abstract
operations needed to compute the average
of students’ grades...

Wednesday, July 18, 12

Example 1
// Assume grades.length > 0
float computeAverageGrade (float[] grades) {
 float sum = 0;
 for (int i = 0; i < grades.length; i++) {
 sum += grades[i];
 }

 return sum / grades.length;
}

operations

Wednesday, July 18, 12

Example 1
// Assume grades.length > 0
float computeAverageGrade (float[] grades) {
 float sum = 0;
 for (int i = 0; i < grades.length; i++) {
 sum += grades[i];
 }

 return sum / grades.length;
}

1
1+2n+1
2n

1

Total:
4n+4

operations

By definition of Java array, each
access takes 1 operation.

Wednesday, July 18, 12

Example 1
// Assume grades.length > 0
float computeAverageGrade (float[] grades) {
 float sum = 0;
 for (int i = 0; i < grades.length; i++) {
 sum += grades[i];
 }

 return sum / grades.length;
}

1
1+2n+1
2n

1

Total:
4n+4

operations

By definition of Java array, each
access takes 1 operation.

• In this algorithm, best case = worst case = average case.

• Only the size (n) of the input affects the time cost, not
the particular input.

Wednesday, July 18, 12

Example 1
4n+4 is an example of linear time cost.

0 1 2 3 4 5
0

20

40

60

80

100

120

140

160

180

n

T
(n

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

120

140

160

180

3n + 3

Wednesday, July 18, 12

Example 2
// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
 for (int i = 0; i < numbers.length; i++) {
 if (numbers[i] == number) {
 return i;
 }
 }
 return -1; // not found
}

operations

• In this algorithm, the time cost depends on the
particular inputs numbers and number.

• Let’s first consider the worst case.

Wednesday, July 18, 12

Example 2
// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
 for (int i = 0; i < numbers.length; i++) {
 if (numbers[i] == number) {
 return i;
 }
 }
 return -1; // not found
}

operations

• In this algorithm, the time cost depends on the
particular inputs numbers and number.

• Let’s first consider the worst case.

• Here, the worst case is when number is not found.

Wednesday, July 18, 12

Example 2
// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
 for (int i = 0; i < numbers.length; i++) {
 if (numbers[i] == number) {
 return i;
 }
 }
 return -1; // not found
}

1+2n+1
n
0

1

Total:
3n+3

operations

• In this algorithm, the time cost depends on the
particular inputs numbers and number.

• Let’s first consider the worst case.

• Here, the worst case is when number is not found.

Wednesday, July 18, 12

Example 2
// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
 for (int i = 0; i < numbers.length; i++) {
 if (numbers[i] == number) {
 return i;
 }
 }
 return -1; // not found
}

operations

• In this algorithm, the time cost depends on the
particular inputs numbers and number.

• Let’s first consider the best case.

• Best case is when number is at index 0 of numbers.

Wednesday, July 18, 12

Example 2
// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
 for (int i = 0; i < numbers.length; i++) {
 if (numbers[i] == number) {
 return i;
 }
 }
 return -1; // not found
}

operations

• In this algorithm, the time cost depends on the
particular inputs numbers and number.

• Let’s first consider the best case.

• Best case is when number is at index 0 of numbers.

1+1
1
1

Total:
4

Wednesday, July 18, 12

Example 2
// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
 for (int i = 0; i < numbers.length; i++) {
 if (numbers[i] == number) {
 return i;
 }
 }
 return -1; // not found
}

operations

• In this algorithm, the time cost depends on the
particular inputs numbers and number.

• Finding the average case time cost is more difficult.

• We’ll handle that later...

Wednesday, July 18, 12

Example 3
int someMethod (int[] numbers) {
 int sum = 0;
 for (int i = 0; i < numbers.length; i++) {
 for (int j = 0; j < numbers.length; j++) {
 sum += numbers[i] * numbers[j];
 }
 }
 return sum;
}

operations

Wednesday, July 18, 12

Example 3
int someMethod (int[] numbers) {
 int sum = 0;
 for (int i = 0; i < numbers.length; i++) {
 for (int j = 0; j < numbers.length; j++) {
 sum += numbers[i] * numbers[j];
 }
 }
 return sum;
}

operations

1

1

Wednesday, July 18, 12

Example 3
int someMethod (int[] numbers) {
 int sum = 0;
 for (int i = 0; i < numbers.length; i++) {
 for (int j = 0; j < numbers.length; j++) {
 sum += numbers[i] * numbers[j];
 }
 }
 return sum;
}

operations

1

n*n*4

1

Wednesday, July 18, 12

Example 3
int someMethod (int[] numbers) {
 int sum = 0;
 for (int i = 0; i < numbers.length; i++) {
 for (int j = 0; j < numbers.length; j++) {
 sum += numbers[i] * numbers[j];
 }
 }
 return sum;
}

operations

1

n*(1+2n+1)
n*n*4

1

Wednesday, July 18, 12

Example 3
int someMethod (int[] numbers) {
 int sum = 0;
 for (int i = 0; i < numbers.length; i++) {
 for (int j = 0; j < numbers.length; j++) {
 sum += numbers[i] * numbers[j];
 }
 }
 return sum;
}

operations

1
1+2n+1
n*(1+2n+1)
n*n*4

1

Wednesday, July 18, 12

Example 3
int someMethod (int[] numbers) {
 int sum = 0;
 for (int i = 0; i < numbers.length; i++) {
 for (int j = 0; j < numbers.length; j++) {
 sum += numbers[i] * numbers[j];
 }
 }
 return sum;
}

operations

1
1+2n+1
n*(1+2n+1)
n*n*4

1

Total:
4n2+2n2+n
+n+1+2n
+1+1 =
6n2+4n+3

This is an example of quadratic time cost.

Wednesday, July 18, 12

0 1 2 3 4 5
0

20

40

60

80

100

120

140

160

180

n

T
(n

)

6n2 + 4n + 3

3n + 3

Quadratic versus linear time

Wednesday, July 18, 12

• This level of detail is usually more than we need
when comparing algorithms:

• We don’t care if the time cost is n, or 3n, or 0.1n --
the main thing is that it’s “some constant times n”.

• We do care whether it’s n or n2 or 2n.

• We are interested in asymptotic analysis (n ➝∞):

• We mostly care about the algorithm’s time cost
when n is very large.

• If n is small, then the algorithm will be fast anyway.

Asymptotic performance analysis

Wednesday, July 18, 12

• Instead of saying T(n) = 3n+3
 we will say T(n) = O(n) (“T is big-‘O’ of n”),
 i.e., T(n) is basically linear.

• Instead of saying T(n) = 2n-1
 we will say T(n) = O(n) (“T is big-‘O’ of n”),
 i.e., T(n) is basically linear.

• Instead of saying T(n) = 1/2 n-0.2353
 we will say T(n) = O(n) (“T is big-‘O’ of n”),
 i.e., T(n) is basically linear.

Asymptotic performance analysis

Wednesday, July 18, 12

• Instead of saying T(n) = 6n2

 we will say T(n) = O(n2) (“T is big-‘O’ of n2”),
 i.e., T(n) is basically quadratic.

• Instead of saying T(n) = 2n2+3n+13535
 we will say T(n) = O(n2) (“T is big-‘O’ of n2”),
 i.e., T(n) is basically quadratic.

Asymptotic performance analysis

Here, the quadratic term dominates the
linear term -- as n grows large, n2 will

become much larger than n.

Wednesday, July 18, 12

• Instead of saying T(n) = 6 log n + 3
 we will say T(n) = O(log n) (“T is big-‘O’ of log n”),
 i.e., T(n) is basically logarithmic.

• Instead of saying T(n) = n log n + n - 23
 we will say T(n) = O(n log n) (“T is big-‘O’ of n log n”),
 i.e., T(n) is basically loglinear.

• Instead of saying T(n) = n + n2 - 3
 we will say T(n) =

Asymptotic performance analysis

Wednesday, July 18, 12

• Instead of saying T(n) = 6 log n + 3
 we will say T(n) = O(log n) (“T is big-‘O’ of log n”),
 i.e., T(n) is basically logarithmic.

• Instead of saying T(n) = n log n + n - 23
 we will say T(n) = O(n log n) (“T is big-‘O’ of n log n”),
 i.e., T(n) is basically loglinear.

• Instead of saying T(n) = n + n2 - 3
 we will say T(n) = O(n2) (“T is big-‘O’ of n2”),
 i.e., T(n) is basically quadratic.

Asymptotic performance analysis

The ordering (first v second) of the terms is unimportant.
What matters is what the dominant term is.

Wednesday, July 18, 12

• Asymptotic analysis assigns algorithms to different
“complexity classes”:

• O(1) - constant - performance of algorithm does not
depend on input size.

• O(n) - linear - doubling n will double the time cost.

• O(log n) - logarithmic

• O(n log n) -- loglinear

• O(n2) - quadratic

• O(2n) - exponential

• Algorithms that differ in complexity class can have vastly
different run-time performance (for large n).

Different asymptotic costs

Wednesday, July 18, 12

Different asymptotic costs84 Design Fundamentals

2 2

log()nnn!

3

sqrt()

1

0
0 1 2 3 4 5

4

5

n

n n

nlog()

2
n

Figure 5.2 Near-origin details of common curves. Compare with Figure 5.3.

2

2

n!

log()nn

sqrt()n
log()n

n

60

40

20

80

100

0
0 20 40 60 80 100

n

n

Figure 5.3 Long-range trends of common curves. Compare with Figure 5.2.

from
Bailey
(2007)

Wednesday, July 18, 12

Different asymptotic costs

84 Design Fundamentals

2 2

log()nnn!

3

sqrt()

1

0
0 1 2 3 4 5

4

5

n

n n

nlog()

2
n

Figure 5.2 Near-origin details of common curves. Compare with Figure 5.3.

2

2

n!

log()nn

sqrt()n
log()n

n

60

40

20

80

100

0
0 20 40 60 80 100

n

n

Figure 5.3 Long-range trends of common curves. Compare with Figure 5.2.

from
Bailey
(2007)

Wednesday, July 18, 12

Asymptotic performance analysis
• Asymptotic performance analysis is a coarse but useful

means of describing and comparing the performance of
algorithms as a function of the input size n when n gets
large.

• Asymptotic analysis applies to both time cost and
space cost.

• Asymptotic analysis hides details of timing (that we don’t
care about) due to:

• Speed of computer.

• Slight differences in implementation.

• Programming language.

Wednesday, July 18, 12

Mathematical formalism

• In order to justify approximating a time cost
T(n)=3n+3 just as “O(n)=n”, we need to define some
mathematical notation:

• We say a function T(n) is big-O of another
function g(n) (i.e., O(g(n)) if there exist positive
constants c and n0 such that:
for all n > n0: T(n) ≤ c g(n)

Wednesday, July 18, 12

Mathematical formalism

• In order to justify approximating a time cost
T(n)=3n+3 just as “O(n)=n”, we need to define some
mathematical notation:

• We say a function T(n) is big-O of another
function g(n) (i.e., O(g(n)) if there exist positive
constants c and n0 such that:
for all n > n0: T(n) ≤ c g(n)

As long as n is “big enough”, then T(n) will always be less
than a constant multiple of g(n).

Wednesday, July 18, 12

Mathematical formalism

• Example: consider T(n)=3n-6.

• If we pick g(n)=n, n0 = 0 and c = 4, then:

• T(n) = 3n-6 ≤ 4n = c g(n) for all n > n0

• Hence, we can write: “T(n) is O(g(n)) where g(n)=n”.

• More simply, we can write: “T(n) is O(n)”.

Wednesday, July 18, 12

Mathematical formalism

• Note that, for T(n)=3n-6, we could also write T(n) =
O(n2) because:

• If we pick n0 = 10 and c = 1, then:

• T(n) = 3n-6 ≤ n2 = c g(n) for all n > n0

• The “O” notation gives an upper bound to the time
cost T. It may not be a tight upper bound.

Wednesday, July 18, 12

Mathematical formalism

• Note that, for T(n)=n2+2n, we could not write T(n)
= O(n) because there do not exist positive
constants c and n0 such that T(n) ≤ c g(n) for all n >
n0.

Wednesday, July 18, 12

Analysis of data structures

• Let’s put these ideas into practice and analyze the
performance of algorithms related to ArrayList:

• add(o), get(index), find(o), and
remove(index).

• As a first step, we must decide what the “input
size” means.

• What is the “input” to these algorithms?

Wednesday, July 18, 12

Analysis of data structures
• Each of the methods (algorithms) above operates

on the _underlyingStorage and either o or index.

• o and index are always length 1 -- their size
cannot grow.

• However, the number of data in
_underlyingStorage (stored in _numElements)
will grow as the user adds elements to the
ArrayList.

• Hence, we measure asymptotic time cost as a
function of n, the number of elements stored
(_numElements).

Wednesday, July 18, 12

Adding to back of list

class ArrayList<T> {
 ...
 void addToBack (T o) {
 // Assume _underlyingStorage is big enough
 _underlyingStorage[_numElements] = o;
 _numElements++;
 }
}

• What is the time complexity of this
method?

Wednesday, July 18, 12

Adding to back of list

class ArrayList<T> {
 ...
 void addToBack (T o) {
 // Assume _underlyingStorage is big enough
 _underlyingStorage[_numElements] = o;
 _numElements++;
 }
}

• What is the time complexity of this
method?

O(1) -- no matter how many elements the
list already contains, the cost is just 2
“abstract operations”.

Note that, for this method, the
worst case, average case, and
best case are all the same.

Wednesday, July 18, 12

Retrieving an element

class ArrayList<T> {
 ...
 T get (int index) {
 return _underlyingStorage[index];
 }
}

• What is the time complexity of this
method?

Wednesday, July 18, 12

Retrieving an element

class ArrayList<T> {
 ...
 T get (int index) {
 return _underlyingStorage[index];
 }
}

O(1).

• What is the time complexity of this
method?

Wednesday, July 18, 12

Adding to front of list
• What is the time complexity of this

method?
class ArrayList<T> {
 ...
 void addToFront (T o) {
 // Assume _underlyingStorage is big enough
 for (int i = 0; i < _numElements; i++) {
 _underlyingStorage[i+1] = _underlyingStorage[i];
 }
 _underlyingStorage[i] = o;
 _numElements++;
 }
}

Wednesday, July 18, 12

Adding to front of list

class ArrayList<T> {
 ...
 void addToFront (T o) {
 // Assume _underlyingStorage is big enough
 for (int i = 0; i < _numElements; i++) {
 _underlyingStorage[i+1] = _underlyingStorage[i];
 }
 _underlyingStorage[i] = o;
 _numElements++;
 }
}

O(n).

• What is the time complexity of this
method?

We have to move
everything over by 1.

Wednesday, July 18, 12

Finding an element

class ArrayList<T> {
 ...
 // Returns lowest index of o in the ArrayList, or
 // -1 if o is not found.
 int find (T o) {
 for (int i = 0; i < _numElements; i++) {
 if (_underlyingStorage[i].equals(o)) { // not null
 return i;
 }
 }
 return -1;
 }
}

• What is the time complexity of this
method in the best case? Worst case?

Wednesday, July 18, 12

Finding an element

class ArrayList<T> {
 ...
 // Returns lowest index of o in the ArrayList, or
 // -1 if o is not found.
 int find (T o) {
 for (int i = 0; i < _numElements; i++) {
 if (_underlyingStorage[i].equals(o)) { // not null
 return i;
 }
 }
 return -1;
 }
} O(1) in best case; O(n) in worst case.

• What is the time complexity of this
method in the best case? Worst case?

Wednesday, July 18, 12

Adding n elements

• Now, let’s consider the time complexity of
doing many adds in sequence, starting from
an empty list:

void addManyToFront (T[] many) {
 for (int i = 0; i < many.length; i++) {
 addToFront(many[i]);
 }
}

• What is the time complexity of
addManyToFront on an array of size n?

Wednesday, July 18, 12

Adding n elements
• To calculate the total time cost, we have to sum the

time costs of the individual calls to addToFront.

• Each call to addToFront(o) takes about time i, where
i is the current size of the list. (We have to “move
over” i elements by one step to the right.)

void addManyToFront (T[] many) {
 for (int i = 0; i < many.length; i++) {
 addToFront(many[i]);
 }
}

• Let T(i) the cost of addToFront at iteration i:
T(0)=1, T(1)=2, ..., T(n-1)=n.

Wednesday, July 18, 12

Adding n elements
• Now we just have to add together all the T(i):

• Note that we would get the same asymptotic bound
even if we calculated the cost T(i) slightly differently,
e.g., T(i)=3i+2:

n�1X

i=0

T (i) =
n�1X

i=0

i =
n(n� 1)

2
= O(n2)

n�1X

i=0

T (i) =
n�1X

i=0

(3i+ 2)

=
n�1X

i=0

3i+
n�1X

i=0

2

= 3
n�1X

i=0

i+ 2n

= 3

✓
n(n� 1)

2

◆
+ 2n

= O(n2)

1

Wednesday, July 18, 12

Finding an element

class ArrayList<T> {
 ...
 // Returns lowest index of o in the ArrayList, or
 // -1 if o is not found.
 int find (T o) {
 for (int i = 0; i < _numElements; i++) {
 if (_underlyingStorage[i].equals(o)) { // not null
 return i;
 }
 }
 return -1;
 }
}

• What is the time complexity of this
method in the average case?

Wednesday, July 18, 12

Finding an element: average case
• Finding an exact formula for the average case performance

can be tricky (if not impossible).

• In order to compute the average, or expected, time cost,
we must know:

• The time cost T(Xn) for a particular input X of size n.

• The probability P(Xn) of that input X.

• The expected time cost, over all inputs X of size n, is then:

AvgCaseTimeCostn = E[T (Xn)] =

X

Xn

P (Xn)T (Xn)

Wednesday, July 18, 12

Finding an element: average case
• Finding an exact formula for the average case performance

can be tricky (if not impossible).

• In order to compute the average, or expected, time cost,
we must know:

• The time cost T(Xn) for a particular input X of size n.

• The probability P(Xn) of that input X.

• The expected time cost, over all inputs X of size n, is then:

“E” for
“Expectation”

Sum the time costs for all
possible inputs, and weight each
cost by how likely it is to occur.

In this case, X consists of both the element o
and the contents of _underlyingStorage.

AvgCaseTimeCostn = E[T (Xn)] =

X

Xn

P (Xn)T (Xn)

Wednesday, July 18, 12

Finding an element: average case
• In the find(o) method listed above, it is possible that

the user gives us an o that is not contained in the list.

• This will result in O(n) time cost.

• How “likely” is this event?

• We have no way of knowing -- we could make an
arbitrary assumption, but the result would be
meaningless.

• Let’s remove this case from consideration and assume
that o is always present in the list.

• What is the average-case time cost then?

Wednesday, July 18, 12

Finding an element: average case

• Even when we assume o is present in the list
somewhere, we have no idea whether the o the user
gives us will “tend to be at the front” or “tend to be at
the back” of the list.

• However, here we can make a plausible assumption:

• For an ArrayList of n elements, the probability that
o is contained at index i is 1/n.

• In other words, o is equally likely to be in any of
the “slots” of the array.

Wednesday, July 18, 12

Finding an element: average case
• Given this assumption, we can finally make headway.

• Let’s define T(i) to be the cost of the find(o) method as a
function of i, the location in _underlyingStorage where o
is located. What is T(i)?

class ArrayList<T> {
 ...
 // Returns lowest index of o in the ArrayList, or
 // -1 if o is not found.
 int find (T o) {
 for (int i = 0; i < _numElements; i++) {
 if (_underlyingStorage[i].equals(o)) { // not null
 return i;
 }
 }
 return -1;
 }
}

Wednesday, July 18, 12

Finding an element: average case

T(i)=i

• Given this assumption, we can finally make headway.

• Let’s define T(i) to be the cost of the find(o) method as a
function of i, the location in _underlyingStorage where o
is located. What is T(i)?

class ArrayList<T> {
 ...
 // Returns lowest index of o in the ArrayList, or
 // -1 if o is not found.
 int find (T o) {
 for (int i = 0; i < _numElements; i++) {
 if (_underlyingStorage[i].equals(o)) { // not null
 return i;
 }
 }
 return -1;
 }
}

Wednesday, July 18, 12

Finding an element: average case
• Now, we can re-write the expected time cost in terms of

an arbitrary input X, as the expected time cost in terms of
where in the array the element o will be found.

AvgCaseTimeCostn =

X

i

P (i)T (i)

=

X

i

1

n
i

=

1

n

X

i

i

=

1

n

n(n+ 1)

2

=

n+ 1

2

= O(n)

1

Move 1/n out of the summation.

Formula for arithmetic series.

Substitute terms.

Redefine P(Xn) and T(Xn) in
terms of P(i) and T(i).

The n’s cancel.

Find asymptotic bound.

Wednesday, July 18, 12

Questions to ponder

• What is the time cost of adding to the back
of a singly-linked list, as a function of the
number of elements already in the list?

• With just a _head pointer?

• With both _head and _tail?

Wednesday, July 18, 12

Performance
measurement.

Wednesday, July 18, 12

Empirical performance
measurement

• As an alternative to describing an algorithm’s
performance with a “number of abstract
operations”, we can also measure its time
empirically using a clock.

• As illustrated last lecture, counting “abstract
operations” can anyway hide real performance
differences, e.g., between using int[] and
Integer[].

Wednesday, July 18, 12

Empirical performance
measurement

• There are also many cases where you don’t know
how an algorithm works internally.

• Many programs and libraries are not open source!

• You have to analyze an algorithm’s performance
as a black box.

• “Black box” -- you can run the program but
cannot see how it works internally.

• It may even be useful to deduce the asymptotic time
cost by measuring the time cost for different input
sizes.

Wednesday, July 18, 12

Procedure for measuring
time cost

• Let’s suppose we wish to measure the time cost of
algorithm A as a function of its input size n.

• We need to choose a set of values of n that we will
test.

• If we make n too big, our algorithm A may never
terminate (the input is “too big”).

• If we make n too small, then A may finish so fast
that the “elapsed time” is practically 0, and we
won’t get a reliable clock measurement.

Wednesday, July 18, 12

Procedure for measuring
time cost

• In practice, one “guesses” a few values for n, sees
how fast A executes on them, and selects a range of
values for n.

• Let’s define an array of different input sizes, e.g.:
int[] N = { 1000, 2000, 3000, ..., 10000 };

• Now, for each input size N[i], we want to measure
A’s time cost.

Wednesday, July 18, 12

Procedure for measuring
time cost

• Procedure (draft 1):

for (int i = 0; i < N.length; i++) {
 final Object X = initializeInput(N[i]);

 final long startTime = getClockTime();
 A(X); // Run algorithm A on input X of size N[i]
 final long endTime = getClockTime();

 final long elapsedTime = endTime - startTime;
 System.out.println(“Time for N[“ + i + “]: “ +
 elapsedTime);
}

Make sure to start and stop the clock
as “tightly” as possible around the

actual algorithm A.

Wednesday, July 18, 12

Procedure for measuring
time cost

• The procedure would work fine if there were no variability
in how long A(X) took to execute.

• Unfortunately, in the “real world”, each measurement of
the time cost of A(X) is corrupted by noise:

• Garbage collector!

• Other programs running.

• Cache locality.

• Swapping to/from disk.

• Input/output requests from external devices.
Wednesday, July 18, 12

Procedure for measuring
time cost

• If we measured the time cost of A(X) based on just one
measurement, then our estimate of the “true” time cost
of A(X) will be very imprecise.

• We might get unlucky and measure A(X) while the
computer is doing a “system update”.

• If we’ve very unlucky, this might occur during some
values of i, but not for others, thereby skewing the
trend we seek to discover across the different N[i].

Wednesday, July 18, 12

Improved procedure for
measuring time cost

• A much-improved procedure for measuring the time cost
of A(X) is to compute the average time across M trials.

• Procedure (draft 2):
for (int i = 0; i < N.length; i++) {
 final Object X = initializeInput(N[i]);

 final long[] elapsedTimes = new long[M];
 for (int j = 0; j < M; j++) {
 final long startTime = getClockTime();
 A(X); // Run algorithm A on input X of size N[i]
 final long endTime = getClockTime();
 elapsedTimes[j] = endTime - startTime;
 }
 final double avgElapsedTime = computeAvg(elapsedTimes);
 System.out.println(“Time for N[“ + i + “]: “ +
 avgElapsedTime);
}

Wednesday, July 18, 12

Improved procedure for
measuring time cost

• If the elapsed time measured in the jth trial is Tj, then the
average over all M trials is:

• We will use the average time “T-bar” as an estimate of the
“true” time cost of A(X).

• The more trials M we use to compute the average, the
more precise our estimate “T-bar” will be.

T =
1

M

MX

j=1

Tj

Wednesday, July 18, 12

Improved procedure for
measuring time cost

• Alternatively, we can start/stop the clock just once.

• Procedure (draft 2b):
for (int i = 0; i < N.length; i++) {
 final Object X = initializeInput(N[i]);

 final long startTime = getClockTime();
 for (int j = 0; j < M; j++) {
 A(X); // Run algorithm A on input X of size N[i]
 }
 final long endTime = getClockTime();

 final double avgElapsedTime = (endTime - startTime) / M;
 System.out.println(“Time for N[“ + i + “]: “ +
 avgElapsedTime);
}

Wednesday, July 18, 12

Quantifying uncertainty
• A key issue in any experiment is to quantify the uncertainty of

all measurements.

• Example:

• We are attempting to estimate the “true” time cost of A(X)
by averaging together the results of many trials.

• After computing “T-bar”, how far from the “true” time cost
of A(X) was our estimate?

Wednesday, July 18, 12

Quantifying uncertainty
• A key issue in any experiment is to quantify the uncertainty of

all measurements.

• Example:

• We are attempting to estimate the “true” time cost of A(X)
by averaging together the results of many trials.

• After computing “T-bar”, how far from the “true” time cost
of A(X) was our estimate?

• In order to compute this, we would have to know what
the true time cost is -- and that’s what we’re trying to
estimate!

• We must find another way to quantify uncertainty...
Wednesday, July 18, 12

Standard error versus
standard deviation

• Some of you may already be familiar with the standard deviation:

• The standard deviation measures how “varied” the individual
measurements Tj are.

• The standard deviation gives a sense of “how much noise
there is.”

• However, in most cases, we are less interested in
characterizing the noise, and more interested in measuring
the true time cost of A(X) itself.

• For this, we want the standard error.

� =

vuut 1

M

MX

j=1

(Tj � T)2

Wednesday, July 18, 12

Quantifying your
uncertainty

• In statistics, the uncertainty associated with a
measurement (e.g., the time cost of A(X)) is typically
quantified using the standard error:

where “T-bar” is the average (computed on earlier
slide).

• Notice: as M grows larger, the StdErr becomes
smaller.

StdErr =
�p
M

� =

vuut 1

M

MX

j=1

(Tj � T)2where

Standard deviation

Wednesday, July 18, 12

Error bars

• The standard error is often used to compute error
bars on graphs to indicate how reliable they are.

• Different error bars have different meanings! Some
of them indicate confidence intervals, some indicate
standard error, some indicate standard deviation --
it’s important to know which!

Wednesday, July 18, 12

Example

0 2 4 6 8 10 12
x 104

0

1

2

3

4

5

6

7

data to add

Ti
m

e
(s

ec
)

ArrayList
LinkedList

Wednesday, July 18, 12

