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Data structures: a 
quantitative perspective.
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Data structures so far

• Up to now, we’ve focused on data 
structures from a software construction 
perspective:

• Data structures as ADTs.

• Separation of implementation from 
interface.

• Encoding of the user’s data in a sequence 
of bits.
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Data structures: a 
quantitative analysis

• Just as important is the quantitative performance of 
those structures, e.g.:

• Time cost: If I have a linked list of 100 elements, 
how long will it take to find a particular element? 
What if the list is 1000 elements long? 10,000?

• Space cost: How much overhead (e.g., in Nodes) 
is there in a DoublyLinkedList12 versus an 
ArrayList?
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Data structures: a 
quantitative analysis

• In this lecture we will discuss algorithmic 
analysis, in particular, methods of estimating the 
time cost of algorithms.

• Data structures and algorithms are invariably 
coupled:

• Without an algorithm, the data are useless.

• Without a data structure, the algorithm can’t 
accomplish anything -- they need “space” to 
execute.
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Measuring time cost
• Instead of measuring time cost in terms of seconds, 

milliseconds, etc., we will count the “number of abstract 
operations”.

• Examples of “abstract operations” include:

• i = i + 1;  // Assignment and/or arithmetic

• if (i > 5) {  // Comparison

• On the other hand, calling another method -- i.e., another 
algorithm -- would not be considered a single, abstract 
operation:

• otherMethod();  // Have to look inside otherMethod!
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Measuring time cost

• The number of “abstract operations” is largely 
independent of:

• The particular computer on which an algorithm is 
running

• The particular programming language in which an 
algorithm was implemented
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Measuring time cost
• We are interested in how the time cost grows as the 

size of the input to the algorithm grows:

• For instance, if we want to sort a list of numbers, 
and the size of the list is n, then we want to 
describe, as a function of n, how many operation 
the sort procedure will take.

• Possible answers might include:

• 2n + 3

• n2 + 3n - 1

• ...
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Measuring time cost
• We are interested in how the time cost grows as the 

size of the input to the algorithm grows:

• When analyzing data structures and their 
associated add/get/remove algorithms, the 
input size n will often be the number of data 
already stored in the ADT.
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Three cases

• When estimating the time cost of an 
algorithm on an input of size n, we will 
consider three cases:

1. Worst case: how many operations will 
the algorithm take on the “hardest” 
possible input (of size n)?
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Three cases

• When estimating the time cost of an 
algorithm on an input of size n, we will 
consider three cases:

2. Best case: how many operations will 
the algorithm take on the “easiest” 
possible input (of size n)?
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Three cases

• When estimating the time cost of an 
algorithm on an input of size n, we will 
consider three cases:

3. Average case: compute how long the 
algorithm would take on every possible 
input of size n; then, compute the sum of 
these time costs weighted by how 
probable each input would arise.
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Three cases

• When estimating the time cost of an 
algorithm on an input of size n, we will 
consider three cases:

3. Average case: compute how long the 
algorithm would take on every possible 
input of size n; then, compute the sum of 
these time costs weighted by how 
probable each input would arise.

Typically very difficult to compute exactly.
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Example 1

• Let’s count the number of abstract 
operations needed to compute the average 
of students’ grades...
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Example 1
// Assume grades.length > 0
float computeAverageGrade (float[] grades) {
  float sum = 0;
  for (int i = 0; i < grades.length; i++) {
    sum += grades[i];
  }
  
  return sum / grades.length;
}

# operations
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Example 1
// Assume grades.length > 0
float computeAverageGrade (float[] grades) {
  float sum = 0;
  for (int i = 0; i < grades.length; i++) {
    sum += grades[i];
  }
  
  return sum / grades.length;
}

1
1+2n+1
2n

1

Total:
4n+4

# operations

By definition of Java array, each 
access takes 1 operation.
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Example 1
// Assume grades.length > 0
float computeAverageGrade (float[] grades) {
  float sum = 0;
  for (int i = 0; i < grades.length; i++) {
    sum += grades[i];
  }
  
  return sum / grades.length;
}

1
1+2n+1
2n

1

Total:
4n+4

# operations

By definition of Java array, each 
access takes 1 operation.

• In this algorithm, best case = worst case = average case.

• Only the size (n) of the input affects the time cost, not 
the particular input.
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Example 1
4n+4 is an example of linear time cost.
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Example 2
// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
  for (int i = 0; i < numbers.length; i++) {
    if (numbers[i] == number) {
      return i;
    }
  }
  return -1;  // not found
}

# operations

• In this algorithm, the time cost depends on the 
particular inputs numbers and number.

• Let’s first consider the worst case.
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Example 2
// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
  for (int i = 0; i < numbers.length; i++) {
    if (numbers[i] == number) {
      return i;
    }
  }
  return -1;  // not found
}

# operations

• In this algorithm, the time cost depends on the 
particular inputs numbers and number.

• Let’s first consider the worst case.

• Here, the worst case is when number is not found.
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Example 2
// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
  for (int i = 0; i < numbers.length; i++) {
    if (numbers[i] == number) {
      return i;
    }
  }
  return -1;  // not found
}

1+2n+1
n
0

1

Total:
3n+3

# operations

• In this algorithm, the time cost depends on the 
particular inputs numbers and number.

• Let’s first consider the worst case.

• Here, the worst case is when number is not found.
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Example 2
// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
  for (int i = 0; i < numbers.length; i++) {
    if (numbers[i] == number) {
      return i;
    }
  }
  return -1;  // not found
}

# operations

• In this algorithm, the time cost depends on the 
particular inputs numbers and number.

• Let’s first consider the best case.

• Best case is when number is at index 0 of numbers.
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Example 2
// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
  for (int i = 0; i < numbers.length; i++) {
    if (numbers[i] == number) {
      return i;
    }
  }
  return -1;  // not found
}

# operations

• In this algorithm, the time cost depends on the 
particular inputs numbers and number.

• Let’s first consider the best case.

• Best case is when number is at index 0 of numbers.

1+1
1
1

Total:
4
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Example 2
// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
  for (int i = 0; i < numbers.length; i++) {
    if (numbers[i] == number) {
      return i;
    }
  }
  return -1;  // not found
}

# operations

• In this algorithm, the time cost depends on the 
particular inputs numbers and number.

• Finding the average case time cost is more difficult.

• We’ll handle that later...
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Example 3
int someMethod (int[] numbers) {
  int sum = 0;
  for (int i = 0; i < numbers.length; i++) {
    for (int j = 0; j < numbers.length; j++) {
      sum += numbers[i] * numbers[j];
    }
  }
  return sum;
}

# operations
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Example 3
int someMethod (int[] numbers) {
  int sum = 0;
  for (int i = 0; i < numbers.length; i++) {
    for (int j = 0; j < numbers.length; j++) {
      sum += numbers[i] * numbers[j];
    }
  }
  return sum;
}

# operations

1

1
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Example 3
int someMethod (int[] numbers) {
  int sum = 0;
  for (int i = 0; i < numbers.length; i++) {
    for (int j = 0; j < numbers.length; j++) {
      sum += numbers[i] * numbers[j];
    }
  }
  return sum;
}

# operations

1

n*n*4

1
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Example 3
int someMethod (int[] numbers) {
  int sum = 0;
  for (int i = 0; i < numbers.length; i++) {
    for (int j = 0; j < numbers.length; j++) {
      sum += numbers[i] * numbers[j];
    }
  }
  return sum;
}

# operations

1

n*(1+2n+1)
n*n*4

1
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Example 3
int someMethod (int[] numbers) {
  int sum = 0;
  for (int i = 0; i < numbers.length; i++) {
    for (int j = 0; j < numbers.length; j++) {
      sum += numbers[i] * numbers[j];
    }
  }
  return sum;
}

# operations

1
1+2n+1
n*(1+2n+1)
n*n*4

1
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Example 3
int someMethod (int[] numbers) {
  int sum = 0;
  for (int i = 0; i < numbers.length; i++) {
    for (int j = 0; j < numbers.length; j++) {
      sum += numbers[i] * numbers[j];
    }
  }
  return sum;
}

# operations

1
1+2n+1
n*(1+2n+1)
n*n*4

1

Total:
4n2+2n2+n
+n+1+2n
+1+1 =
6n2+4n+3

This is an example of quadratic time cost.
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• This level of detail is usually more than we need 
when comparing algorithms:

• We don’t care if the time cost is n, or 3n, or 0.1n -- 
the main thing is that it’s “some constant times n”.

• We do care whether it’s n or n2 or 2n.

• We are interested in asymptotic analysis (n ➝∞):

• We mostly care about the algorithm’s time cost 
when n is very large.

• If n is small, then the algorithm will be fast anyway.

Asymptotic performance analysis
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• Instead of saying T(n) = 3n+3
        we will say T(n) = O(n) (“T is big-‘O’ of n”),
                   i.e., T(n) is basically linear.

• Instead of saying T(n) = 2n-1
        we will say T(n) = O(n) (“T is big-‘O’ of n”),
                   i.e., T(n) is basically linear.

• Instead of saying T(n) = 1/2 n-0.2353
        we will say T(n) = O(n) (“T is big-‘O’ of n”),
                   i.e., T(n) is basically linear.

Asymptotic performance analysis
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• Instead of saying T(n) = 6n2

        we will say T(n) = O(n2) (“T is big-‘O’ of n2”),
                   i.e., T(n) is basically quadratic.

• Instead of saying T(n) = 2n2+3n+13535
        we will say T(n) = O(n2) (“T is big-‘O’ of n2”),
                   i.e., T(n) is basically quadratic.

Asymptotic performance analysis

Here, the quadratic term dominates the 
linear term -- as n grows large, n2 will 

become much larger than n.
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• Instead of saying T(n) = 6 log n + 3
        we will say T(n) = O(log n) (“T is big-‘O’ of log n”),
                   i.e., T(n) is basically logarithmic.

• Instead of saying T(n) = n log n + n - 23
        we will say T(n) = O(n log n) (“T is big-‘O’ of n log n”),
                   i.e., T(n) is basically loglinear.

• Instead of saying T(n) = n + n2 - 3
        we will say T(n) = 

Asymptotic performance analysis

Wednesday, July 18, 12



• Instead of saying T(n) = 6 log n + 3
        we will say T(n) = O(log n) (“T is big-‘O’ of log n”),
                   i.e., T(n) is basically logarithmic.

• Instead of saying T(n) = n log n + n - 23
        we will say T(n) = O(n log n) (“T is big-‘O’ of n log n”),
                   i.e., T(n) is basically loglinear.

• Instead of saying T(n) = n + n2 - 3
        we will say T(n) = O(n2) (“T is big-‘O’ of n2”),
                   i.e., T(n) is basically quadratic.

Asymptotic performance analysis

The ordering (first v second) of the terms is unimportant. 
What matters is what the dominant term is.
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• Asymptotic analysis assigns algorithms to different 
“complexity classes”:

• O(1) - constant - performance of algorithm does not 
depend on input size.

• O(n) - linear - doubling n will double the time cost.

• O(log n) - logarithmic

• O(n log n) -- loglinear

• O(n2) - quadratic

• O(2n) - exponential

• Algorithms that differ in complexity class can have vastly 
different run-time performance (for large n).

Different asymptotic costs

Wednesday, July 18, 12



Different asymptotic costs84 Design Fundamentals
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Different asymptotic costs

84 Design Fundamentals
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Asymptotic performance analysis
• Asymptotic performance analysis is a coarse but useful 

means of describing and comparing the performance of 
algorithms as a function of the input size n when n gets 
large.

• Asymptotic analysis applies to both time cost and 
space cost.

• Asymptotic analysis hides details of timing (that we don’t 
care about) due to:

• Speed of computer.

• Slight differences in implementation.

• Programming language.
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Mathematical formalism

• In order to justify approximating a time cost 
T(n)=3n+3 just as “O(n)=n”, we need to define some 
mathematical notation:

• We say a function T(n) is big-O of another 
function g(n) (i.e., O(g(n)) if there exist positive 
constants c and n0 such that:
for all n > n0: T(n) ≤ c g(n)
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Mathematical formalism

• In order to justify approximating a time cost 
T(n)=3n+3 just as “O(n)=n”, we need to define some 
mathematical notation:

• We say a function T(n) is big-O of another 
function g(n) (i.e., O(g(n)) if there exist positive 
constants c and n0 such that:
for all n > n0: T(n) ≤ c g(n)

As long as n is “big enough”, then T(n) will always be less 
than a constant multiple of g(n).
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Mathematical formalism

• Example: consider T(n)=3n-6.

• If we pick g(n)=n, n0 = 0 and c = 4, then:

• T(n) = 3n-6 ≤ 4n = c g(n)  for all n > n0

• Hence, we can write: “T(n) is O(g(n)) where g(n)=n”.

• More simply, we can write: “T(n) is O(n)”.
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Mathematical formalism

• Note that, for T(n)=3n-6, we could also write T(n) = 
O(n2) because:

• If we pick n0 = 10 and c = 1, then:

• T(n) = 3n-6 ≤ n2 = c g(n)  for all n > n0

• The “O” notation gives an upper bound to the time 
cost T. It may not be a tight upper bound.
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Mathematical formalism

• Note that, for T(n)=n2+2n, we could not write T(n) 
= O(n) because there do not exist positive 
constants c and n0 such that T(n) ≤ c g(n) for all n > 
n0.
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Analysis of data structures

• Let’s put these ideas into practice and analyze the 
performance of algorithms related to ArrayList:

• add(o), get(index), find(o), and 
remove(index).

• As a first step, we must decide what the “input 
size” means.

•  What is the “input” to these algorithms?
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Analysis of data structures
• Each of the methods (algorithms) above operates 

on the _underlyingStorage and either o or index.

• o and index are always length 1 -- their size 
cannot grow.

• However, the number of data in 
_underlyingStorage (stored in _numElements) 
will grow as the user adds elements to the 
ArrayList.

• Hence, we measure asymptotic time cost as a 
function of n, the number of elements stored 
(_numElements).
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Adding to back of list

class ArrayList<T> {
  ...
  void addToBack (T o) {
    // Assume _underlyingStorage is big enough
    _underlyingStorage[_numElements] = o;
    _numElements++;
  }
}

• What is the time complexity of this 
method?
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Adding to back of list

class ArrayList<T> {
  ...
  void addToBack (T o) {
    // Assume _underlyingStorage is big enough
    _underlyingStorage[_numElements] = o;
    _numElements++;
  }
}

• What is the time complexity of this 
method?

O(1) -- no matter how many elements the 
list already contains, the cost is just 2 
“abstract operations”.

Note that, for this method, the 
worst case, average case, and 
best case are all the same.
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Retrieving an element

class ArrayList<T> {
  ...
  T get (int index) {
    return _underlyingStorage[index];
  }
}

• What is the time complexity of this 
method?
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Retrieving an element

class ArrayList<T> {
  ...
  T get (int index) {
    return _underlyingStorage[index];
  }
}

O(1).

• What is the time complexity of this 
method?
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Adding to front of list
• What is the time complexity of this 

method?
class ArrayList<T> {
  ...
  void addToFront (T o) {
    // Assume _underlyingStorage is big enough
    for (int i = 0; i < _numElements; i++) {
      _underlyingStorage[i+1] = _underlyingStorage[i];
    }
    _underlyingStorage[i] = o;
    _numElements++;
  }
}
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Adding to front of list

class ArrayList<T> {
  ...
  void addToFront (T o) {
    // Assume _underlyingStorage is big enough
    for (int i = 0; i < _numElements; i++) {
      _underlyingStorage[i+1] = _underlyingStorage[i];
    }
    _underlyingStorage[i] = o;
    _numElements++;
  }
}

O(n).

• What is the time complexity of this 
method?

We have to move 
everything over by 1.
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Finding an element

class ArrayList<T> {
  ...
  // Returns lowest index of o in the ArrayList, or
  // -1 if o is not found.
  int find (T o) {
    for (int i = 0; i < _numElements; i++) {
      if (_underlyingStorage[i].equals(o)) { // not null
        return i;
      }
    }
    return -1;
  }
}

• What is the time complexity of this 
method in the best case? Worst case?
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Finding an element

class ArrayList<T> {
  ...
  // Returns lowest index of o in the ArrayList, or
  // -1 if o is not found.
  int find (T o) {
    for (int i = 0; i < _numElements; i++) {
      if (_underlyingStorage[i].equals(o)) { // not null
        return i;
      }
    }
    return -1;
  }
} O(1) in best case; O(n) in worst case.

• What is the time complexity of this 
method in the best case? Worst case?
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Adding n elements

• Now, let’s consider the time complexity of 
doing many adds in sequence, starting from 
an empty list:

void addManyToFront (T[] many) {
  for (int i = 0; i < many.length; i++) {
    addToFront(many[i]);
  }
}

• What is the time complexity of 
addManyToFront on an array of size n?
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Adding n elements
• To calculate the total time cost, we have to sum the 

time costs of the individual calls to addToFront.

• Each call to addToFront(o) takes about time i, where 
i is the current size of the list. (We have to “move 
over” i elements by one step to the right.)

void addManyToFront (T[] many) {
  for (int i = 0; i < many.length; i++) {
    addToFront(many[i]);
  }
}

• Let T(i) the cost of addToFront at iteration i:
T(0)=1, T(1)=2, ..., T(n-1)=n.
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Adding n elements
• Now we just have to add together all the T(i):

• Note that we would get the same asymptotic bound 
even if we calculated the cost T(i) slightly differently, 
e.g., T(i)=3i+2:

n�1X

i=0

T (i) =
n�1X

i=0

i =
n(n� 1)

2
= O(n2)

n�1X

i=0

T (i) =
n�1X

i=0

(3i+ 2)

=
n�1X

i=0

3i+
n�1X

i=0

2

= 3
n�1X

i=0

i+ 2n

= 3

✓
n(n� 1)

2

◆
+ 2n

= O(n2)

1
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Finding an element

class ArrayList<T> {
  ...
  // Returns lowest index of o in the ArrayList, or
  // -1 if o is not found.
  int find (T o) {
    for (int i = 0; i < _numElements; i++) {
      if (_underlyingStorage[i].equals(o)) { // not null
        return i;
      }
    }
    return -1;
  }
}

• What is the time complexity of this 
method in the average case?
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Finding an element: average case
• Finding an exact formula for the average case performance 

can be tricky (if not impossible).

• In order to compute the average, or expected, time cost, 
we must know:

• The time cost T(Xn) for a particular input X of size n.

• The probability P(Xn) of that input X.

• The expected time cost, over all inputs X of size n, is then:

AvgCaseTimeCostn = E[T (Xn)] =

X

Xn

P (Xn)T (Xn)
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Finding an element: average case
• Finding an exact formula for the average case performance 

can be tricky (if not impossible).

• In order to compute the average, or expected, time cost, 
we must know:

• The time cost T(Xn) for a particular input X of size n.

• The probability P(Xn) of that input X.

• The expected time cost, over all inputs X of size n, is then:

“E” for 
“Expectation”

Sum the time costs for all 
possible inputs, and weight each 
cost by how likely it is to occur.

In this case, X consists of both the element o 
and the contents of _underlyingStorage.

AvgCaseTimeCostn = E[T (Xn)] =

X

Xn

P (Xn)T (Xn)
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Finding an element: average case
• In the find(o) method listed above, it is possible that 

the user gives us an o that is not contained in the list.

• This will result in O(n) time cost.

• How “likely” is this event?

• We have no way of knowing -- we could make an 
arbitrary assumption, but the result would be 
meaningless.

• Let’s remove this case from consideration and assume 
that o is always present in the list.

• What is the average-case time cost then?
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Finding an element: average case

• Even when we assume o is present in the list 
somewhere, we have no idea whether the o the user 
gives us will “tend to be at the front” or “tend to be at 
the back” of the list.

• However, here we can make a plausible assumption:

• For an ArrayList of n elements, the probability that 
o is contained at index i is 1/n.

• In other words, o is equally likely to be in any of 
the “slots” of the array.
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Finding an element: average case
• Given this assumption, we can finally make headway.

• Let’s define T(i) to be the cost of the find(o) method as a 
function of i, the location in _underlyingStorage where o 
is located. What is T(i)? 

class ArrayList<T> {
  ...
  // Returns lowest index of o in the ArrayList, or
  // -1 if o is not found.
  int find (T o) {
    for (int i = 0; i < _numElements; i++) {
      if (_underlyingStorage[i].equals(o)) { // not null
        return i;
      }
    }
    return -1;
  }
}
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Finding an element: average case

T(i)=i

• Given this assumption, we can finally make headway.

• Let’s define T(i) to be the cost of the find(o) method as a 
function of i, the location in _underlyingStorage where o 
is located. What is T(i)? 

class ArrayList<T> {
  ...
  // Returns lowest index of o in the ArrayList, or
  // -1 if o is not found.
  int find (T o) {
    for (int i = 0; i < _numElements; i++) {
      if (_underlyingStorage[i].equals(o)) { // not null
        return i;
      }
    }
    return -1;
  }
}
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Finding an element: average case
• Now, we can re-write the expected time cost in terms of 

an arbitrary input X, as the expected time cost in terms of 
where in the array the element o will be found.

AvgCaseTimeCostn =

X

i

P (i)T (i)

=

X

i

1

n
i

=

1

n

X

i

i

=

1

n

n(n+ 1)

2

=

n+ 1

2

= O(n)

1

Move 1/n out of the summation.

Formula for arithmetic series.

Substitute terms.

Redefine P(Xn) and T(Xn) in 
terms of P(i) and T(i).

The n’s cancel.

Find asymptotic bound.
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Questions to ponder

• What is the time cost of adding to the back 
of a singly-linked list, as a function of the 
number of elements already in the list?

• With just a _head pointer?

• With both _head and _tail?
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Performance 
measurement.
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Empirical performance 
measurement

• As an alternative to describing an algorithm’s 
performance with a “number of abstract 
operations”, we can also measure its time 
empirically using a clock.

• As illustrated last lecture, counting “abstract 
operations” can anyway hide real performance 
differences, e.g., between using int[] and 
Integer[].

Wednesday, July 18, 12



Empirical performance 
measurement

• There are also many cases where you don’t know 
how an algorithm works internally.

• Many programs and libraries are not open source!

• You have to analyze an algorithm’s performance 
as a black box.

• “Black box” -- you can run the program but 
cannot see how it works internally.

• It may even be useful to deduce the asymptotic time 
cost by measuring the time cost for different input 
sizes.
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Procedure for measuring 
time cost

• Let’s suppose we wish to measure the time cost of 
algorithm A as a function of its input size n. 

• We need to choose a set of values of n that we will 
test.

• If we make n too big, our algorithm A may never 
terminate (the input is “too big”).

• If we make n too small, then A may finish so fast 
that the “elapsed time” is practically 0, and we 
won’t get a reliable clock measurement.
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Procedure for measuring 
time cost

• In practice, one “guesses” a few values for n, sees 
how fast A executes on them, and selects a range of 
values for n.

• Let’s define an array of different input sizes, e.g.:
int[] N = { 1000, 2000, 3000, ..., 10000 };

• Now, for each input size N[i], we want to measure 
A’s time cost.
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Procedure for measuring 
time cost

• Procedure (draft 1):

for (int i = 0; i < N.length; i++) {
  final Object X = initializeInput(N[i]);

  final long startTime = getClockTime();
  A(X);  // Run algorithm A on input X of size N[i]
  final long endTime = getClockTime();

  final long elapsedTime = endTime - startTime;
  System.out.println(“Time for N[“ + i + “]: “ +
                     elapsedTime);
}

Make sure to start and stop the clock 
as “tightly” as possible around the 

actual algorithm A.
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Procedure for measuring 
time cost

• The procedure would work fine if there were no variability 
in how long A(X) took to execute.

• Unfortunately, in the “real world”, each measurement of 
the time cost of A(X) is corrupted by noise:

• Garbage collector!

• Other programs running.

• Cache locality.

• Swapping to/from disk.

• Input/output requests from external devices.
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Procedure for measuring 
time cost

• If we measured the time cost of A(X) based on just one 
measurement, then our estimate of the “true” time cost 
of A(X) will be very imprecise.

• We might get unlucky and measure A(X) while the 
computer is doing a “system update”.

• If we’ve very unlucky, this might occur during some 
values of i, but not for others, thereby skewing the 
trend we seek to discover across the different N[i].
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Improved procedure for 
measuring time cost

• A much-improved procedure for measuring the time cost 
of A(X) is to compute the average time across M trials.

• Procedure (draft 2):
for (int i = 0; i < N.length; i++) {
  final Object X = initializeInput(N[i]);

  final long[] elapsedTimes = new long[M];
  for (int j = 0; j < M; j++) {
    final long startTime = getClockTime();
    A(X);  // Run algorithm A on input X of size N[i]  
    final long endTime = getClockTime();
    elapsedTimes[j] = endTime - startTime;
  }
  final double avgElapsedTime = computeAvg(elapsedTimes);
  System.out.println(“Time for N[“ + i + “]: “ +
                     avgElapsedTime);
}
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Improved procedure for 
measuring time cost

• If the elapsed time measured in the jth trial is Tj, then the 
average over all M trials is:

• We will use the average time “T-bar” as an estimate of the 
“true” time cost of A(X).

• The more trials M we use to compute the average, the 
more precise our estimate “T-bar” will be.

T =
1

M

MX

j=1

Tj
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Improved procedure for 
measuring time cost

• Alternatively, we can start/stop the clock just once.

• Procedure (draft 2b):
for (int i = 0; i < N.length; i++) {
  final Object X = initializeInput(N[i]);

  final long startTime = getClockTime();
  for (int j = 0; j < M; j++) {
    A(X);  // Run algorithm A on input X of size N[i]  
  }
  final long endTime = getClockTime();

  final double avgElapsedTime = (endTime - startTime) / M;
  System.out.println(“Time for N[“ + i + “]: “ +
                     avgElapsedTime);
}

Wednesday, July 18, 12



Quantifying uncertainty
• A key issue in any experiment is to quantify the uncertainty of 

all measurements.

• Example:

• We are attempting to estimate the “true” time cost of A(X) 
by averaging together the results of many trials.

• After computing “T-bar”, how far from the “true” time cost 
of A(X) was our estimate?
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Quantifying uncertainty
• A key issue in any experiment is to quantify the uncertainty of 

all measurements.

• Example:

• We are attempting to estimate the “true” time cost of A(X) 
by averaging together the results of many trials.

• After computing “T-bar”, how far from the “true” time cost 
of A(X) was our estimate?

• In order to compute this, we would have to know what 
the true time cost is -- and that’s what we’re trying to 
estimate!

• We must find another way to quantify uncertainty...
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Standard error versus 
standard deviation

• Some of you may already be familiar with the standard deviation:

• The standard deviation measures how “varied” the individual 
measurements Tj are.

• The standard deviation gives a sense of “how much noise 
there is.”

• However, in most cases, we are less interested in 
characterizing the noise, and more interested in measuring 
the true time cost of A(X) itself.

• For this, we want the standard error.

� =

vuut 1

M

MX

j=1

(Tj � T )2
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Quantifying your 
uncertainty

• In statistics, the uncertainty associated with a 
measurement (e.g., the time cost of A(X)) is typically 
quantified using the standard error:

where “T-bar” is the average (computed on earlier 
slide).

• Notice: as M grows larger, the StdErr becomes 
smaller.

StdErr =
�p
M

� =

vuut 1

M

MX

j=1

(Tj � T )2where

Standard deviation
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Error bars

• The standard error is often used to compute error 
bars on graphs to indicate how reliable they are.

• Different error bars have different meanings! Some 
of them indicate confidence intervals, some indicate 
standard error, some indicate standard deviation -- 
it’s important to know which!
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0 2 4 6 8 10 12
x 104

0

1

2

3

4

5

6

7

# data to add

Ti
m

e 
(s

ec
)

 

 
ArrayList
LinkedList

Wednesday, July 18, 12


