CSE |12.

Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Ate
18 July 2012

Data structures: a
quantitative perspective.

Data structures so far

® Up to now, we've focused on data

structures from a software construction
perspective:

® Data structures as ADTs.

® Separation of implementation from
interface.

® Encoding of the user’s data in a sequence
of bits.

Wednesday, July 18, 12

Data structures: a
quantitative analysis

® Just as important is the quantitative performance of
those structures, e.g.:

® Time cost:If | have a linked list of |00 elements,
how long will it take to find a particular element!?

What if the list is 1000 elements long? 10,0007

® Space cost: How much overhead (e.g., in Nodes)
is there in 2 DoublyLinkedList12 versus an
ArrayList!

Wednesday, July 18, 12

Data structures: a
quantitative analysis

® |n this lecture we will discuss algorithmic
analysis, in particular, methods of estimating the
time cost of algorithms.

® Data structures and algorithms are invariably
coupled:

® Without an algorithm, the data are useless.

® Without a data structure, the algorithm can’t
accomplish anything -- they need “space” to
execute.

Wednesday, July 18, 12

Measuring time cost

® |[nstead of measuring time cost in terms of seconds,
milliseconds, etc., we will count the “number of abstract

operations’.

® Examples of “abstract operations” include:

@ i =1+ 1; // Assignment and/or arithmetic
@ if (i > 5) { // Comparison

® On the other hand, calling another method -- i.e., another
algorithm -- would not be considered a single, abstract

operation:

® otherMethod(); // Have to look inside otherMethod!

Wednesday, July 18, 12

Measuring time cost

® The number of “abstract operations” is largely
independent of:

® The particular computer on which an algorithm is
running

® The particular programming language in which an
algorithm was implemented

Wednesday, July 18, 12

Measuring time cost

® We are interested in how the time cost grows as the
size of the input to the algorithm grows:

® [For instance, if we want to sort a list of nhumbers,
and the size of the list is n, then we want to
describe, as a function of n, how many operation

the sort procedure will take.

® Possible answers might include:
® n+ 3
® n2+3n- |

Wednesday, July 18, 12

Measuring time cost

® We are interested in how the time cost grows as the
size of the input to the algorithm grows:

When analyzing data structures and their
associated add/get/remove algorithms, the

input size n will often be the number of data
already stored in the ADT.

Wednesday, July 18, 12

Three cases

® When estimating the time cost of an
algorithm on an input of size n, we will
consider three cases:

|. Worst case: how many operations will
the algorithm take on the “hardest”
possible input (of size n)?

Wednesday, July 18, 12

Three cases

® When estimating the time cost of an
algorithm on an input of size n, we will
consider three cases:

2. Best case: how many operations will
the algorithm take on the “easiest”
possible input (of size n)?

Wednesday, July 18, 12

Three cases

® When estimating the time cost of an
algorithm on an input of size n, we will
consider three cases:

3. Average case: compute how long the
algorithm would take on every possible
input of size n; then, compute the sum of
these time costs weighted by how
probable each input would arise.

Wednesday, July 18, 12

Three cases

® When estimating the time cost of an
algorithm on an input of size n, we will
consider three cases:

3. Average case: compute how long the
algorithm would take on every possible
input of size n; then, compute the sum of
these time costs weighted by how
probable each input would arise.

Typically very difficult to compute exactly.

Wednesday, July 18, 12

Example |

® | et’s count the number of abstract
operations needed to compute the average
of students’ grades...

Wednesday, July 18, 12

Example |

operations

// Assume grades.length > 0
float computeAverageGrade (float[] grades) {
float sum = 0;
for (int 1 = 0; 1 < grades.length; i++) ({
sum += grades|[i];

}

return sum / grades.length;

}

Wednesday, July 18, 12

Example |

operations

// Assume grades.length > 0
float computeAverageGrade (float[] grades) {

float sum = 0O; 1
for (int i = 0; i < grades.length; i++) { 1+2n+1
sum += grades|[i]; o 2n
} J ot By definition of Java array, each
access takes | operation.
return sum / grades.length; 1
}

Total:

4n+4

Wednesday, July 18, 12

Example |

operations

// Assume grades.length > 0
float computeAverageGrade (float[] grades) {

float sum = 0O; 1
for (int i = 0; i < grades.length; i++) { 1+2n+1
sum += grades|[i]; o 2n
} J ot By definition of Java array, each
access takes | operation.
return sum / grades.length; 1
}

Total:

® In this algorithm, best case = worst case = average case. #7+4

® Only the size (n) of the input affects the time cost, not
the particular input.

Wednesday, July 18, 12

Example |

180 T —— e
1€ COSt.

160

140

120

/\10@‘ N

60

49

20

Wednesday, July 18, 12

Example 2

operations

// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
for (int 1 = 0; i1 < numbers.length; i++) ({
1f (numbers[i] == number) {
return 1i;

}
}

return -1; // not found

}

® |n this algorithm, the time cost depends on the
particular inputs numbers and number.

® |et’s first consider the worst case.

Wednesday, July 18, 12

Example 2

operations

// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
for (int 1 = 0; i1 < numbers.length; i++) ({
1f (numbers[i] == number) {
return 1i;

}
}

return -1; // not found

}

® |n this algorithm, the time cost depends on the
particular inputs numbers and number.

® |et’s first consider the worst case.

® Here, the worst case is when number is not found.

Wednesday, July 18, 12

Example 2

operations

// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {

for (int i = 0; i < numbers.length; i++) { 1+2n+1
1f (numbers[i] == number) { n
return 1i; 0
}
}
return -1; // not found 1
}
® In this algorithm, the time cost depends on the §§§§l'

particular inputs numbers and number.
® |et’s first consider the worst case.

® Here, the worst case is when number is not found.

Wednesday, July 18, 12

Example 2

operations

// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
for (int 1 = 0; i1 < numbers.length; i++) ({
1f (numbers[i] == number) {
return 1i;

}
}

return -1; // not found

}

® |n this algorithm, the time cost depends on the
particular inputs numbers and number.

® |et’s first consider the best case.

® Best case is when number is at index O of numbers.

Wednesday, July 18, 12

Example 2

operations

// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {

for (int i = 0; i < numbers.length; i++) { 1+1
if (numbers[i] == number) { 1
return 1i; 1

}
}

return -1; // not found

}
: : : Total:
® |n this algorithm, the time cost depends on the 4
particular inputs numbers and number.
® |et’s first consider the best case.

® Best case is when number is at index O of numbers.

Wednesday, July 18, 12

Example 2

operations

// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
for (int 1 = 0; i1 < numbers.length; i++) ({
1f (numbers[i] == number) {
return 1i;

}
}

return -1; // not found

}

® |n this algorithm, the time cost depends on the
particular inputs numbers and number.

® Finding the average case time cost is more difficult.

e We’'ll handle that later...

Wednesday, July 18, 12

Example 3

operations

int someMethod (int[] numbers) {
int sum = 0;
for (int i = 0; 1 < numbers.length; i++) {
for (int j = 0; j < numbers.length; j++) {
sum += numbers[i] * numbers[j];
}
}

return sum;

}

Wednesday, July 18, 12

Example 3

operations

int someMethod (int[] numbers) {
int sum = 0; 1
for (int i = 0; 1 < numbers.length; i++) {
for (int j = 0; j < numbers.length; j++) {
sum += numbers[i] * numbers[j];
}
}

return sum; 1

}

Wednesday, July 18, 12

Example 3

operations

int someMethod (int[] numbers) {
int sum = 0; 1
for (int i = 0; 1 < numbers.length; i++) {
for (int jJ = 0; jJ < numbers.length; j++) {
sum += numbers[i] * numbers[[j]; n*n*4
}
}

return sum; 1

}

Wednesday, July 18, 12

Example 3

int someMethod (int[] numbers) {
int sum = 0;
= 0; 1 < numbers.length; i++) ({

for (int 1
for (int
sum +=
}
}

return sum;

}

j = 0; j < numbers.length;
numbers[1] * numbers[]];

Jt++) |

operations

1

n* (1l+2n+1)
n*n*4

Wednesday, July 18, 12

Example 3

int someMethod (int[] numbers) {
int sum = 0;
= 0; 1 < numbers.length; i++) ({

for (int 1
for (int
sum +=
}
}

return sum;

}

j = 0; j < numbers.length;
numbers[1] * numbers[]];

Jt++) |

operations

1

1+2n+1

n* (1+2n+1)
n*n*4

Wednesday, July 18, 12

Example 3

operations

int someMethod (int[] numbers) {

int sum = 0; 1
for (int i = 0; 1 < numbers.length; i++) { 1+2n+1
for (int j = 0; j < numbers.length; j++) { n* (1l+2n+1)
sum += numbers[i] * numbers[[j]; n*n*4
}
}
return sum; 1
}
Total:
4n?+2n?+n
+n+1+2n

This is an example of quadratic time cost. +1+1 =
6n%+4n+3

Wednesday, July 18, 12

Quadratic versus linear time

180

160

1401

120

Asymptotic performance analysis

® This level of detail is usually more than we need
when comparing algorithms:

® We don’t care if the time cost is n,or 3n,or 0.1n --
the main thing is that it’s “some constant times n"’.

® We do care whether it’s n or n? or 2"
® We are interested in asymptotic analysis (n —00):

® We mostly care about the algorithm’s time cost
when n is very large.

® [f nis small, then the algorithm will be fast anyway.

Wednesday, July 18, 12

Asymptotic performance analysis

® |nstead of saying I(n) = 3n+3
we will say T(n) = O(n) (“T is big-‘O’ of n”),
i.e., T(n) is basically linear.

® |nstead of saying T(n) = 2n-|

we will say T(n) = O(n) (“T is big-‘O’ of n”),
i.e., T(n) is basically linear.

® |nstead of saying T(n) = |1/2 n-0.2353
we will say T(n) = O(n) (“T is big-‘O’ of n”),
i.e., T(n) is basically linear.

Asymptotic performance analysis

® |nstead of saying T(n) = 6n?
we will say T(n) = O(n?) (“T is big-‘O’ of n?”),
i.e., I(n) is basically quadratic.

® |nstead of saying T(n) = 2n’*+3n+13535
we will say T(n) = O(n?) (“T is big-‘O’ of n?”),
i.e., T(n) is basically quadratic.
Here, the quadratic term dominates the

linear term -- as n grows large, n? will
become much larger than n.

Wednesday, July 18, 12

Asymptotic performance analysis

® |[nstead of saying T(n) = 6 logn + 3
we will say T(n) = O(log n) (“T is big-‘O’ of log n™),
i.e., I'(n) is basically logarithmic.

® |nstead of saying T(n) =nlogn+n-23
we will say T(n) = O(n log n) (“T is big-‘O’ of n log n”),
i.e., T(n) is basically loglinear.

® |nstead of saying T(n) =n + n? -3
we will say T(n) =

Wednesday, July 18, 12

Asymptotic performance analysis

® |[nstead of saying T(n) = 6 logn + 3
we will say T(n) = O(log n) (“T is big-‘O’ of log n™),
i.e., I'(n) is basically logarithmic.

® |nstead of saying T(n) =nlogn+n-23
we will say T(n) = O(n log n) (“T is big-‘O’ of n log n”),
i.e., T(n) is basically loglinear.

® |nstead of saying T(n) =n + n? -3
we will say T(n) = O(n?) (“T is big-‘O’ of n?”),
i.e., T(n) is basically quadratic.

The ordering (first v second) of the terms is unimportant.
What matters is what the dominant term is.

Wednesday, July 18, 12

Different asymptotic costs

® Asymptotic analysis assigns algorithms to different
“complexity classes’:

O(1) - constant - performance of algorithm does not
depend on input size.

O(n) - linear - doubling n will double the time cost.
O(log n) - logarithmic

O(n log n) -- loglinear

O(n?) - quadratic

O(2") - exponential

® Algorithms that differ in complexity class can have vastly
different run-time performance (for large n).

Wednesday, July 18, 12

Different asymptotic costs

5 ,
/// /n! //nlog(n)
. / / / n from
p ;) Bailey
/ (2007)
/ /
3 / /
i
/ y s sqrt(n) - --
2 / / e
e / 7 /’,,—”"’ _____
/ / //,,—//’// B ’
1 Z
L y ! log(n)
i]
/ -~ (/’/
0 K2 £
0 | 2 3 4 5

Figure 5.2 Near-origin details of common curves. Compare with Figure 5.3.

Wednesday, July 18, 12

Different asymptotic costs

100

%0 from
Bailey
(2007)

60

40

20

Figure 5.3 Long-range trends of common curves. Compare with Figure 5.2.

Wednesday, July 18, 12

Asymptotic performance analysis

® Asymptotic performance analysis is a coarse but useful
means of describing and comparing the performance of

algorithms as a function of the input size n when n gets
large.

® Asymptotic analysis applies to both time cost and
space cost.

® Asymptotic analysis hides details of timing (that we don’t
care about) due to:

® Speed of computer.
® Slight differences in implementation.

® Programming language.

Wednesday, July 18, 12

Mathematical formalism

® |n order to justify approximating a time cost
T(n)=3n+3 just as “O(n)=n", we need to define some
mathematical notation:

® We say a function T(n) is big-O of another
function g(n) (i.e., O(g(n)) if there exist positive
constants ¢ and no such that:

for all n > no: T(n) < c g(n)

Wednesday, July 18, 12

Mathematical formalism

® |n order to justify approximating a time cost
T(n)=3n+3 just as “O(n)=n", we need to define some
mathematical notation:

® We say a function T(n) is big-O of another
function g(n) (i.e., O(g(n)) if there exist positive
constants ¢ and no such that:

for all n > no: T(n) < c g(n)

As longasnis* ", then T(n) will always be less
than a constant multiple of g(n).

Wednesday, July 18, 12

Mathematical formalism

Example: consider T(n)=3n-6.

If we pick g(n)=n,no = 0 and c = 4, then:

T(n) = 3n-6 < 4n = c g(n) for all n > no

Hence, we can write:“T(n) is O(g(n)) where g(n)=n".

More simply, we can write:"“T(n) is O(n)”.

Mathematical formalism

® Note that, for T(n)=3n-6, we could also write T(n) =
O(n?) because:

® |f we pick no = 10 and c = I, then:
® T(n) =3n-6 < n?=cg(n) foralln>no

® The“0O” notation gives an upper bound to the time
cost T. It may not be a tight upper bound.

Mathematical formalism

® Note that, for T(n)=n?+2n, we could not write T(n)
= 0(n) because there do nhot exist positive
constants ¢ and no such that T(n) < c g(n) for all n >
no.

Analysis of data structures

® | et’s put these ideas into practice and analyze the
performance of algorithms related to ArrayList:

® add (o), get(index), £ind (o), and

remove (1ndex).

® As a first step, we must decide what the “input
size” means.

® What is the “input” to these algorithms!?

Wednesday, July 18, 12

Analysis of data structures

® Fach of the methods (algorithms) above operates
on the underlyingStorage and either o or index.

® o and index are always length | -- their size
cannot grow.

® However, the number of data in
_underlyingStorage (stored N _numElements)
will grow as the user adds elements to the

ArrayList.

® Hence, we measure asymptotic time cost as a
function of n, the number of elements stored

(numElements).

Wednesday, July 18, 12

Adding to back of list

® What is the time complexity of this
method?

class ArrayList<T> {

void addToBack (T o) {
// Assume underlyingStorage is big enough
_underlyingStorage[numElements] = o;
_numElements++;

}
}

Wednesday, July 18, 12

Adding to back of list

® What is the time complexity of this
method?

class ArrayList<T> {

void addToBack (T o) {
// Assume underlyingStorage is big enough
_underlyingStorage[numElements] = o;
_numElements++;

}
}

Wednesday, July 18, 12

Retrieving an element

® What is the time complexity of this
method?

class ArrayList<T> ({

T get (int index) ({
return underlyingStorage[index];
}
}

Wednesday, July 18, 12

Retrieving an element

® What is the time complexity of this
method?

class ArrayList<T> ({

T get (int index) ({
return underlyingStorage[index];
}
}

Wednesday, July 18, 12

Adding to front of list

® What is the time complexity of this

method!?
class ArrayList<T> ({

void addToFront (T o) {
// Assume underlyingStorage is big enough
for (int 1 = 0; 1 < numElements; i++) {

_underlyingStorage[i+l] = underlyingStorage[i];

}
_underlyingStorage[i] = o;
_numElements++;

}

}

Wednesday, July 18, 12

Adding to front of list

® What is the time complexity of this

method!?
class ArrayList<T> ({

void addToFront (T o) {
// Assume underlyingStorage is big enough
for (int 1 = 0; 1 < numElements; i++) {

_underlyingStorage[i+l] = underlyingStorage[i];

}
_underlyingStorage[i] = o;
_numElements++;

}

}

Wednesday, July 18, 12

Finding an element

® What is the time complexity of this

method in the best case? Worst case?
class ArrayList<T> {

// Returns lowest index of o in the Arraylist, or
// -1 if o is not found.
int find (T o) {
for (int i = 0; 1 < numElements; i++) {
if (underlyingStorage[i].equals(o)) { // not null
return 1i;
}
}
return -1;
}
}

Wednesday, July 18, 12

Finding an element

® What is the time complexity of this

method in the best case? Worst case?
class ArrayList<T> {

// Returns lowest index of o in the Arraylist, or
// -1 if o is not found.
int find (T o) {
for (int i = 0; 1 < numElements; i++) {
if (underlyingStorage[i].equals(o)) { // not null
return 1i;
}
}
return -1;
}
}

Wednesday, July 18, 12

Adding n elements

® Now, let’s consider the time complexity of
doing many adds in sequence, starting from
an empty list:

void addManyToFront (T[] many) {
for (int 1 = 0; i < many.length; i++) {

addToFront (many[i]) ;

}
}

® What is the time complexity of
addManyToFront on an array of size n?

Wednesday, July 18, 12

Adding n elements

® TJo calculate the total time cost, we have to sum the
time costs of the individual calls to addToFront.

® to addToFront (o) takes about time i, where
i is the current size of the list. (Ve have to “move
over’ i elements by one step to the right.)

void addManyToFront (T[] many) {
for (int i = 0; i < many.length; i++) {

}
}

® Let I(i) the cost of addToFront at iteration i:
T10)=1,T(l1)=2,.., T(n-1)=n.

Wednesday, July 18, 12

Adding n elements

® Now we just have to add together all the T(i):

ZT

n—1

=2 1=

n(n —1)

; = O(n?)

® Note that we would get the same asymptotic bound
even if we calculated the cost T(i) slightly differently,

e.g., T()=3i+2:

n—1

> 7()

Wednesday, July 18, 12

Finding an element

® What is the time complexity of this

method in the average case!
class ArrayList<T> {

// Returns lowest index of o in the Arraylist, or
// -1 if o is not found.
int find (T o) {
for (int i = 0; 1 < numElements; i++) {
if (underlyingStorage[i].equals(o)) { // not null
return 1i;
}
}
return -1;
}
}

Wednesday, July 18, 12

Finding an element: average case

® Finding an exact formula for the average case performance
can be tricky (if not impossible).

® |n order to compute the average, or expected, time cost,
we must know:

® The time cost T(X,) for a particular input X of size n.
® The probability P(X,) of that input X.

® The expected time cost, over all inputs X of size n, is then:

AvgCaseTimeCost,, = E[T(X,)] = » P(X,)T(Xy)
Xn

Wednesday, July 18, 12

Finding an element: average case

® Finding an exact formula for the average case performance
can be tricky (if not impossible).

® |n order to compute the average, or expected, time cost,
we must know:

® The time cost T(X,) for a particular input X of size n.
® The probability P(X,) of that input X.

® The expected time cost, over all inputs X of size n, is then:

AvgCaseTimeCost,, = E[T(X,)] = » P(X,)T(Xy)
Xn

Wednesday, July 18, 12

Finding an element: average case

® |n the £ind (o) method listed above, it is possible that
the user gives us an o that is not contained in the list.

® This will result in O(n) time cost.
® How “likely” is this event!?

® We have no way of knowing -- we could make an
arbitrary assumption, but the result would be
meaningless.

® | et’s remove this case from consideration and assume
that o is always present in the list.

® VWhat is the average-case time cost then?

Wednesday, July 18, 12

Finding an element: average case

® Even when we assume o is present in the list
somewhere, we have no idea whether the o the user
gives us will “tend to be at the front” or “tend to be at
the back™ of the list.

® However, here we can make a plausible assumption:

® For an ArrayList of n elements, the probability that
o is contained at index i is |/n.

® In other words, o is equally likely to be in any of
the “slots” of the array.

Wednesday, July 18, 12

Finding an element: average case

® Given this assumption, we can finally make headway.

® |et’s define T(i) to be the cost of the £ind (o) method as a

function of i, the location in _underlyingStorage where o
is located.What is T(i)?

class ArrayList<T> ({

// Returns lowest index of o in the ArraylList, or
// -1 if o is not found.
int find (T o) {
for (int i = 0; i < numElements; i++) {
if (_underlyingStorage[i].equals(o)) { // not null
return 1i;
}
}
return -1;
}
}

Wednesday, July 18, 12

Finding an element: average case

® Given this assumption, we can finally make headway.

® |et’s define T(i) to be the cost of the £ind (o) method as a

function of i, the location in _underlyingStorage where o
is located.What is T(i)?

class ArrayList<T> ({

// Returns lowest index of o in the ArraylList, or
// -1 if o is not found.
int find (T o) {
for (int i = 0; i < numElements; i++) {
if (_underlyingStorage[i].equals(o)) { // not null
return 1i;
}
}
return -1;
}
}

Wednesday, July 18, 12

Finding an element: average case

® Now, we can re-write the expected time cost in terms of
an arbitrary input X, as the expected time cost in terms of
where in the array the element o will be found.

AvgCaseTimeCost,, = ZP(@)T(@)

|
|
.

Wednesday, July 18, 12

Questions to ponder

® What is the time cost of adding to the back
of a singly-linked list, as a function of the
number of elements already in the list!

® With just a _head pointer?

® With both head and tail!

Wednesday, July 18, 12

Performance
measurement.

Empirical performance
measurement

® As an alternative to describing an algorithm’s
performance with a “number of abstract
operations’, we can also measure its time
empirically using a clock.

® As illustrated last lecture, counting “abstract
operations’ can anyway hide real performance
differences, e.g., between using int[] and
Integer]|].

Wednesday, July 18, 12

Empirical performance
measurement

® There are also many cases where you don’t know
how an algorithm works internally.

® Many programs and libraries are not open source!

® You have to analyze an algorithm’s performance
as a black box.

® “Black box™ -- you can run the program but
cannot see how it works internally.

® |t may even be useful to deduce the asymptotic time
cost by measuring the time cost for different input
sizes.

Wednesday, July 18, 12

Procedure for measuring
time cost

® | et’s suppose we wish to measure the time cost of
algorithm A as a function of its input size n.

® \We need to choose a set of values of n that we will
test.

® |f we make n too big, our algorithm A may never
terminate (the input is “too big”).

® |f we make n too small, then A may finish so fast
that the “elapsed time” is practically 0, and we
won't get a reliable clock measurement.

Wednesday, July 18, 12

Procedure for measuring
time cost

® |n practice, one “guesses’” a few values for n, sees
how fast A executes on them, and selects a range of
values for n.

® | et’s define an array of different input sizes, e.g.:
int[] N = { 1000, 2000, 3000, ..., 10000 };

® Now, for each input size N[i], we want to measure
A’s time cost.

Wednesday, July 18, 12

Procedure for measuring
time cost

® Procedure

for (int i = 0; i < N.length; i++) {
final Object X = initializeInput(N[i])

A(X); // Run algorithm A on input X of size N[i]

final long elapsedTime = endTime - startTime;
System.out.println(“"Time for N[“ + 1 + “]: ™ +
elapsedTime) ;

Wednesday, July 18, 12

Procedure for measuring
time cost

® The procedure would work fine if there were no variability
in how long A (X) took to execute.

® Unfortunately, in the “real world”, each measurement of
the time cost of A (X) is corrupted by noise:

® (Garbage collector!

® Other programs running.
® Cache locality.

® Swapping to/from disk.

® Input/output requests from external devices.

Wednesday, July 18, 12

Procedure for measuring
time cost

® |f we measured the time cost of A (X) based on just one
measurement, then our estimate of the “true” time cost
of A (X) will be very imprecise.

® VWe might get unlucky and measure A (x) while the
computer is doing a “system update”.

® |f we've very unlucky, this might occur during some
values of i, but not for others, thereby skewing the
trend we seek to discover across the different N[i].

Wednesday, July 18, 12

Improved procedure for
measuring time cost

® A much-improved procedure for measuring the time cost
of A(X) is to compute the average time across M trials.

® Procedure ():
for (int 1 = 0; i < N.length; i++) {
final Object X = initializeInput(N[i]);

final long[] elapsedTimes = new long[M];
for (int jJ = 0; jJ < M; j++) {
final long startTime = getClockTime() ;
A(X); // Run algorithm A on input X of size N[i]
final long endTime = getClockTime() ;
elapsedTimes[]] = endTime - startTime;
}
final double avgElapsedTime = computeAvg (elapsedTimes) ;
System.out.println(“"Time for N[™ + 1 + “]: ™ +

avgElapsedTime) ;
}

Wednesday, July 18, 12

Improved procedure for
measuring time cost

® |f the elapsed time measured in the jth trial is T;, then the
average over all M trials is: o
T=— ; T,

® Ve will use the average time ““T-bar’ as an estimate of the
“true” time cost of A(X).

® The more trials M we use to compute the average, the
more precise our estimate “T-bar” will be.

Wednesday, July 18, 12

Improved procedure for
measuring time cost

® Alternatively, we can start/stop the clock just once.

® Procedure ():
for (int i = 0; i < N.length; i++) {
final Object X = initializeInput(N[i])

final long startTime = getClockTime () ;
for (int j = 0; j < M; j++) {
A(X); // Run algorithm A on input X of size N[i]

}
final long endTime = getClockTime () ;

final double avgElapsedTime = (endTime - startTime) / M;
System.out.println(“"Time for N[™ + 1 + “]: ™ +
avgElapsedTime) ;

Wednesday, July 18, 12

Quantifying uncertainty

® A key issue in any experiment is to quantify the uncertainty of
all measurements.

® Example:

® We are attempting to estimate the “true” time cost of A(X)
by averaging together the results of many trials.

® After computing “I-bar”, how far from the “true” time cost
of A(X) was our estimate?

Wednesday, July 18, 12

Quantifying uncertainty

® A key issue in any experiment is to quantify the uncertainty of
all measurements.

® Example:

® We are attempting to estimate the “true” time cost of A(X)
by averaging together the results of many trials.

® After computing “I-bar”, how far from the “true” time cost
of A(X) was our estimate?

Wednesday, July 18, 12

Standard error versus
standard deviation

® Some of you may already be familiar with the standard deviation:

0\%2(7}—7)2

® [he standard deviation measures how ‘“varied” the individual
measurements T; are.

® The standard deviation gives a sense of “how much noise
there is.”

® However,in most cases, we are less interested in
characterizing the noise,and more interested in measuring
the true time cost of A (X) itself.

® For this, we want the standard error.

Wednesday, July 18, 12

Quantifying your
uncertainty

® |n statistics, the uncertainty associated with a
measurement (e.g., the time cost of A(X)) is typically
quantified using the standard error:

M
StdErr = \/LM where o \ M Z 2
where “T-bar” is the average (computed on arller

slide).

® Notice:as M grows larger, the StdErr becomes
smaller.

Wednesday, July 18, 12

Error bars

® The standard error is often used to compute error
bars on graphs to indicate how reliable they are.

® Different error bars have different meanings! Some
of them indicate confidence intervals, some indicate
standard error, some indicate standard deviation --

it's important to know which!

Wednesday, July 18, 12

7 _
— ArrayList
— LinkedList
6 |
5L i

™

Time (sec)
w

2_
1F
F—1—
O | | | | |
0 2 4 6 8 10

data to add

Wednesday, July 18, 12

