CSE 12: Basic data structures and object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Ate
18 July 2012
Data structures: a quantitative perspective.
Data structures so far

• Up to now, we’ve focused on data structures from a software construction perspective:
 • Data structures as ADTs.
 • Separation of implementation from interface.
 • Encoding of the user’s data in a sequence of bits.
Data structures: a quantitative analysis

• Just as important is the quantitative performance of those structures, e.g.:

 • **Time cost**: If I have a linked list of 100 elements, how long will it take to find a particular element? What if the list is 1000 elements long? 10,000?

 • **Space cost**: How much overhead (e.g., in Nodes) is there in a DoublyLinkedList versus an ArrayList?
Data structures: a quantitative analysis

• In this lecture we will discuss algorithmic analysis, in particular, methods of estimating the time cost of algorithms.

• Data structures and algorithms are invariably coupled:
 • Without an algorithm, the data are useless.
 • Without a data structure, the algorithm can’t accomplish anything -- they need “space” to execute.
Measuring time cost

• Instead of measuring time cost in terms of seconds, milliseconds, etc., we will count the “number of abstract operations”.

• Examples of “abstract operations” include:
 • `i = i + 1; // Assignment and/or arithmetic`
 • `if (i > 5) { // Comparison`

• On the other hand, calling another method -- i.e., another algorithm -- would not be considered a single, abstract operation:
 • `otherMethod(); // Have to look inside otherMethod!`
Measuring time cost

- The number of “abstract operations” is largely independent of:
 - The particular computer on which an algorithm is running
 - The particular programming language in which an algorithm was implemented
Measuring time cost

• We are interested in how the time cost grows as the size of the input to the algorithm grows:

• For instance, if we want to sort a list of numbers, and the size of the list is n, then we want to describe, as a function of n, how many operation the sort procedure will take.

• Possible answers might include:
 • $2n + 3$
 • $n^2 + 3n - 1$
 • ...
Measuring time cost

- We are interested in how the time cost grows as the size of the input to the algorithm grows:

- When analyzing data structures and their associated add/get/remove algorithms, the input size n will often be the number of data already stored in the ADT.
Three cases

• When estimating the time cost of an algorithm on an input of size n, we will consider three cases:

1. **Worst case**: how many operations will the algorithm take on the “hardest” possible input (of size n)?
Three cases

• When estimating the time cost of an algorithm on an input of size n, we will consider three cases:

2. **Best case**: how many operations will the algorithm take on the “easiest” possible input (of size n)?
Three cases

- When estimating the time cost of an algorithm on an input of size n, we will consider three cases:

3. **Average case**: compute how long the algorithm would take on every possible input of size n; then, compute the sum of these time costs weighted by how probable each input would arise.
Three cases

- When estimating the time cost of an algorithm on an input of size n, we will consider three cases:

 3. **Average case**: compute how long the algorithm would take on every **possible** input of size n; then, compute the **sum** of these time costs weighted by how **probable** each input would arise.

 Typically very difficult to compute exactly.
Example 1

- Let’s count the number of abstract operations needed to compute the average of students’ grades...
Example 1

// Assume grades.length > 0
float computeAverageGrade (float[] grades) {
 float sum = 0;
 for (int i = 0; i < grades.length; i++) {
 sum += grades[i];
 }

 return sum / grades.length;
}

operations
Example 1

// Assume grades.length > 0
float computeAverageGrade (float[] grades) {
 float sum = 0;
 for (int i = 0; i < grades.length; i++) {
 sum += grades[i];
 }
 return sum / grades.length;
}

By definition of Java array, each access takes 1 operation.

Total: 4n+4

operations

1
1+2n+1
2n
1

Total: 4n+4
Example 1

// Assume grades.length > 0
float computeAverageGrade (float[] grades) {
 float sum = 0;
 for (int i = 0; i < grades.length; i++) {
 sum += grades[i];
 } By definition of Java array, each access takes 1 operation.
 return sum / grades.length;
}

• In this algorithm, best case = worst case = average case.

• Only the size (n) of the input affects the time cost, not the particular input.
Example 1

The cost.

\[T(n) = 3n + 3 \]
Example 2

```java
// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
    for (int i = 0; i < numbers.length; i++) {
        if (numbers[i] == number) {
            return i;
        }
    }
    return -1;  // not found
}
```

- In this algorithm, the time cost depends on the particular inputs `numbers` and `number`.
- Let’s first consider the worst case.
Example 2

// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
 for (int i = 0; i < numbers.length; i++) {
 if (numbers[i] == number) {
 return i;
 }
 }
 return -1; // not found
}

• In this algorithm, the time cost depends on the particular inputs numbers and number.

• Let’s first consider the worst case.

• Here, the worst case is when number is not found.
Example 2

// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
 for (int i = 0; i < numbers.length; i++) {
 if (numbers[i] == number) {
 return i;
 }
 }
 return -1; // not found
}

• In this algorithm, the time cost depends on the particular inputs numbers and number.

• Let’s first consider the worst case.

• Here, the worst case is when number is not found.
Example 2

// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
 for (int i = 0; i < numbers.length; i++) {
 if (numbers[i] == number) {
 return i;
 }
 }
 return -1; // not found
}

operations

• In this algorithm, the time cost depends on the particular inputs numbers and number.

• Let’s first consider the best case.

 • Best case is when number is at index 0 of numbers.
Example 2

// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
 for (int i = 0; i < numbers.length; i++) {
 if (numbers[i] == number) {
 return i;
 }
 }
 return -1; // not found
}

• In this algorithm, the time cost depends on the particular inputs numbers and number.

• Let’s first consider the best case.

• Best case is when number is at index 0 of numbers.
Example 2

```java
// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
    for (int i = 0; i < numbers.length; i++) {
        if (numbers[i] == number) {
            return i;
        }
    }
    return -1;  // not found
}
```

- In this algorithm, the time cost depends on the particular inputs `numbers` and `number`.
- Finding the average case time cost is more difficult.
- We’ll handle that later...
Example 3

```java
int someMethod (int[] numbers) {
    int sum = 0;
    for (int i = 0; i < numbers.length; i++) {
        for (int j = 0; j < numbers.length; j++) {
            sum += numbers[i] * numbers[j];
        }
    }
    return sum;
}
```
Example 3

```java
int someMethod (int[] numbers) {
    int sum = 0;
    for (int i = 0; i < numbers.length; i++) {
        for (int j = 0; j < numbers.length; j++) {
            sum += numbers[i] * numbers[j];
        }
    }
    return sum;
}
```

operations

```plaintext
1
1
```
int someMethod (int[] numbers) {
 int sum = 0;
 for (int i = 0; i < numbers.length; i++) {
 for (int j = 0; j < numbers.length; j++) {
 sum += numbers[i] * numbers[j];
 }
 }
 return sum;
}
Example 3

```java
int someMethod (int[] numbers) {
    int sum = 0;
    for (int i = 0; i < numbers.length; i++) {
        for (int j = 0; j < numbers.length; j++) {
            sum += numbers[i] * numbers[j];
        }
    }
    return sum;
}
```

operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(n(1+2n+1))</td>
<td></td>
</tr>
<tr>
<td>(nn4)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
int someMethod (int[] numbers) {
 int sum = 0;
 for (int i = 0; i < numbers.length; i++) {
 for (int j = 0; j < numbers.length; j++) {
 sum += numbers[i] * numbers[j];
 }
 }
 return sum;
}

operations

1
1+2n+1
n*(1+2n+1)
n*n*4
1
Example 3

```java
int someMethod (int[] numbers) {
    int sum = 0;
    for (int i = 0; i < numbers.length; i++) {
        for (int j = 0; j < numbers.length; j++) {
            sum += numbers[i] * numbers[j];
        }
    }
    return sum;
}
```

This is an example of **quadratic** time cost.

operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1+2n+1</td>
<td></td>
</tr>
<tr>
<td>n*(1+2n+1)</td>
<td>nn4</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Total:

4n²+2n²+n +n+1+2n +1+1 = 6n²+4n+3
Quadratic versus linear time

\[T(n) = 6n^2 + 4n + 3 \]

\[3n + 3 \]
Asymptotic performance analysis

• This level of detail is usually more than we need when comparing algorithms:
 • We *don’t* care if the time cost is \(n \), or \(3n \), or \(0.1n \) -- the main thing is that it’s “some constant times \(n \)”.
 • We *do* care whether it’s \(n \) or \(n^2 \) or \(2^n \).

• We are interested in *asymptotic analysis* (\(n \rightarrow \infty \)):
 • We mostly care about the algorithm’s time cost when \(n \) is very large.
 • If \(n \) is small, then the algorithm will be fast anyway.
Asymptotic performance analysis

• Instead of saying $T(n) = 3n+3$
 we will say $T(n) = O(n)$ (“T is big-‘O’ of n”),
 i.e., $T(n)$ is basically linear.

• Instead of saying $T(n) = 2n-1$
 we will say $T(n) = O(n)$ (“T is big-‘O’ of n”),
 i.e., $T(n)$ is basically linear.

• Instead of saying $T(n) = 1/2 \ n-0.2353$
 we will say $T(n) = O(n)$ (“T is big-‘O’ of n”),
 i.e., $T(n)$ is basically linear.
Asymptotic performance analysis

• Instead of saying \(T(n) = 6n^2 \)
 we will say \(T(n) = O(n^2) \) ("\(T \) is big-‘O’ of \(n^2 \)’),
 i.e., \(T(n) \) is basically quadratic.

• Instead of saying \(T(n) = 2n^2 + 3n + 13535 \)
 we will say \(T(n) = O(n^2) \) ("\(T \) is big-‘O’ of \(n^2 \)’),
 i.e., \(T(n) \) is basically quadratic.

Here, the quadratic term dominates the linear term -- as \(n \) grows large, \(n^2 \) will become much larger than \(n \).
Asymptotic performance analysis

• Instead of saying $T(n) = 6 \log n + 3$
 we will say $T(n) = O(\log n)$ ("T is big-`O’ of $\log n$"),
 i.e., $T(n)$ is basically logarithmic.

• Instead of saying $T(n) = n \log n + n - 23$
 we will say $T(n) = O(n \log n)$ ("T is big-`O’ of $n \log n$"),
 i.e., $T(n)$ is basically loglinear.

• Instead of saying $T(n) = n + n^2 - 3$
 we will say $T(n) =$
Asymptotic performance analysis

- Instead of saying $T(n) = 6 \log n + 3$
 we will say $T(n) = O(\log n)$ (“T is big-‘O’ of $\log n$”),
 i.e., $T(n)$ is basically logarithmic.

- Instead of saying $T(n) = n \log n + n - 23$
 we will say $T(n) = O(n \log n)$ (“T is big-‘O’ of $n \log n$”),
 i.e., $T(n)$ is basically loglinear.

- Instead of saying $T(n) = n + n^2 - 3$
 we will say $T(n) = O(n^2)$ (“T is big-‘O’ of n^2”),
 i.e., $T(n)$ is basically quadratic.

The ordering (first v second) of the terms is unimportant.
What matters is what the dominant term is.
Different asymptotic costs

- Asymptotic analysis assigns algorithms to different “complexity classes”:
 - $O(1)$ - constant - performance of algorithm does not depend on input size.
 - $O(n)$ - linear - doubling n will double the time cost.
 - $O(\log n)$ - logarithmic
 - $O(n \log n)$ -- loglinear
 - $O(n^2)$ - quadratic
 - $O(2^n)$ - exponential

- Algorithms that differ in complexity class can have *vastly* different run-time performance (for large n).
Different asymptotic costs

Figure 5.2 Near-origin details of common curves. Compare with Figure 5.3.

from Bailey (2007)
Different asymptotic costs

Figure 5.3 Long-range trends of common curves. Compare with Figure 5.2.

from Bailey (2007)
Asymptotic performance analysis

• Asymptotic performance analysis is a coarse but useful means of describing and comparing the performance of algorithms as a function of the input size n when n gets large.

• Asymptotic analysis applies to both time cost and space cost.

• Asymptotic analysis hides details of timing (that we don’t care about) due to:
 • Speed of computer.
 • Slight differences in implementation.
 • Programming language.
Mathematical formalism

• In order to justify approximating a time cost $T(n)=3n+3$ just as “$O(n)=n$”, we need to define some mathematical notation:

• We say a function $T(n)$ is big-O of another function $g(n)$ (i.e., $O(g(n))$) if there exist positive constants c and n_0 such that:

 for all $n > n_0$: $T(n) \leq c g(n)$
Mathematical formalism

• In order to justify approximating a time cost \(T(n) = 3n + 3 \) just as “\(O(n) = n \)”, we need to define some mathematical notation:

• We say a function \(T(n) \) is big-O of another function \(g(n) \) (i.e., \(O(g(n)) \)) if there exist positive constants \(c \) and \(n_0 \) such that:

\[
\text{for all } n > n_0: T(n) \leq c \cdot g(n)
\]

As long as \(n \) is “big enough”, then \(T(n) \) will always be less than a constant multiple of \(g(n) \).
Mathematical formalism

• Example: consider $T(n)=3n-6$.
• If we pick $g(n)=n$, $n_0=0$ and $c=4$, then:
 • $T(n) = 3n-6 \leq 4n = c \cdot g(n)$ for all $n > n_0$
• Hence, we can write: “$T(n)$ is $O(g(n))$ where $g(n)=n$”.
• More simply, we can write: “$T(n)$ is $O(n)$”.
Mathematical formalism

• Note that, for $T(n)=3n-6$, we could also write $T(n) = O(n^2)$ because:

 • If we pick $n_0 = 10$ and $c = 1$, then:

 • $T(n) = 3n-6 \leq n^2 = c \ g(n)$ for all $n > n_0$

 • The “O” notation gives an upper bound to the time cost T. It may not be a tight upper bound.
• Note that, for $T(n)=n^2+2n$, we could not write $T(n) = O(n)$ because there do not exist positive constants c and n_0 such that $T(n) \leq c \cdot g(n)$ for all $n > n_0$.
Analysis of data structures

• Let’s put these ideas into practice and analyze the performance of algorithms related to ArrayList:
 • add(o), get(index), find(o), and remove(index).

• As a first step, we must decide what the “input size” means.

• What is the “input” to these algorithms?
Analysis of data structures

• Each of the methods (algorithms) above operates on the _underlyingStorage and either o or index.

• o and index are always length 1 -- their size cannot grow.

• However, the number of data in _underlyingStorage (stored in _numElements) will grow as the user adds elements to the ArrayList.

• Hence, we measure asymptotic time cost as a function of n, the number of elements stored (_numElements).
Adding to back of list

- What is the time complexity of this method?

```java
class ArrayList<T> {
    ...
    void addToBack (T o) {
        // Assume _underlyingStorage is big enough
        _underlyingStorage[_numElements] = o;
        _numElements++;
    }
}
```
Adding to back of list

- What is the time complexity of this method?

```java
class ArrayList<T> {
    ... 
    void addToBack (T o) {
        // Assume _underlyingStorage is big enough
        _underlyingStorage[_numElements] = o;
        _numElements++;
    }
}
```

$O(1)$ -- no matter how many elements the list already contains, the cost is just 2 “abstract operations”.

Note that, for this method, the worst case, average case, and best case are all the same.
Retrieving an element

• What is the time complexity of this method?

class ArrayList<T> {
 ...
 T get (int index) {
 return _underlyingStorage[index];
 }
}
Retrieving an element

• What is the time complexity of this method?

```java
class ArrayList<T> {
    ...
    T get (int index) {
        return _underlyingStorage[index];
    }
}
```

$O(1)$.
Adding to front of list

• What is the time complexity of this method?

class ArrayList<T> {
 ...
 void addToFront (T o) {
 // Assume _underlyingStorage is big enough
 for (int i = 0; i < _numElements; i++) {
 _underlyingStorage[i+1] = _underlyingStorage[i];
 }
 _underlyingStorage[i] = o;
 _numElements++;
 }
}
Adding to front of list

- What is the time complexity of this method?

```java
class ArrayList<T> {
    ...
    void addToFront (T o) {
        // Assume _underlyingStorage is big enough
        for (int i = 0; i < _numElements; i++) {
            _underlyingStorage[i+1] = _underlyingStorage[i];
        }
        _underlyingStorage[i] = o;
        _numElements++;
    }
}
```

We have to move everything over by 1.

\[O(n). \]
Finding an element

- What is the time complexity of this method in the best case? Worst case?

```java
class ArrayList<T> {
    ...
    // Returns lowest index of o in the ArrayList, or -1 if o is not found.
    int find (T o) {
        for (int i = 0; i < _numElements; i++) {
            if (_underlyingStorage[i].equals(o)) { // not null
                return i;
            }
        }
        return -1;
    }
}
```
Finding an element

• What is the time complexity of this method in the best case? Worst case?

```java
class ArrayList<T> {
    ...
    // Returns lowest index of o in the ArrayList, or -1 if o is not found.
    int find (T o) {
        for (int i = 0; i < _numElements; i++) {
            if (_underlyingStorage[i].equals(o)) { // not null
                return i;
            }
        }
        return -1;
    }
```

$O(1)$ in best case; $O(n)$ in worst case.
Adding n elements

- Now, let’s consider the time complexity of doing many adds in sequence, starting from an empty list:

```java
void addManyToFront (T[] many) {
    for (int i = 0; i < many.length; i++) {
        addToFront(many[i]);
    }
}
```

- What is the time complexity of `addManyToFront` on an array of size n?
Adding n elements

• To calculate the total time cost, we have to *sum* the time costs of the individual calls to `addToFront`.

• **Each call** to `addToFront(o)` **takes about time** i, **where** i **is the current size** of the list. (We have to “move over” i elements by one step to the right.)

```java
void addManyToFront (T[] many) {
    for (int i = 0; i < many.length; i++) {
        addToFront(many[i]);
    }
}
```

• Let $T(i)$ the cost of `addToFront` at iteration i:
 $T(0)=1$, $T(1)=2$, ..., $T(n-1)=n$.
Adding n elements

- Now we just have to add together all the $T(i)$:

$$
\sum_{i=0}^{n-1} T(i) = \sum_{i=0}^{n-1} i = \frac{n(n-1)}{2} = O(n^2)
$$

- Note that we would get the same asymptotic bound even if we calculated the cost $T(i)$ slightly differently, e.g., $T(i) = 3i + 2$:

$$
\sum_{i=0}^{n-1} T(i) = \sum_{i=0}^{n-1} (3i + 2) = \sum_{i=0}^{n-1} 3i + \sum_{i=0}^{n-1} 2
$$

$$
= 3 \sum_{i=0}^{n-1} i + 2n = 3 \left(\frac{n(n-1)}{2} \right) + 2n = O(n^2)
$$
Finding an element

• What is the time complexity of this method in the average case?

class ArrayList<T> {
 ...
 // Returns lowest index of o in the ArrayList, or
 // -1 if o is not found.
 int find (T o) {
 for (int i = 0; i < _numElements; i++) {
 if (_underlyingStorage[i].equals(o)) { // not null
 return i;
 }
 }
 return -1;
 }
}
Finding an element: average case

• Finding an exact formula for the average case performance can be tricky (if not impossible).

• In order to compute the average, or expected, time cost, we must know:

 • The time cost $T(X_n)$ for a particular input X of size n.
 • The probability $P(X_n)$ of that input X.
 • The expected time cost, over all inputs X of size n, is then:

$$\text{AvgCaseTimeCost}_n = E[T(X_n)] = \sum_{X_n} P(X_n)T(X_n)$$
Finding an element: average case

• Finding an exact formula for the average case performance can be tricky (if not impossible).

• In order to compute the average, or expected, time cost, we must know:
 • The time cost \(T(X_n) \) for a particular input \(X \) of size \(n \).
 • The probability \(P(X_n) \) of that input \(X \).
 • The expected time cost, over all inputs \(X \) of size \(n \), is then:

\[
\text{AvgCaseTimeCost}_n = E[T(X_n)] = \sum_{X_n} P(X_n)T(X_n)
\]

"E" for "Expectation"

In this case, \(x \) consists of both the element \(o \) and the contents of _underlyingStorage.

Sum the time costs for all possible inputs, and weight each cost by how likely it is to occur.
Finding an element: average case

• In the `find(o)` method listed above, it is possible that the user gives us an `o` that is not contained in the list.

• This will result in $O(n)$ time cost.

• How “likely” is this event?

 • *We have no way of knowing* -- we could make an arbitrary assumption, but the result would be meaningless.

• Let’s *remove this case from consideration* and assume that `o` is always present in the list.

• What is the average-case time cost *then*?
Finding an element: average case

- Even when we assume \(o \) is present in the list somewhere, we have no idea whether the \(o \) the user gives us will “tend to be at the front” or “tend to be at the back” of the list.

- However, here we can make a plausible assumption:
 - For an `ArrayList` of \(n \) elements, the probability that \(o \) is contained at index \(i \) is \(1/n \).
 - In other words, \(o \) is equally likely to be in any of the “slots” of the array.
Finding an element: average case

• Given this assumption, we can finally make headway.

• Let’s define $T(i)$ to be the cost of the `find(o)` method as a function of i, the location in `_underlyingStorage` where o is located. What is $T(i)$?

class ArrayList<T> {
 ...
 // Returns lowest index of o in the ArrayList, or
 // -1 if o is not found.
 int find (T o) {
 for (int i = 0; i < _numElements; i++) {
 if (_underlyingStorage[i].equals(o)) { // not null
 return i;
 }
 }
 return -1;
 }
}
Finding an element: average case

- Given this assumption, we can finally make headway.

- Let’s define \(T(i) \) to be the cost of the \texttt{find(o)} method as a function of \(i \), the location in _underlyingStorage where \(o \) is located. What is \(T(i) \)?

```java
class ArrayList<T> {
    ...  
    // Returns lowest index of \( o \) in the ArrayList, or  
    // -1 if \( o \) is not found.
    int find (T o) {
        for (int i = 0; i < _numElements; i++) {
            if (_underlyingStorage[i].equals(o)) { // not null
                return i;
            }
        }
        return -1;
    }
}
```

\[T(i) = i \]
Finding an element: average case

• Now, we can re-write the expected time cost in terms of an arbitrary input X, as the expected time cost in terms of where in the array the element o will be found.

\[
\text{AvgCaseTimeCost}_n = \sum_{i} P(i)T(i)
\]

Redefine $P(X_n)$ and $T(X_n)$ in terms of $P(i)$ and $T(i)$.

\[
= \sum_{i} \frac{1}{n}i
\]

Substitute terms.

\[
= \frac{1}{n} \sum_{i} i
\]

Move $1/n$ out of the summation.

\[
= \frac{1}{n} \frac{n(n + 1)}{2}
\]

Formula for arithmetic series.

\[
= \frac{n + 1}{2}
\]

The n’s cancel.

\[
= O(n)
\]

Find asymptotic bound.
Questions to ponder

• What is the time cost of adding to the back of a singly-linked list, as a function of the number of elements already in the list?
 • With just a _head pointer?
 • With both _head and _tail?
Performance measurement.
Empirical performance measurement

• As an alternative to describing an algorithm’s performance with a “number of abstract operations”, we can also measure its time empirically using a clock.

• As illustrated last lecture, counting “abstract operations” can anyway hide real performance differences, e.g., between using `int[]` and `Integer[]`.
Empirical performance measurement

• There are also many cases where you don’t know how an algorithm works internally.

• Many programs and libraries are not open source!
 • You have to analyze an algorithm’s performance as a black box.
 • “Black box” -- you can run the program but cannot see how it works internally.

• It may even be useful to deduce the asymptotic time cost by measuring the time cost for different input sizes.
Procedure for measuring time cost

• Let’s suppose we wish to measure the time cost of algorithm A as a function of its input size n.

• We need to choose a set of values of n that we will test.

• If we make n too big, our algorithm A may never terminate (the input is “too big”).

• If we make n too small, then A may finish so fast that the “elapsed time” is practically 0, and we won’t get a reliable clock measurement.
Procedure for measuring time cost

• In practice, one “guesses” a few values for n, sees how fast A executes on them, and selects a range of values for n.

• Let’s define an array of different input sizes, e.g.:

```
int[] N = { 1000, 2000, 3000, ..., 10000 }
```

• Now, for each input size $N[i]$, we want to measure A’s time cost.
Procedure for measuring time cost

- Procedure (draft 1):

```java
for (int i = 0; i < N.length; i++) {
    final Object X = initializeInput(N[i]);
    final long startTime = getClockTime();
    A(X);  // Run algorithm A on input X of size N[i]
    final long endTime = getClockTime();
    final long elapsedTime = endTime - startTime;
    System.out.println("Time for N[" + i + "]: "+elapsedTime);
}
```

Make sure to start and stop the clock as “tightly” as possible around the actual algorithm A.
Procedure for measuring time cost

• The procedure would work fine if there were no variability in how long $A(x)$ took to execute.

• Unfortunately, in the “real world”, each measurement of the time cost of $A(x)$ is corrupted by noise:
 • Garbage collector!
 • Other programs running.
 • Cache locality.
 • Swapping to/from disk.
 • Input/output requests from external devices.
Procedure for measuring time cost

• If we measured the time cost of $A(X)$ based on just one measurement, then our estimate of the “true” time cost of $A(X)$ will be very imprecise.

• We might get unlucky and measure $A(X)$ while the computer is doing a “system update”.

• If we’ve very unlucky, this might occur during some values of i, but not for others, thereby skewing the trend we seek to discover across the different $N[i]$.
Improved procedure for measuring time cost

- A much-improved procedure for measuring the time cost of $A(X)$ is to compute the average time across M trials.

- **Procedure (draft 2):**
  ```java
  for (int i = 0; i < N.length; i++) {
      final Object X = initializeInput(N[i]);
      final long[] elapsedTimes = new long[M];
      for (int j = 0; j < M; j++) {
          final long startTime = getClockTime();
          A(X); // Run algorithm A on input X of size N[i]
          final long endTime = getClockTime();
          elapsedTimes[j] = endTime - startTime;
      }
      final double avgElapsedTime = computeAvg(elapsedTimes);
      System.out.println("Time for N[" + i + "]: "+
                      avgElapsedTime);
  }
  ```
Improved procedure for measuring time cost

- If the elapsed time measured in the jth trial is T_j, then the average over all M trials is:
 \[
 \bar{T} = \frac{1}{M} \sum_{j=1}^{M} T_j
 \]

- We will use the average time “T-bar” as an estimate of the “true” time cost of $A(X)$.

- The more trials M we use to compute the average, the more precise our estimate “T-bar” will be.
Improved procedure for measuring time cost

- Alternatively, we can start/stop the clock just once.

- Procedure (draft 2b):
  ```java
  for (int i = 0; i < N.length; i++) {
    final Object X = initializeInput(N[i]);

    final long startTime = getClockTime();
    for (int j = 0; j < M; j++) {
      A(X);  // Run algorithm A on input X of size N[i]
    }
    final long endTime = getClockTime();

    final double avgElapsedTime = (endTime - startTime) / M;
    System.out.println("Time for N[" + i + "]: "+
                        avgElapsedTime);
  }
  ```
Quantifying uncertainty

- A key issue in any experiment is to quantify the uncertainty of all measurements.

- Example:

 - We are attempting to estimate the “true” time cost of $A(X)$ by averaging together the results of many trials.

 - After computing “T-bar”, how far from the “true” time cost of $A(X)$ was our estimate?
Quantifying uncertainty

• A key issue in any experiment is to quantify the uncertainty of all measurements.

• Example:
 • We are attempting to estimate the “true” time cost of $A(X)$ by averaging together the results of many trials.
 • After computing “T-bar”, how far from the “true” time cost of $A(X)$ was our estimate?
 • In order to compute this, we would have to know what the true time cost is -- and that’s what we’re trying to estimate!
 • We must find another way to quantify uncertainty...
Standard error versus standard deviation

• Some of you may already be familiar with the standard deviation:

\[\sigma = \sqrt{\frac{1}{M} \sum_{j=1}^{M} (T_j - \bar{T})^2} \]

• The standard deviation measures how “varied” the individual measurements \(T_j \) are.

• The standard deviation gives a sense of “how much noise there is.”

• However, in most cases, we are less interested in characterizing the noise, and more interested in measuring the true time cost of \(A(X) \) itself.

• For this, we want the standard error.
Quantifying your uncertainty

• In statistics, the uncertainty associated with a measurement (e.g., the time cost of $A(X)$) is typically quantified using the *standard error*:

$$\text{StdErr} = \frac{\sigma}{\sqrt{M}}$$

where

$$\sigma = \sqrt{\frac{1}{M} \sum_{j=1}^{M} (T_j - \bar{T})^2}$$

where “T-bar” is the average (computed on earlier slide).

• Notice: as M grows larger, the StdErr becomes smaller.
Error bars

• The standard error is often used to compute error bars on graphs to indicate how reliable they are.

• Different error bars have different meanings! Some of them indicate confidence intervals, some indicate standard error, some indicate standard deviation -- it’s important to know which!
Example

![Graph showing comparison between ArrayList and LinkedList in terms of time taken to add data with increasing number of data points. The x-axis represents the number of data points, and the y-axis represents time in seconds. The graph shows a significant increase in time for LinkedList when adding a large number of data points compared to ArrayList.](image-url)