CSE I2:

Basic data structures and object-oriented design
 Jacob Whitehill jake@mplab.ucsd.edu

Lecture Ate
I8 July 2012

Data structures: a quantitative perspective.

Data structures so far

- Up to now, we've focused on data structures from a software construction perspective:
- Data structures as ADTs.
- Separation of implementation from interface.
- Encoding of the user's data in a sequence of bits.

Data structures: a

 quantitative analysis- Just as important is the quantitative performance of those structures, e.g.:
- Time cost: If I have a linked list of 100 elements, how long will it take to find a particular element? What if the list is 1000 elements long? 10,000 ?
- Space cost: How much overhead (e.g., in Nodes) is there in a DoublyLinkedList12 versus an ArrayList?

Data structures: a

 quantitative analysis- In this lecture we will discuss algorithmic analysis, in particular, methods of estimating the time cost of algorithms.
- Data structures and algorithms are invariably coupled:
- Without an algorithm, the data are useless.
- Without a data structure, the algorithm can't accomplish anything -- they need "space" to execute.

Measuring time cost

- Instead of measuring time cost in terms of seconds, milliseconds, etc., we will count the "number of abstract operations".
- Examples of "abstract operations" include:
- $i=i+1 ; / /$ Assignment and/or arithmetic
- if (i > 5) \{ // Comparison
- On the other hand, calling another method -- i.e., another algorithm -- would not be considered a single, abstract operation:
- otherMethod(); // Have to look inside otherMethod!

Measuring time cost

- The number of "abstract operations" is largely independent of:
- The particular computer on which an algorithm is running
- The particular programming language in which an algorithm was implemented

Measuring time cost

- We are interested in how the time cost grows as the size of the input to the algorithm grows:
- For instance, if we want to sort a list of numbers, and the size of the list is n, then we want to describe, as a function of n, how many operation the sort procedure will take.
- Possible answers might include:
- $2 n+3$
- $n^{2}+3 n-1$

Measuring time cost

- We are interested in how the time cost grows as the size of the input to the algorithm grows:
- When analyzing data structures and their associated add/get/remove algorithms, the input size n will often be the number of data already stored in the ADT.

Three cases

- When estimating the time cost of an algorithm on an input of size n, we will consider three cases:
I. Worst case: how many operations will the algorithm take on the "hardest" possible input (of size n)?

Three cases

- When estimating the time cost of an algorithm on an input of size n, we will consider three cases:

2. Best case: how many operations will the algorithm take on the "easiest" possible input (of size n)?

Three cases

- When estimating the time cost of an algorithm on an input of size n, we will consider three cases:

3. Average case: compute how long the algorithm would take on every possible input of size n; then, compute the sum of these time costs weighted by how probable each input would arise.

Three cases

- When estimating the time cost of an algorithm on an input of size n, we will consider three cases:

3. Average case: compute how long the algorithm would take on every possible input of size n; then, compute the sum of these time costs weighted by how probable each input would arise.

Typically very difficult to compute exactly.

Example I

- Let's count the number of abstract operations needed to compute the average of students' grades...

Example I

```
// Assume grades.length > 0
float computeAverageGrade (float[] grades) {
    float sum = 0;
    for (int i = 0; i < grades.length; i++) {
        sum += grades[i];
    }
    return sum / grades.length;
}
```


Example I

```
// Assume grades.length > 0
float computeAverageGrade (float[] grades) {
    float sum = 0;
    for (int i = 0; i < grades.length; i++) {
        sum += grades[i]; By defition (f)
    }
        By definition of Java array, each access takes I operation.
    return sum / grades.length;
1
}
Total: \(4 n+4\)
```


Example I

```
// Assume grades.length > 0
float computeAverageGrade (float[] grades) {
    float sum = 0;
    for (int i = 0; i < grades.length; i++) {
        sum += grades[i]; By definition of Java array, each
                                access takes I operation.
    return sum / grades.length;
}
```

- In this algorithm, best case $=$ worst case $=$ average case.

Total: $4 n+4$

- Only the size (n) of the input affects the time cost, not the particular input.

Example I

le cost.

Example 2

```
// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
    for (int i = 0; i < numbers.length; i++) {
            if (numbers[i] == number) {
            return i;
        }
        }
        return -1; // not found
}
```

- In this algorithm, the time cost depends on the particular inputs numbers and number.
- Let's first consider the worst case.

Example 2

// Returns -1 if number not found in numbers int find (int[] numbers, int number) \{ for (int $i=0 ; i<n u m b e r s . l e n g t h ; i++) ~\{$
if (numbers[i] == number) \{
return i;
\}
\}
return -1; // not found \}

- In this algorithm, the time cost depends on the particular inputs numbers and number.
- Let's first consider the worst case.
- Here, the worst case is when number is not found.

Example 2

```
// Returns -1 if number not found in numbers
int find (int[] numbers, int number) {
    for (int i = 0; i < numbers.length; i++) { 1+2n+1
    if (numbers[i] == number) { n
            return i;
        }
    }
    return -1; // not found 1
}
- In this algorithm, the time cost depends on the particular inputs numbers and number.
```

- Let's first consider the worst case.
- Here, the worst case is when number is not found.

Example 2

// Returns -1 if number not found in numbers int find (int[] numbers, int number) \{ for (int $i=0 ; i<n u m b e r s . l e n g t h ; i++) ~\{$
if (numbers[i] == number) \{
return i;
\}
\}
return -1; // not found \}

- In this algorithm, the time cost depends on the particular inputs numbers and number.
- Let's first consider the best case.
- Best case is when number is at index 0 of numbers.

Example 2

// Returns -1 if number not found in numbers int find (int[] numbers, int number) \{
for (int $i=0 ; i<n u m b e r s . l e n g t h ; i++$) $\{1+1$
if (numbers[i] == number) \{ 1
return i;
\}
\}
return -1; // not found \}

- In this algorithm, the time cost depends on the particular inputs numbers and number.
- Let's first consider the best case.
- Best case is when number is at index 0 of numbers.

Example 2

// Returns -1 if number not found in numbers int find (int[] numbers, int number) \{ for (int $i=0 ; i<n u m b e r s . l e n g t h ; i++) ~\{$
if (numbers[i] == number) \{
return i;
\}
\}
return -1; // not found \}

- In this algorithm, the time cost depends on the particular inputs numbers and number.
- Finding the average case time cost is more difficult.
- We'll handle that later...

Example 3

```
int someMethod (int[] numbers) {
    int sum = 0;
    for (int i = 0; i < numbers.length; i++) {
        for (int j = 0; j < numbers.length; j++) {
            sum += numbers[i] * numbers[j];
        }
    }
    return sum;
}
```


Example 3

\# operations

```
int someMethod (int[] numbers) {
    int sum = 0;
    1
    for (int i = 0; i < numbers.length; i++) {
        for (int j = 0; j < numbers.length; j++) {
            sum += numbers[i] * numbers[j];
        }
    }
    return sum;
1
}
```


Example 3

\# operations

```
int someMethod (int[] numbers) {
    int sum = 0;
1
    for (int i = 0; i < numbers.length; i++) {
        for (int j = 0; j < numbers.length; j++) {
            sum += numbers[i] * numbers[j]; n*n*4
        }
    }
    return sum;
1
}
```


Example 3

\# operations

```
int someMethod (int[] numbers) {
    int sum = 0;
    for (int i = 0; i < numbers.length; i++) {
        for (int j = 0; j < numbers.length; j++) { n*(1+2n+1)
            sum += numbers[i] * numbers[j];
                                    n*n*4
        }
    }
    return sum;
1
}
```


Example 3

\# operations

```
int someMethod (int[] numbers) {
    int sum = 0; 1
    for (int i = 0; i < numbers.length; i++) { 1+2n+1
        for (int j = 0; j < numbers.length; j++) { n*(1+2n+1)
            sum += numbers[i] * numbers[j]; n*n*4
        }
    }
    return sum;
1
}
```


Example 3

\# operations
int someMethod (int[] numbers) \{
int sum $=0$; 1
for (int $i=0 ; i<n u m b e r s . l e n g t h ; i++$) $\{1+2 n+1$ for (int $j=0 ; j<n u m b e r s . l e n g t h ; j++$) $\{n *(1+2 n+1)$
sum += numbers[i] * numbers[j];
n*n*4 \}
\}
return sum;
1
\}
Total:
$4 n^{2}+2 n^{2}+n$
$+n+1+2 n$
This is an example of quadratic time cost.
$+1+1=$
$6 n^{2}+4 n+3$

Quadratic versus linear time

Asymptotic performance analysis

- This level of detail is usually more than we need when comparing algorithms:
- We don't care if the time cost is n, or $3 n$, or 0 .In -the main thing is that it's "some constant times n ".
- We do care whether it's n or n^{2} or 2^{n}.
- We are interested in asymptotic analysis $(n \rightarrow \infty)$:
- We mostly care about the algorithm's time cost when n is very large.
- If n is small, then the algorithm will be fast anyway.

Asymptotic performance analysis

- Instead of saying $T(n)=3 n+3$
we will say $T(n)=O(n)$ (" T is big-' 0 ' of n "), i.e., $T(n)$ is basically linear.
- Instead of saying $T(n)=2 n-1$

$$
\begin{aligned}
& \text { we will say } T(n)=O(n)(" T \text { is big-‘} O \text { ' of } n ") \text {, } \\
& \text { i.e., } T(n) \text { is basically linear. }
\end{aligned}
$$

- Instead of saying $T(n)=I / 2 n-0.2353$ we will say $T(n)=O(n)$ (" T is big-‘ 0 ' of $n "$), i.e., $T(n)$ is basically linear.

Asymptotic performance analysis

- Instead of saying $T(n)=6 n^{2}$
we will say $T(n)=O\left(n^{2}\right)$ (" T is big-' 0 ' of $n^{2 ")}$), i.e., $T(n)$ is basically quadratic.
- Instead of saying $T(n)=2 n^{2}+3 n+13535$ we will say $T(n)=O\left(n^{2}\right)$ (" T is big-' O ' of $n^{2 ")}$), i.e., $T(n)$ is basically quadratic.

Here, the quadratic term dominates the linear term -- as n grows large, n^{2} will become much larger than n.

Asymptotic performance analysis

- Instead of saying $T(n)=6 \log n+3$ we will say $T(n)=O(\log n)$ (" T is big-‘ 0 ’ of $\log n$ "), i.e., $T(n)$ is basically logarithmic.
- Instead of saying $T(n)=n \log n+n-23$ we will say $T(n)=O(n \log n)$ (" T is big-' O ' of $n \log n ")$, i.e., $T(n)$ is basically loglinear.
- Instead of saying $T(n)=n+n^{2}-3$
we will say $T(n)=$

Asymptotic performance analysis

- Instead of saying $T(n)=6 \log n+3$ we will say $T(n)=O(\log n)$ (" T is big-‘ 0 ’ of $\log n$ "), i.e., $T(n)$ is basically logarithmic.
- Instead of saying $T(n)=n \log n+n-23$
we will say $T(n)=O(n \log n)$ (" T is big-‘ 0 ’ of $n \log n ")$, i.e., $T(n)$ is basically loglinear.
- Instead of saying $T(n)=n+n^{2}-3$
we will say $T(n)=O\left(n^{2}\right)$ (" T is big-' O ' of $n^{2 \times "), ~}$
i.e., $T(n)$ is basically quadratic.

The ordering (first v second) of the terms is unimportant.
What matters is what the dominant term is.

Different asymptotic costs

- Asymptotic analysis assigns algorithms to different "complexity classes":
- $O(\mathrm{I})$ - constant - performance of algorithm does not depend on input size.
- $O(n)$ - linear - doubling n will double the time cost.
- $O(\log n)$ - logarithmic
- $O(n \log n)$-- loglinear
- $O\left(n^{2}\right)$ - quadratic
- $O\left(2^{n}\right)$ - exponential
- Algorithms that differ in complexity class can have vastly different run-time performance (for large n).

Different asymptotic costs

from
Bailey
(2007)

Figure 5.2 Near-origin details of common curves. Compare with Figure 5.3.

Different asymptotic costs

Figure 5.3 Long-range trends of common curves. Compare with Figure 5.2.

Asymptotic performance analysis

- Asymptotic performance analysis is a coarse but useful means of describing and comparing the performance of algorithms as a function of the input size n when n gets large.
- Asymptotic analysis applies to both time cost and space cost.
- Asymptotic analysis hides details of timing (that we don't care about) due to:
- Speed of computer.
- Slight differences in implementation.
- Programming language.

Mathematical formalism

- In order to justify approximating a time cost $T(n)=3 n+3$ just as " $O(n)=n$ ", we need to define some mathematical notation:
- We say a function $T(n)$ is big-O of another function $g(n)$ (i.e., $O(g(n))$ if there exist positive constants c and n_{0} such that: for all $n>n_{0}: T(n) \leq c g(n)$

Mathematical formalism

- In order to justify approximating a time cost $T(n)=3 n+3$ just as " $O(n)=n$ ", we need to define some mathematical notation:
- We say a function $T(n)$ is big-O of another function $g(n)$ (i.e., $O(g(n))$ if there exist positive constants c and n_{0} such that: for all $n>n_{0}: T(n) \leq c g(n)$

As long as n is "big enough", then $T(n)$ will always be less than a constant multiple of $g(n)$.

Mathematical formalism

- Example: consider $T(n)=3 n-6$.
- If we pick $g(n)=n, n_{0}=0$ and $c=4$, then:
- $T(n)=3 n-6 \leq 4 n=c g(n)$ for all $n>n_{0}$
- Hence, we can write:" $T(n)$ is $O(g(n))$ where $g(n)=n "$.
- More simply, we can write:" $T(n)$ is $O(n)$ ".

Mathematical formalism

- Note that, for $T(n)=3 n-6$, we could also write $T(n)=$ $O\left(n^{2}\right)$ because:
- If we pick $n_{0}=10$ and $c=I$, then:
- $T(n)=3 n-6 \leq n^{2}=c g(n)$ for all $n>n_{0}$
- The " 0 " notation gives an upper bound to the time cost T. It may not be a tight upper bound.

Mathematical formalism

- Note that, for $T(n)=n^{2}+2 n$, we could not write $T(n)$
$=O(n)$ because there do not exist positive constants c and n_{0} such that $T(n) \leq c g(n)$ for all $n>$ no.

Analysis of data structures

- Let's put these ideas into practice and analyze the performance of algorithms related to ArrayList:
- add(o), get(index), find(o), and remove (index).
- As a first step, we must decide what the "input size" means.
- What is the "input" to these algorithms?

Analysis of data structures

- Each of the methods (algorithms) above operates on the _underlyingStorage and either o or index.
- o and index are always length I -- their size cannot grow.
- However, the number of data in _underlyingStorage (stored in _numElements) will grow as the user adds elements to the ArrayList.
- Hence, we measure asymptotic time cost as a function of n, the number of elements stored (numElements).

Adding to back of list

- What is the time complexity of this method?

```
class ArrayList<T> {
    void addToBack (T O) {
    // Assume _underlyingStorage is big enough
        _underlyingStorage[_numElements] = 0;
        _numElements++;
    }
}
```


Adding to back of list

- What is the time complexity of this method?

Note that, for this method, the
class ArrayList<T> \{ worst case, average case, and best case are all the same.
void addToBack (T o) \{
// Assume _underlyingStorage is big enough
_underlyingStorage[_numElements] = o;
_numelements++;
\}
\}
$O(1)$-- no matter how many elements the list already contains, the cost is just 2 "abstract operations".

Retrieving an element

- What is the time complexity of this method?

```
class ArrayList<T> {
    T get (int index) {
        return _underlyingStorage[index];
    }
}
```


Retrieving an element

- What is the time complexity of this method?

```
class ArrayList<T> {
    T get (int index) {
        return _underlyingStorage[index];
    }
}
```

$O(1)$.

Adding to front of list

- What is the time complexity of this method?

```
class ArrayList<T> {
    void addToFront (T O) {
    // Assume _underlyingStorage is big enough
    for (int i = 0; i < numElements; i++) {
                _underlyingStorage[i+1] = _underlyingStorage[i];
    }
        underlyingStorage[i] = 0;
        _numElements++;
    }
}
```


Adding to front of list

- What is the time complexity of this method?
class ArrayList<T> \{ ...
void addToFront (T O) \{
// Assume _underlyingStorage is big enough for (int $i=0 ; i<n u m E l e m e n t s ; i++$) $\{$
\}
_underlyingStorage[i] $=0$;
_numElements++;
\}
\}
$O(n)$.

Finding an element

- What is the time complexity of this method in the best case? Worst case?
class ArrayList<T> \{
// Returns lowest index of 0 in the ArrayList, or
// -1 if 0 is not found.
int find (T O) \{
for (int i $=0 ; i<n u m E l e m e n t s ; i++) ~\{$
if (_underlyingStorage[i].equals(o)) \{ // not null return i;
\}
\}
return -1;
\}
\}

Finding an element

- What is the time complexity of this method in the best case? Worst case?
class ArrayList<T> \{
// Returns lowest index of 0 in the ArrayList, or
// -1 if 0 is not found.
int find (T O) \{
for (int $i=0 ; i<n u m E l e m e n t s ; i++$) $\{$
if (_underlyingStorage[i].equals(o)) \{ // not null return i;
\}
\}
return -1;
\}
\}
$O(1)$ in best case; $O(n)$ in worst case.

Adding n elements

- Now, let's consider the time complexity of doing many adds in sequence, starting from an empty list:

```
void addManyToFront (T[] many) {
    for (int i = 0; i < many.length; i++) {
        addToFront(many[i]);
    }
}
```

- What is the time complexity of addManyToFront on an array of size n ?

Adding n elements

- To calculate the total time cost, we have to sum the time costs of the individual calls to addToFront.
- Each call to addrofront(o) takes about time i, where i is the current size of the list. (We have to "move over" i elements by one step to the right.)
void addManyToFront (T[] many) \{
for (int $i=0 ; i<m a n y . l e n g t h ; i++$) $\{$ addToFront(many[i]);
\} \}
- Let $T(i)$ the cost of addToFront at iteration i : $T(0)=I, T(I)=2, \ldots, T(n-I)=n$.

Adding n elements

- Now we just have to add together all the $T(i)$:

$$
\sum_{i=0}^{n-1} T(i)=\sum_{i=0}^{n-1} i=\frac{n(n-1)}{2}=O\left(n^{2}\right)
$$

- Note that we would get the same asymptotic bound even if we calculated the cost $T(i)$ slightly differently, e.g., $T(i)=3 i+2$:

$$
\begin{aligned}
\sum_{i=0}^{n-1} T(i) & =\sum_{i=0}^{n-1}(3 i+2) \\
& =\sum_{i=0}^{n-1} 3 i+\sum_{i=0}^{n-1} 2 \\
& =3 \sum_{i=0}^{n-1} i+2 n \\
& =3\left(\frac{n(n-1)}{2}\right)+2 n \\
& =O\left(n^{2}\right)
\end{aligned}
$$

Finding an element

- What is the time complexity of this method in the average case?

```
class ArrayList<T> {
```

 // Returns lowest index of 0 in the ArrayList, or
 // -1 if 0 is not found.
 int find (T O) \{
 for (int i \(=0 ; i<n u m E l e m e n t s ; i++\)) \(\{\)
 if (_underlyingStorage[i].equals(o)) \{ // not null
 return i;
 \}
 \}
 return -1;
 \}
 \}

Finding an element: average case

- Finding an exact formula for the average case performance can be tricky (if not impossible).
- In order to compute the average, or expected, time cost, we must know:
- The time $\operatorname{cost} T\left(X_{n}\right)$ for a particular input X of size n.
- The probability $P\left(X_{n}\right)$ of that input X.
- The expected time cost, over all inputs X of size n, is then:

AvgCaseTimeCost $_{n}=E\left[T\left(X_{n}\right)\right]=\sum_{X_{n}} P\left(X_{n}\right) T\left(X_{n}\right)$

Finding an element: average case

- Finding an exact formula for the average case performance can be tricky (if not impossible).
- In order to compute the average, or expected, time cost, we must know:

In this case, x consists of both the element o and the contents of _underlyingStorage.

- The time $\operatorname{cost} T\left(X_{n}\right)$ for a particular input X of size n.
- The probability $P\left(X_{n}\right)$ of that input X.
- The expected time cost, over all inputs X of size n, is then:
$\operatorname{AvgCase}^{(i m e C o s t}{ }_{n}=\underset{\substack{\text { "E" for } \\ \text { "Expectation" }}}{E\left[T\left(X_{n}\right)\right]=\sum_{X_{n} \begin{array}{c}\text { Sum the time costs for all } \\ \text { possible inputs, and weight each } \\ \text { cost by how likely it is to occur. }\end{array}} P\left(X_{n}\right) T\left(X_{n}\right)}$

Finding an element: average case

- In the find (o) method listed above, it is possible that the user gives us an o that is not contained in the list.
- This will result in $O(n)$ time cost.
- How "likely" is this event?
- We have no way of knowing -- we could make an arbitrary assumption, but the result would be meaningless.
- Let's remove this case from consideration and assume that \circ is always present in the list.
- What is the average-case time cost then?

Finding an element: average case

- Even when we assume o is present in the list somewhere, we have no idea whether the o the user gives us will "tend to be at the front" or "tend to be at the back" of the list.
- However, here we can make a plausible assumption:
- For an ArrayList of n elements, the probability that o is contained at index i is I / n.
- In other words, o is equally likely to be in any of the "slots" of the array.

Finding an element: average case

- Given this assumption, we can finally make headway.
- Let's define $T(i)$ to be the cost of the find (o) method as a function of i, the location in _underlyingStorage where o is located. What is $T(i)$?

```
Class ArrayList<T> {
    ...
    // Returns lowest index of o in the ArrayList, or
    // -1 if o is not found.
    int find (T O) {
    for (int i = 0; i < numElements; i++) {
            if (_underlyingStorage[i].equals(o)) { // not null
                return i;
            }
        }
        return -1;
    }
}
```


Finding an element: average case

- Given this assumption, we can finally make headway.
- Let's define $T(i)$ to be the cost of the find (o) method as a function of i, the location in _underlyingStorage where o is located. What is $T(i)$?

```
Class ArrayHist<T> {
    . . .
    // Returns lowest index of o in the ArrayList, or
    // -1 if o is not found.
    int find (T O) {
    for (int i = 0; i < numElements; i+t) {
            if (_underlyingStorage[i].equals(o)) { // not null
                return i;
            }
        }
                                    T(i)=i
        return -1;
    }
}
```


Finding an element: average case

- Now, we can re-write the expected time cost in terms of an arbitrary input X, as the expected time cost in terms of where in the array the element o will be found.

$$
\begin{array}{rlr}
\text { AvgCaseTimeCost }_{n} & =\sum_{i} P(i) T(i) \quad \begin{array}{c}
\text { Redefine } P\left(X_{n}\right) \text { and } T\left(X_{n}\right) \text { in } \\
\text { terms of } P(i) \text { and } T(i) .
\end{array} \\
& =\sum_{i} \frac{1}{n} i & \begin{array}{l}
\text { Substitute terms. }
\end{array} \\
& =\frac{1}{n} \sum_{i} i \quad \text { Move I/n out of the summation. } \\
& =\frac{1}{n} \frac{n(n+1)}{2} & \text { Formula for arithmetic series. } \\
& =\frac{n+1}{2} & \quad \text { The n's cancel. } \\
& =O(n) & \text { Find asymptotic bound. }
\end{array}
$$

Questions to ponder

- What is the time cost of adding to the back of a singly-linked list, as a function of the number of elements already in the list?
- With just a _head pointer?
- With both _head and _tail?

Performance

measurement.

Empirical performance measurement

- As an alternative to describing an algorithm's performance with a "number of abstract operations", we can also measure its time empirically using a clock.
- As illustrated last lecture, counting "abstract operations" can anyway hide real performance differences, e.g., between using int[] and Integer[].

Empirical performance measurement

- There are also many cases where you don't know how an algorithm works internally.
- Many programs and libraries are not open source!
- You have to analyze an algorithm's performance as a black box.
- "Black box" -- you can run the program but cannot see how it works internally.
- It may even be useful to deduce the asymptotic time cost by measuring the time cost for different input sizes.

Procedure for measuring

 time cost- Let's suppose we wish to measure the time cost of algorithm A as a function of its input size n.
- We need to choose a set of values of n that we will test.
- If we make n too big, our algorithm A may never terminate (the input is "too big").
- If we make n too small, then A may finish so fast that the "elapsed time" is practically 0 , and we won't get a reliable clock measurement.

Procedure for measuring time cost

- In practice, one "guesses" a few values for n, sees how fast A executes on them, and selects a range of values for n.
- Let's define an array of different input sizes, e.g.: int[] N = \{ 1000, 2000, 3000, ..., 10000$\} ;$
- Now, for each input size $\mathrm{N}[\mathrm{i}]$, we want to measure A's time cost.

Procedure for measuring time cost

- Procedure (draft I):

Make sure to start and stop the clock as "tightly" as possible around the actual algorithm A.

```
for (int i = 0; i < N.length; i++) {
    final Object X = initializeInput(N[i]);
    final long startTime = getClockTime();
    A(X); // Run algorithm A on input X of size N[i]
    final long endTime = getClockTime();
    final long elapsedTime = endTime - startTime;
    System.out.println("Time for N[" + i + "]: " +
        elapsedTime);
}
```


Procedure for measuring time cost

- The procedure would work fine if there were no variability in how long A(X) took to execute.
- Unfortunately, in the "real world", each measurement of the time cost of $A(X)$ is corrupted by noise:
- Garbage collector!
- Other programs running.
- Cache locality.
- Swapping to/from disk.
- Input/output requests from external devices.

Procedure for measuring time cost

- If we measured the time cost of $A(x)$ based on just one measurement, then our estimate of the "true" time cost of $A(X)$ will be very imprecise.
- We might get unlucky and measure $A(X)$ while the computer is doing a "system update".
- If we've very unlucky, this might occur during some values of i, but not for others, thereby skewing the trend we seek to discover across the different $\mathrm{N}[\mathrm{i}]$.

Improved procedure for measuring time cost

- A much-improved procedure for measuring the time cost of $\mathrm{A}(\mathrm{X})$ is to compute the average time across M trials.
- Procedure (draft 2):

```
for (int i = 0; i < N.length; i++) {
    final Object X = initializeInput(N[i]);
    final long[] elapsedTimes = new long[M];
    for (int j = 0; j < M; j++) {
        final long startTime = getClockTime();
        A(X); // Run algorithm A on input X of size N[i]
        final long endTime = getClockTime();
        elapsedTimes[j] = endTime - startTime;
    }
    final double avgElapsedTime = computeAvg(elapsedTimes);
    System.out.println("Time for N[" + i + "]: " +
        avgElapsedTime);
}
```


Improved procedure for measuring time cost

- If the elapsed time measured in the j th trial is T_{j}, then the average over all M trials is:

$$
\bar{T}=\frac{1}{M} \sum_{j=1}^{M} T_{j}
$$

- We will use the average time " T-bar" as an estimate of the "true" time cost of $\mathrm{A}(\mathrm{X})$.
- The more trials M we use to compute the average, the more precise our estimate " T-bar" will be.

Improved procedure for measuring time cost

- Alternatively, we can start/stop the clock just once.
- Procedure (draft 2b):

```
for (int i = 0; i < N.length; i++) {
    final Object X = initializeInput(N[i]);
    final long startTime = getClockTime();
    for (int j = 0; j < M; j++) {
        A(X); // Run algorithm A on input X of size N[i]
    }
    final long endTime = getClockTime();
    final double avgElapsedTime = (endTime - startTime) / M;
    System.out.println("Time for N[" + i + "]: " +
        avgElapsedTime);
}
```


Quantifying uncertainty

- A key issue in any experiment is to quantify the uncertainty of all measurements.
- Example:
- We are attempting to estimate the "true" time cost of $A(X)$ by averaging together the results of many trials.
- After computing "T-bar", how far from the "true" time cost of $A(X)$ was our estimate?

Quantifying uncertainty

- A key issue in any experiment is to quantify the uncertainty of all measurements.
- Example:
- We are attempting to estimate the "true" time cost of $A(X)$ by averaging together the results of many trials.
- After computing "T-bar", how far from the "true" time cost of $A(X)$ was our estimate?
- In order to compute this, we would have to know what the true time cost is -- and that's what we're trying to estimate!
- We must find another way to quantify uncertainty...

Standard error versus standard deviation

- Some of you may already be familiar with the standard deviation:

$$
\sigma=\sqrt{\frac{1}{M} \sum_{j=1}^{M}\left(T_{j}-\bar{T}\right)^{2}}
$$

- The standard deviation measures how "varied" the individual measurements T_{j} are.
- The standard deviation gives a sense of "how much noise there is."
- However, in most cases, we are less interested in characterizing the noise, and more interested in measuring the true time cost of $A(X)$ itself.
- For this, we want the standard error.

Quantifying your uncertainty

- In statistics, the uncertainty associated with a measurement (e.g., the time cost of $A(X)$) is typically quantified using the standard error:

Standard deviation

$$
\operatorname{StdErr}=\frac{\sigma}{\sqrt{M}} \quad \text { where }
$$

$$
\sigma=\sqrt{\frac{1}{M} \sum_{j=1}^{M}\left(T_{j}-\bar{T}\right)^{2}}
$$

where "T-bar" is the average (computed on earlier slide).

- Notice: as M grows larger, the StdErr becomes smaller.

Error bars

- The standard error is often used to compute error bars on graphs to indicate how reliable they are.
- Different error bars have different meanings! Some of them indicate confidence intervals, some indicate standard error, some indicate standard deviation -it's important to know which!

Example

