CSE I2:

Basic data structures and object-oriented design
 Jacob Whitehill jake@mplab.ucsd.edu

Lecture Nine
19 July 2012

More on algorithmic analysis

Asymptotic performance analysis

- Asymptotic performance analysis is a coarse but useful means of describing and comparing the performance of algorithms as a function of the input size n when n gets large.
- Asymptotic analysis applies to both time cost and space cost.
- Asymptotic analysis hides details of timing (that we don't care about) due to:
- Speed of computer.
- Slight differences in implementation.
- Programming language.

Mathematical formalism

- In order to justify approximating a time cost $T(n)=3 n+3$ just as " $O(n)=n$ ", we need to define some mathematical notation:
- We say a function $T(n)$ is big-O of another function $g(n)$ (i.e., $O(g(n))$ if there exist positive constants c and n_{0} such that: for all $n>n_{0}: T(n) \leq c g(n)$

Mathematical formalism

- In order to justify approximating a time cost $T(n)=3 n+3$ just as " $O(n)=n$ ", we need to define some mathematical notation:
- We say a function $T(n)$ is big-O of another function $g(n)$ (i.e., $O(g(n))$ if there exist positive constants c and n_{0} such that: for all $n>n_{0}: T(n) \leq c g(n)$

As long as n is "big enough", then $T(n)$ will always be less than a constant multiple of $g(n)$.

Mathematical formalism

- Example: consider $T(n)=3 n-6$.
- If we pick $g(n)=n, n_{0}=0$ and $c=4$, then:
- $T(n)=3 n-6 \leq 4 n=c g(n)$ for all $n>n_{0}$
- Hence, we can write:" $T(n)$ is $O(g(n))$ where $g(n)=n "$.
- More simply, we can write:" $T(n)$ is $O(n)$ ".

Mathematical formalism

- Note that, for $T(n)=3 n-6$, we could also write $T(n)=$ $O\left(n^{2}\right)$ because:
- If we pick $n_{0}=10$ and $c=1$, then:
- $T(n)=3 n-6 \leq n^{2}=c g(n)$ for all $n>n_{0}$
- The " O " notation gives an upper bound to the time cost T. It may not be a tight upper bound.

Mathematical formalism

- Note that, for $T(n)=3 n-6$, we could also write $T(n)=$ $O\left(n^{2}\right)$ because:
- If we pick $n_{0}=10$ and $c=1$, then:
- $T(n)=3 n-6 \leq n^{2}=c g(n)$ for all $n>n_{0}$
- The " 0 " notation gives an upper bound to the time cost T. It may not be a tight upper bound.
- However, by convention, if we say " $T(n)$ is $O(g(n))$ ", then we pick $g(n)$ to be a tight bound on T.*
*This is achieved formally by also defining Ω, and θ notation.

Mathematical formalism

- Note that, for $T(n)=n^{2}+2 n$, we could not write $T(n)$
$=O(n)$ because there do not exist positive constants c and n_{0} such that $T(n) \leq c g(n)$ for all $n>$ no.

Different asymptotic costs

Figure 5.3 Long-range trends of common curves. Compare with Figure 5.2.

Exercises

- $T(n)=2 n^{3}+2 n^{4}-3$
- $T(n)=3 n^{2}-3 n+17$
- $T(n)=2 \log n$
- $T(n)=3 \log n+5 n$

Exercises

- $T(n)=2 n^{3}+2 n^{4}-3=O\left(n^{4}\right)$
- $T(n)=3 n^{2}-3 n+17$
- $T(n)=2 \log n$
- $T(n)=3 \log n+5 n$

Exercises

- $T(n)=2 n^{3}+2 n^{4}-3=O\left(n^{4}\right)$
- $T(n)=3 n^{2}-3 n+17=O\left(n^{2}\right)$
- $T(n)=2 \log n$
- $T(n)=3 \log n+5 n$

Exercises

- $T(n)=2 n^{3}+2 n^{4}-3=O\left(n^{4}\right)$
- $T(n)=3 n^{2}-3 n+17=O\left(n^{2}\right)$
- $T(n)=2 \log n=O(\log n)$
- $T(n)=3 \log n+5 n$

Exercises

- $T(n)=2 n^{3}+2 n^{4}-3=O\left(n^{4}\right)$
- $T(n)=3 n^{2}-3 n+17=O\left(n^{2}\right)$
- $T(n)=2 \log n=O(\log n)$
- $T(n)=3 \log n+5 n=O(n)$

Properties of

asymptotic notation

- If $T(n)=U(n)+V(n)$, and if both $U(n)=O(g(n))$ and $V(n)=O(g(n))$, then $T(n)=O(g(n))$.
- In other words, the sum of two functions that are both $O(g(n))$ is also $O(g(n))$.

Example I revisited

\# operations

```
// Assume grades.length > 0
float computeAverageGrade (float[] grades) {
    float sum = 0;
    for (int i = 0; i < grades.length; i++) {
        sum += grades[i];
    }
    return sum / grades.length;
}
```

Total:
O(n)
Using asymptotic notation, the analysis becomes much simpler.

Example 3

```
int someMethod (int[] numbers) {
    int sum = 0;
    for (int i = 0; i < numbers.length; i++) {
        for (int j = 0; j < numbers.length; j++) {
            sum += numbers[i] * numbers[j];
        }
    }
    return sum;
}
```


Example 3

```
int someMethod (int[] numbers) {
    int sum = 0;
    for (int i = 0; i < numbers.length; i++) {
        for (int j = 0; j < numbers.length; j++) {
            sum += numbers[i] * numbers[j];
        }
    }
    return sum;
}
```

Total:
O(n^{2})

Analysis of data structures

- Let's put these ideas into practice and analyze the performance of algorithms related to ArrayList:
- add(o), get(index), find(o), and remove (index).
- As a first step, we must decide what the "input size" means.
- What is the "input" to these algorithms?

Analysis of data structures

- Each of the methods (algorithms) above operates on the _underlyingStorage and either o or index.
- o and index are always length I -- their size cannot grow.
- However, the number of data in _underlyingStorage (stored in _numElements) will grow as the user adds elements to the ArrayList.
- Hence, we measure asymptotic time cost as a function of n, the number of elements stored (numElements).

Adding to back of list

- What is the time complexity of this method?

```
class ArrayList<T> {
    private T[] _underlyingStorage;
    int numElements;
    void addToBack (T O) {
            // Assume _underlyingStorage is big enough
            _underlyingStorage[_numElements] = 0;
                numElements++;
    }
    // ...
}
```


Adding to back of list

- What is the time complexity of this method?

```
class ArrayList<T> {
    private T[] _underlyingStorage;
    int numElements;
    void addToBack (T O) {
            // Assume _underlyingStorage is big enough
            _underlyingStorage[_numElements] = 0;
                numElements++;
    }
    // ...
}
O(I) -- the number of abstract operations
```

does not depend on _numElements.

Retrieving an element

- What is the time complexity of this method?

```
class ArrayList<T> {
    T get (int index) {
        return _underlyingStorage[index];
    }
}
```


Retrieving an element

- What is the time complexity of this method?

```
class ArrayList<T> {
    T get (int index) {
        return _underlyingStorage[index];
    }
}
```

$O(1)$.

Adding to front of list

- What is the time complexity of this method?

```
class ArrayList<T> {
    void addToFront (T O) {
    // Assume _underlyingStorage is big enough
    for (int i = 0; i < numElements; i++) {
                _underlyingStorage[i+1] = _underlyingStorage[i];
    }
        underlyingStorage[i] = 0;
        _numElements++;
    }
}
```


Adding to front of list

- What is the time complexity of this method?
class ArrayList<T> \{ -••
void addToFront (T O) \{
// Assume _underlyingStorage is big enough for (int $i=0 ; i<n u m E l e m e n t s ; i++$) $\{$
\}
_underlyingStorage[i] $=0$;
_numElements++;
\}
\}
$O(n)$.

Finding an element

- What is the time complexity of this method in the best case? Worst case?
class ArrayList<T> \{
// Returns lowest index of 0 in the ArrayList, or
// -1 if 0 is not found.
int find (T O) \{
for (int $i=0 ; i<n u m E l e m e n t s ; i++$) $\{$
if (_underlyingStorage[i].equals(o)) \{ // not null return i;
\}
\}
return -1;
\}
\}

Finding an element

- What is the time complexity of this method in the best case? Worst case?
class ArrayList<T> \{
// Returns lowest index of 0 in the ArrayList, or
// -1 if 0 is not found.
int find (T O) \{
for (int $i=0 ; i<n u m E l e m e n t s ; i++$) $\{$
if (_underlyingStorage[i].equals(o)) \{ // not null return i;
\}
\}
return -1;
\}
\}
$O(1)$ in best case; $O(n)$ in worst case.

Adding n elements

- Now, let's consider the time complexity of doing many adds in sequence, starting from an empty list:

```
void addManyToFront (T[] many) {
    for (int i = 0; i < many.length; i++) {
        addToFront(many[i]);
    }
}
```

- What is the time complexity of addManyToFront on an array of size n ?

Adding n elements

- To calculate the total time cost, we have to sum the time costs of the individual calls to addToFront.
- Each call to addrofront(o) takes about time i, where i is the current size of the list. (We have to "move over" i elements by one step to the right.)
void addManyToFront (T[] many) \{
for (int $i=0 ; i<m a n y . l e n g t h ; i++$) $\{$ addToFront(many[i]);
\} \}
- Let $T(i)$ the cost of addToFront at iteration i: $T(0)=I, T(I)=2, \ldots, T(n-I)=n$.

Adding n elements

- Now we just have to add together all the $T(i)$:

$$
\sum_{i=0}^{n-1} T(i)=\sum_{i=0}^{n-1}(i+1)=\frac{n(n-1)}{2}=O\left(n^{2}\right)
$$

- Note that we would get the same asymptotic bound even if we calculated the cost $T(i)$ slightly differently, e.g., $T(i)=3 i+2$:

$$
\begin{aligned}
\sum_{i=0}^{n-1} T(i) & =\sum_{i=0}^{n-1}(3 i+2) \\
& =\sum_{i=0}^{n-1} 3 i+\sum_{i=0}^{n-1} 2 \\
& =3 \sum_{i=0}^{n-1} i+2 n \\
& =3\left(\frac{n(n-1)}{2}\right)+2 n \\
& =O\left(n^{2}\right)
\end{aligned}
$$

Finding an element

- What is the time complexity of this method in the average case?

```
class ArrayList<T> {
```

 // Returns lowest index of 0 in the ArrayList, or
 // -1 if 0 is not found.
 int find (\(T\) O) \{
 for (int i \(=0 ; i<n u m E l e m e n t s ; i++\)) \(\{\)
 if (_underlyingStorage[i].equals(o)) \{ // not null
 return i;
 \}
 \}
 return -1;
 \}
 \}

Finding an element: average case

- Finding an exact formula for the average case performance can be tricky (if not impossible).
- In order to compute the average, or expected, time cost, we must know:
- The time $\operatorname{cost} T\left(X_{n}\right)$ for a particular input X of size n.
- The probability $P\left(X_{n}\right)$ of that input X.
- The expected time cost, over all inputs X of size n, is then:

AvgCaseTimeCost $_{n}=E\left[T\left(X_{n}\right)\right]=\sum_{X_{n}} P\left(X_{n}\right) T\left(X_{n}\right)$

Finding an element: average case

- Finding an exact formula for the average case performance can be tricky (if not impossible).
- In order to compute the average, or expected, time cost, we must know:

In this case, x consists of both the element o and the contents of _underlyingStorage.

- The time $\operatorname{cost} T\left(X_{n}\right)$ for a particular input X of size n.
- The probability $P\left(X_{n}\right)$ of that input X.
- The expected time cost, over all inputs X of size n, is then:
$\operatorname{AvgCase}^{(i m e C o s t}{ }_{n}=\underset{\substack{\text { "E" for } \\ \text { "Expectation" }}}{E\left[T\left(X_{n}\right)\right]=\sum_{X_{n} \begin{array}{c}\text { Sum the time costs for all } \\ \text { possible inputs, and weight each } \\ \text { cost by how likely it is to occur. }\end{array}} P\left(X_{n}\right) T\left(X_{n}\right)}$

Finding an element: average case

- In the find (o) method listed above, it is possible that the user gives us an o that is not contained in the list.
- This will result in $O(n)$ time cost.
- How "likely" is this event?
- We have no way of knowing -- we could make an arbitrary assumption, but the result would be meaningless.
- Let's remove this case from consideration and assume that \circ is always present in the list.
- What is the average-case time cost then?

Finding an element: average case

- Even when we assume o is present in the list somewhere, we have no idea whether the o the user gives us will "tend to be at the front" or "tend to be at the back" of the list.
- However, here we can make a plausible assumption:
- For an ArrayList of n elements, the probability that o is contained at index i is I / n.
- In other words, o is equally likely to be in any of the "slots" of the array.

Finding an element: average case

- Given this assumption, we can finally make headway.
- Let's define $T(i)$ to be the cost of the find (o) method as a function of i, the location in _underlyingStorage where o is located. What is $T(i)$?

```
Class ArrayList<T> {
    ...
    // Returns lowest index of o in the ArrayList, or
    // -1 if o is not found.
    int find (T O) {
    for (int i = 0; i < numElements; i++) {
            if (_underlyingStorage[i].equals(o)) { // not null
                return i;
            }
        }
        return -1;
    }
}
```


Finding an element: average case

- Given this assumption, we can finally make headway.
- Let's define $T(i)$ to be the cost of the find (o) method as a function of i, the location in _underlyingStorage where o is located. What is $T(i)$?

```
Class ArrayHist<T> {
    ...
    // Returns lowest index of o in the ArrayList, or
    // -1 if o is not found.
    int find (T O) {
    for (int i = 0; i < _numElements; i++) {
            if (_underlyingStorage[i].equals(o)) { // not null
                return i;
            }
        }
                            T(i)=i
        return -1;
    }
}
```


Finding an element: average case

- Now, we can re-write the expected time cost in terms of an arbitrary input X, as the expected time cost in terms of where in the array the element o will be found.

$$
\begin{array}{rlr}
\text { AvgCaseTimeCost }_{n} & =\sum_{i} P(i) T(i) \quad \begin{array}{c}
\text { Redefine } P\left(X_{n}\right) \text { and } T\left(X_{n}\right) \text { in } \\
\text { terms of } P(i) \text { and } T(i) .
\end{array} \\
& =\sum_{i} \frac{1}{n} i & \begin{array}{l}
\text { Substitute terms. }
\end{array} \\
& =\frac{1}{n} \sum_{i} i \quad \text { Move I/n out of the summation. } \\
& =\frac{1}{n} \frac{n(n+1)}{2} & \text { Formula for arithmetic series. } \\
& =\frac{n+1}{2} & \quad \text { The n's cancel. } \\
& =O(n) & \text { Find asymptotic bound. }
\end{array}
$$

Performance

measurement.

Empirical performance measurement

- As an alternative to describing an algorithm's performance with a "number of abstract operations", we can also measure its time empirically using a clock.
- As illustrated last lecture, counting "abstract operations" can anyway hide real performance differences, e.g., between using int[] and Integer[].

Empirical performance measurement

- There are also many cases where you don't know how an algorithm works internally.
- Many programs and libraries are not open source!
- You have to analyze an algorithm's performance as a black box.
- "Black box" -- you can run the program but cannot see how it works internally.
- It may even be useful to deduce the asymptotic time cost by measuring the time cost for different input sizes.

Procedure for measuring

 time cost- Let's suppose we wish to measure the time cost of algorithm A as a function of its input size n.
- We need to choose a set of values of n that we will test.
- If we make n too big, our algorithm A may never terminate (the input is "too big").
- If we make n too small, then A may finish so fast that the "elapsed time" is practically 0 , and we won't get a reliable clock measurement.

Procedure for measuring time cost

- In practice, one "guesses" a few values for n, sees how fast A executes on them, and selects a range of values for n.
- Let's define an array of different input sizes, e.g.: int[] $\mathrm{N}=\{1000,2000,3000, \ldots, 10000\} ;$
- Now, for each input size $n[i]$, we want to measure A's time cost.

Procedure for measuring time cost

- Procedure (draft I):

Make sure to start and stop the clock as "tightly" as possible around the actual algorithm A.

```
for (int i = 0; i < N.length; i++) {
    final Object X = initializeInput(N[i]);
    final long startTime = getClockTime();
    A(X); // Run algorithm A on input X of size N[i]
    final long endTime = getClockTime();
    final long elapsedTime = endTime - startTime;
    System.out.println("Time for N[" + i + "]: " +
        elapsedTime);
}
```


Procedure for measuring time cost

- The procedure would work fine if there were no variability in how long A (X) took to execute.
- Unfortunately, in the "real world", each measurement of the time cost of $A(X)$ is corrupted by noise:
- Garbage collector!
- Other programs running.
- Cache locality.
- Swapping to/from disk.
- Input/output requests from external devices.

Procedure for measuring time cost

- If we measured the time cost of $A(x)$ based on just one measurement, then our estimate of the "true" time cost of $A(X)$ will be very imprecise.
- We might get unlucky and measure $A(X)$ while the computer is doing a "system update".
- If we've very unlucky, this might occur during some values of i, but not for others, thereby skewing the trend we seek to discover across the different $\mathrm{N}[\mathrm{i}]$.

Improved procedure for measuring time cost

- A much-improved procedure for measuring the time cost of $\mathrm{A}(\mathrm{X})$ is to compute the average time across M trials.
- Procedure (draft 2):

```
for (int i = 0; i < N.length; i++) {
    final Object X = initializeInput(N[i]);
    final long[] elapsedTimes = new long[M];
    for (int j = 0; j < M; j++) {
        final long startTime = getClockTime();
        A(X); // Run algorithm A on input X of size N[i]
        final long endTime = getClockTime();
        elapsedTimes[j] = endTime - startTime;
    }
    final double avgElapsedTime = computeAvg(elapsedTimes);
    System.out.println("Time for N[" + i + "]: " +
        avgElapsedTime);
}
```


Improved procedure for measuring time cost

- If the elapsed time measured in the j th trial is T_{j}, then the average over all M trials is:

$$
\bar{T}=\frac{1}{M} \sum_{j=1}^{M} T_{j}
$$

- We will use the average time " T-bar" as an estimate of the "true" time cost of $\mathrm{A}(\mathrm{X})$.
- The more trials M we use to compute the average, the more precise our estimate " T-bar" will be.

Improved procedure for measuring time cost

- Alternatively, we can start/stop the clock just once.
- Procedure (draft 2b):

```
for (int i = 0; i < N.length; i++) {
    final Object X = initializeInput(N[i]);
    final long startTime = getClockTime();
    for (int j = 0; j < M; j++) {
        A(X); // Run algorithm A on input X of size N[i]
    }
    final long endTime = getClockTime();
    final double avgElapsedTime = (endTime - startTime) / M;
    System.out.println("Time for N[" + i + "]: " +
        avgElapsedTime);
}
```


Quantifying uncertainty

- A key issue in any experiment is to quantify the uncertainty of all measurements.
- Example:
- We are attempting to estimate the "true" time cost of $A(X)$ by averaging together the results of many trials.
- After computing "T-bar", how far from the "true" time cost of $A(X)$ was our estimate?

Quantifying uncertainty

- A key issue in any experiment is to quantify the uncertainty of all measurements.
- Example:
- We are attempting to estimate the "true" time cost of $A(X)$ by averaging together the results of many trials.
- After computing "T-bar", how far from the "true" time cost of $A(X)$ was our estimate?
- In order to compute this, we would have to know what the true time cost is -- and that's what we're trying to estimate!
- We must find another way to quantify uncertainty...

Standard error versus standard deviation

- Some of you may already be familiar with the standard deviation:

$$
\sigma=\sqrt{\frac{1}{M} \sum_{j=1}^{M}\left(T_{j}-\bar{T}\right)^{2}}
$$

- The standard deviation measures how "varied" the individual measurements T_{j} are.
- The standard deviation gives a sense of "how much noise there is."
- However, in most cases, we are less interested in characterizing the noise, and more interested in measuring the true time cost of $A(X)$ itself.
- For this, we want the standard error.

Quantifying your uncertainty

- In statistics, the uncertainty associated with a measurement (e.g., the time cost of $A(X)$) is typically quantified using the standard error:

Standard deviation

$$
\operatorname{StdErr}=\frac{\sigma}{\sqrt{M}} \quad \text { where }
$$

$$
\sigma=\sqrt{\frac{1}{M} \sum_{j=1}^{M}\left(T_{j}-\bar{T}\right)^{2}}
$$

where "T-bar" is the average (computed on earlier slide).

- Notice: as M grows larger, the StdErr becomes smaller.

Error bars

- The standard error is often used to compute error bars on graphs to indicate how reliable they are.
- Different error bars have different meanings! Some of them indicate confidence intervals, some indicate standard error, some indicate standard deviation -it's important to know which!

Example

Linear data structures: a brief review.

Linear data structures

- So far in this course we have learned the basic linear data structures:
- Array list
- Linked list
- Stack
- Queue
- These structures are linear because each element contained within them is adjacent to at most 2 other elements.

Linear data structures

- Linked lists and array lists provide a form of "permanent" storage of arbitrary data.
- Stacks and queues provide (typically) "temporary" storage to data that we expect to remove at some later point in time.
- LIFO for stack, FIFO for queue.
- All these data structures provide convenient containers for storing unrelated data.
- There needn't be any relationship among the individual data.

Linear data structures

- With Java generics, we gained the ability to restrict membership to an ADT to a particular class.
- E.g., allow only String objects to be added to a List12 container).
- But beyond the class of the objects, we didn't "care" about any relationships between the data.
- In particular, we didn't care whether the ADT stored the individual data in some "natural order":
- E.g., alphabetical order for strings, integer order for Integers.

Linear data structures

- Ignoring any relationships between data elements allowed for an ADT that was:
- Simple to implement -- no need to consider order relations.
- Flexible to use -- no need to define an order relation.
- However, this simplicity/flexibility comes at the cost that data retrieval is often slower than it needs to be.
- By considering the natural order relations between objects, we can create data structures with superior asymptotic time costs for storage/retrieval operations.

Linear data structures: asymptotic time costs

- Let's review the "score card" of the ADTs we've covered so far.
- Let's consider three fundamental operations:
- void add (T ○);
- void remove (T ○);
- T find (T O);

Search for an element in the container that equals o and returns it; if no such object exists, then returns null.

Array-list and linked-list scorecard

	Array-list	Linked-list
add (0)	$O(1)$	$O(1)$
find (0)	$O(n)$	$O(n)$
remove (0)	$O(n)$	$O(n)$

- There are many occasions where the user will add new data relatively rarely, but want to find data already in the data structure relatively frequently.
- In order to improve the asymptotic time cost of the find (o) and remove (o) operations, we will make use of order relationships between data elements.
- Once we've found an element within a data structure, it is typically easy for the data structure to remove it.

Why find something?

- It may strike some as odd that an ADT would support the method T find (T
- After all, if the user knows the object o he/she is looking for, then why call find at all?
- Answer: sometimes the user knows part of the information about an object o, but does not have the whole record.
- This illustrates the difference between a record's key and its value.

Keys and values

- The part of the student object that the user always knows is called the key (e.g., student ID number at Student Health).
- The rest of the student record is called the value.

```
class Student {
    String _studentID;
    String _firstName, _lastName;
    String _address;
    Student (String studentID) {
        _studentID = studentID;
    }
    Student (String studentID, String firstName, String lastName,
                String address) {
        _studentID = studentID;
        firstName = firstName;
        _lastName = lastName;
        _address = address;
    }
}
```


Keys and values

- The user may store many Student objects inside a List12 container, e.g.:
list.add(new Student("A123", "Bill", "Carter", "123 Main St")); list.add(new Student("A213", "Jimmy", "Clinton", "124 Main St"));
list.add(new Student("B092", "Hillary", "Nixon", "125 Main St"));
- Later, the user may wish to find a particular student object using just the key, e.g., the student ID:
final Student cse12Student = list.find(new Student("A123"));

Student containing both the key and value.

Student initialized with just the key.

Keys and values

- For some data structures, the key and value are completely separate:
- Example:
- A "hash map/table" (covered later in this course) allows $O(1)$-time retrieval of any value given its key.
- To add a new entry to the table, the user calls put(key, value), e.g.:

```
hashMap.put("A123", Key
```

 new Student("A123", "Bill", "Carter",
 "123 Main St")
);

Finding a particular key

- Given a request to find a particular key, and given that keys often have an order relation defined between them, it seems silly to search through the container as if the keys were all unrelated.
- Example: Suppose we are searching for the student ID "c237". Do we really need to start at the very beginning?

Search | A101 | B972 | D192 | |
| :---: | :---: | :---: | :---: |
| A102 | C092 | \ldots | |
| A125 | C100 | | |
| | A192 | C200 | |
| | A204 | C203 | |
| B135 | C237 | | |
| | B193 | C292 | |

Finding a particular key

- Given a request to find a particular key, and given that keys often have an order relation defined between them, it seems silly to search through the container as if the keys were all unrelated.
- Example: Suppose we are searching for the student ID "c237". Do we really need to start at the very beginning?

Search	A101	в972	D192
	A102	C092	
	A125	C100	
	A192	c200	No -- the natural order among keys
	A204	C203	imposes structure on the "search
	${ }^{8135}$	C237	problem" that lets us find a
	B193	C292	particular key much more quickly.

Binary order relations

- An example of a binary order relationship is the Java < operator, e.g.:
int $a=3, b=4$;
if (a < b) \{
\}
- However, the < operator is only valid on primitive numeric variables (int, float, double, etc.).

Binary order relations

- More generally, two Java Objects can be compared if they are Comparable, using the compareTo method: int compareTo (T ०);
- o1.compareTo (o2) is:
- < 0 if o1 is "less than" o2
- == 0 if o1 is "equal to" o2
- >0 if o1 is "greater than" o2
- Classes that implement the compareтo (o) method can implement the Comparable<T> interface.

Comparable<T>

- Example:

Each student might be "comparable to" objects of a different class, e.g., UCSDMember (since faculty and staff also have ID numbers).

```
class Student implements Comparable<Student> {
    int compareTo (T other) {
    // Compare this._studentID to
    // other._studentID -- return -1, 0, or 1
    // if this. studentID is "less than",
    // "equal to", or "greater than"
    // other._studentID, respectively.
    }
}
```


Comparable<T>

- Example:

```
class Student implements Comparable<Student> {
    int compareTo (T other) {
            return studentID.compareTo(
            other._studentID
        );
    }
}
    In this particular case, we can just
        delegate to the
String.compareTo(0) method, since
    String implements
    Comparable<String>.
```


Comparable<T>

- Now, we can compare two Student objects:
if (student1.compareTo(student2) < 0) \{
\}

