
CSE 12:
Basic data structures and
object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Nine
19 July 2012

Thursday, July 19, 12

More on algorithmic
analysis

Thursday, July 19, 12

Asymptotic performance analysis
• Asymptotic performance analysis is a coarse but useful

means of describing and comparing the performance of
algorithms as a function of the input size n when n gets
large.

• Asymptotic analysis applies to both time cost and
space cost.

• Asymptotic analysis hides details of timing (that we don’t
care about) due to:

• Speed of computer.

• Slight differences in implementation.

• Programming language.

Thursday, July 19, 12

Mathematical formalism

• In order to justify approximating a time cost
T(n)=3n+3 just as “O(n)=n”, we need to define some
mathematical notation:

• We say a function T(n) is big-O of another
function g(n) (i.e., O(g(n)) if there exist positive
constants c and n0 such that:
for all n > n0: T(n) ≤ c g(n)

Thursday, July 19, 12

Mathematical formalism

• In order to justify approximating a time cost
T(n)=3n+3 just as “O(n)=n”, we need to define some
mathematical notation:

• We say a function T(n) is big-O of another
function g(n) (i.e., O(g(n)) if there exist positive
constants c and n0 such that:
for all n > n0: T(n) ≤ c g(n)

As long as n is “big enough”, then T(n) will always be less
than a constant multiple of g(n).

Thursday, July 19, 12

Mathematical formalism

• Example: consider T(n)=3n-6.

• If we pick g(n)=n, n0 = 0 and c = 4, then:

• T(n) = 3n-6 ≤ 4n = c g(n) for all n > n0

• Hence, we can write: “T(n) is O(g(n)) where g(n)=n”.

• More simply, we can write: “T(n) is O(n)”.

Thursday, July 19, 12

Mathematical formalism
• Note that, for T(n)=3n-6, we could also write T(n) =

O(n2) because:

• If we pick n0 = 10 and c = 1, then:

• T(n) = 3n-6 ≤ n2 = c g(n) for all n > n0

• The “O” notation gives an upper bound to the time
cost T. It may not be a tight upper bound.

Thursday, July 19, 12

Mathematical formalism
• Note that, for T(n)=3n-6, we could also write T(n) =

O(n2) because:

• If we pick n0 = 10 and c = 1, then:

• T(n) = 3n-6 ≤ n2 = c g(n) for all n > n0

• The “O” notation gives an upper bound to the time
cost T. It may not be a tight upper bound.

• However, by convention, if we say “T(n) is O(g(n))”,
then we pick g(n) to be a tight bound on T.

* This is achieved formally by also defining Ω, and θ notation.

*

Thursday, July 19, 12

Mathematical formalism

• Note that, for T(n)=n2+2n, we could not write T(n)
= O(n) because there do not exist positive
constants c and n0 such that T(n) ≤ c g(n) for all n >
n0.

Thursday, July 19, 12

Different asymptotic costs

84 Design Fundamentals

2 2

log()nnn!

3

sqrt()

1

0
0 1 2 3 4 5

4

5

n

n n

nlog()

2
n

Figure 5.2 Near-origin details of common curves. Compare with Figure 5.3.

2

2

n!

log()nn

sqrt()n
log()n

n

60

40

20

80

100

0
0 20 40 60 80 100

n

n

Figure 5.3 Long-range trends of common curves. Compare with Figure 5.2.

from
Bailey
(2007)

Thursday, July 19, 12

Exercises

• T(n) = 2n3 + 2n4 - 3

• T(n) = 3n2 - 3n + 17

• T(n) = 2 log n

• T(n) = 3 log n + 5n

Thursday, July 19, 12

Exercises

• T(n) = 2n3 + 2n4 - 3 = O(n4)

• T(n) = 3n2 - 3n + 17

• T(n) = 2 log n

• T(n) = 3 log n + 5n

Thursday, July 19, 12

Exercises

• T(n) = 2n3 + 2n4 - 3 = O(n4)

• T(n) = 3n2 - 3n + 17 = O(n2)

• T(n) = 2 log n

• T(n) = 3 log n + 5n

Thursday, July 19, 12

Exercises

• T(n) = 2n3 + 2n4 - 3 = O(n4)

• T(n) = 3n2 - 3n + 17 = O(n2)

• T(n) = 2 log n = O(log n)

• T(n) = 3 log n + 5n

Thursday, July 19, 12

Exercises

• T(n) = 2n3 + 2n4 - 3 = O(n4)

• T(n) = 3n2 - 3n + 17 = O(n2)

• T(n) = 2 log n = O(log n)

• T(n) = 3 log n + 5n = O(n)

Thursday, July 19, 12

Properties of
asymptotic notation

• If T(n) = U(n) + V(n),
and if both U(n) = O(g(n)) and V(n)=O(g(n)),
then T(n) = O(g(n)).

• In other words, the sum of two functions
that are both O(g(n)) is also O(g(n)).

Thursday, July 19, 12

Example 1 revisited
// Assume grades.length > 0
float computeAverageGrade (float[] grades) {
 float sum = 0;
 for (int i = 0; i < grades.length; i++) {
 sum += grades[i];
 }

 return sum / grades.length;
}

operations

Using asymptotic notation, the
analysis becomes much simpler.

O(1)
O(n)
O(n)

O(1)

Total:
O(n)

Thursday, July 19, 12

Example 3
int someMethod (int[] numbers) {
 int sum = 0;
 for (int i = 0; i < numbers.length; i++) {
 for (int j = 0; j < numbers.length; j++) {
 sum += numbers[i] * numbers[j];
 }
 }
 return sum;
}

operations

Thursday, July 19, 12

Example 3
int someMethod (int[] numbers) {
 int sum = 0;
 for (int i = 0; i < numbers.length; i++) {
 for (int j = 0; j < numbers.length; j++) {
 sum += numbers[i] * numbers[j];
 }
 }
 return sum;
}

operations

Total:
O(n2)

Thursday, July 19, 12

Analysis of data structures

• Let’s put these ideas into practice and analyze the
performance of algorithms related to ArrayList:

• add(o), get(index), find(o), and
remove(index).

• As a first step, we must decide what the “input
size” means.

• What is the “input” to these algorithms?

Thursday, July 19, 12

Analysis of data structures
• Each of the methods (algorithms) above operates

on the _underlyingStorage and either o or index.

• o and index are always length 1 -- their size
cannot grow.

• However, the number of data in
_underlyingStorage (stored in _numElements)
will grow as the user adds elements to the
ArrayList.

• Hence, we measure asymptotic time cost as a
function of n, the number of elements stored
(_numElements).

Thursday, July 19, 12

Adding to back of list

class ArrayList<T> {
 private T[] _underlyingStorage;
 int _numElements;
 void addToBack (T o) {
 // Assume _underlyingStorage is big enough
 _underlyingStorage[_numElements] = o;
 _numElements++;
 }
 // ...
}

• What is the time complexity of this
method?

Thursday, July 19, 12

Adding to back of list

class ArrayList<T> {
 private T[] _underlyingStorage;
 int _numElements;
 void addToBack (T o) {
 // Assume _underlyingStorage is big enough
 _underlyingStorage[_numElements] = o;
 _numElements++;
 }
 // ...
}

• What is the time complexity of this
method?

O(1) -- the number of abstract operations
does not depend on _numElements.

Note that, for this
method, the worst case,
average case, and best
case are all the same.

Thursday, July 19, 12

Retrieving an element

class ArrayList<T> {
 ...
 T get (int index) {
 return _underlyingStorage[index];
 }
}

• What is the time complexity of this
method?

Thursday, July 19, 12

Retrieving an element

class ArrayList<T> {
 ...
 T get (int index) {
 return _underlyingStorage[index];
 }
}

O(1).

• What is the time complexity of this
method?

Thursday, July 19, 12

Adding to front of list
• What is the time complexity of this

method?
class ArrayList<T> {
 ...
 void addToFront (T o) {
 // Assume _underlyingStorage is big enough
 for (int i = 0; i < _numElements; i++) {
 _underlyingStorage[i+1] = _underlyingStorage[i];
 }
 _underlyingStorage[i] = o;
 _numElements++;
 }
}

Thursday, July 19, 12

Adding to front of list

class ArrayList<T> {
 ...
 void addToFront (T o) {
 // Assume _underlyingStorage is big enough
 for (int i = 0; i < _numElements; i++) {
 _underlyingStorage[i+1] = _underlyingStorage[i];
 }
 _underlyingStorage[i] = o;
 _numElements++;
 }
}

O(n).

• What is the time complexity of this
method?

We have to move
everything over by 1.

Thursday, July 19, 12

Finding an element

class ArrayList<T> {
 ...
 // Returns lowest index of o in the ArrayList, or
 // -1 if o is not found.
 int find (T o) {
 for (int i = 0; i < _numElements; i++) {
 if (_underlyingStorage[i].equals(o)) { // not null
 return i;
 }
 }
 return -1;
 }
}

• What is the time complexity of this
method in the best case? Worst case?

Thursday, July 19, 12

Finding an element

class ArrayList<T> {
 ...
 // Returns lowest index of o in the ArrayList, or
 // -1 if o is not found.
 int find (T o) {
 for (int i = 0; i < _numElements; i++) {
 if (_underlyingStorage[i].equals(o)) { // not null
 return i;
 }
 }
 return -1;
 }
} O(1) in best case; O(n) in worst case.

• What is the time complexity of this
method in the best case? Worst case?

Thursday, July 19, 12

Adding n elements

• Now, let’s consider the time complexity of
doing many adds in sequence, starting from
an empty list:

void addManyToFront (T[] many) {
 for (int i = 0; i < many.length; i++) {
 addToFront(many[i]);
 }
}

• What is the time complexity of
addManyToFront on an array of size n?

Thursday, July 19, 12

Adding n elements
• To calculate the total time cost, we have to sum the

time costs of the individual calls to addToFront.

• Each call to addToFront(o) takes about time i, where
i is the current size of the list. (We have to “move
over” i elements by one step to the right.)

void addManyToFront (T[] many) {
 for (int i = 0; i < many.length; i++) {
 addToFront(many[i]);
 }
}

• Let T(i) the cost of addToFront at iteration i:
T(0)=1, T(1)=2, ..., T(n-1)=n.

Thursday, July 19, 12

Adding n elements
• Now we just have to add together all the T(i):

• Note that we would get the same asymptotic bound
even if we calculated the cost T(i) slightly differently,
e.g., T(i)=3i+2: n�1X

i=0

T (i) =
n�1X

i=0

(3i+ 2)

=
n�1X

i=0

3i+
n�1X

i=0

2

= 3
n�1X

i=0

i+ 2n

= 3

✓
n(n� 1)

2

◆
+ 2n

= O(n2)

1

n�1X

i=0

T (i) =
n�1X

i=0

(i+ 1) =
n(n� 1)

2
= O(n2)

Thursday, July 19, 12

Finding an element

class ArrayList<T> {
 ...
 // Returns lowest index of o in the ArrayList, or
 // -1 if o is not found.
 int find (T o) {
 for (int i = 0; i < _numElements; i++) {
 if (_underlyingStorage[i].equals(o)) { // not null
 return i;
 }
 }
 return -1;
 }
}

• What is the time complexity of this
method in the average case?

Thursday, July 19, 12

Finding an element: average case
• Finding an exact formula for the average case performance

can be tricky (if not impossible).

• In order to compute the average, or expected, time cost,
we must know:

• The time cost T(Xn) for a particular input X of size n.

• The probability P(Xn) of that input X.

• The expected time cost, over all inputs X of size n, is then:

AvgCaseTimeCostn = E[T (Xn)] =

X

Xn

P (Xn)T (Xn)

Thursday, July 19, 12

Finding an element: average case
• Finding an exact formula for the average case performance

can be tricky (if not impossible).

• In order to compute the average, or expected, time cost,
we must know:

• The time cost T(Xn) for a particular input X of size n.

• The probability P(Xn) of that input X.

• The expected time cost, over all inputs X of size n, is then:

“E” for
“Expectation”

Sum the time costs for all
possible inputs, and weight each
cost by how likely it is to occur.

In this case, X consists of both the element o
and the contents of _underlyingStorage.

AvgCaseTimeCostn = E[T (Xn)] =

X

Xn

P (Xn)T (Xn)

Thursday, July 19, 12

Finding an element: average case
• In the find(o) method listed above, it is possible that

the user gives us an o that is not contained in the list.

• This will result in O(n) time cost.

• How “likely” is this event?

• We have no way of knowing -- we could make an
arbitrary assumption, but the result would be
meaningless.

• Let’s remove this case from consideration and assume
that o is always present in the list.

• What is the average-case time cost then?

Thursday, July 19, 12

Finding an element: average case

• Even when we assume o is present in the list
somewhere, we have no idea whether the o the user
gives us will “tend to be at the front” or “tend to be at
the back” of the list.

• However, here we can make a plausible assumption:

• For an ArrayList of n elements, the probability that
o is contained at index i is 1/n.

• In other words, o is equally likely to be in any of
the “slots” of the array.

Thursday, July 19, 12

Finding an element: average case
• Given this assumption, we can finally make headway.

• Let’s define T(i) to be the cost of the find(o) method as a
function of i, the location in _underlyingStorage where o
is located. What is T(i)?

class ArrayList<T> {
 ...
 // Returns lowest index of o in the ArrayList, or
 // -1 if o is not found.
 int find (T o) {
 for (int i = 0; i < _numElements; i++) {
 if (_underlyingStorage[i].equals(o)) { // not null
 return i;
 }
 }
 return -1;
 }
}

Thursday, July 19, 12

Finding an element: average case

T(i)=i

• Given this assumption, we can finally make headway.

• Let’s define T(i) to be the cost of the find(o) method as a
function of i, the location in _underlyingStorage where o
is located. What is T(i)?

class ArrayList<T> {
 ...
 // Returns lowest index of o in the ArrayList, or
 // -1 if o is not found.
 int find (T o) {
 for (int i = 0; i < _numElements; i++) {
 if (_underlyingStorage[i].equals(o)) { // not null
 return i;
 }
 }
 return -1;
 }
}

Thursday, July 19, 12

Finding an element: average case
• Now, we can re-write the expected time cost in terms of

an arbitrary input X, as the expected time cost in terms of
where in the array the element o will be found.

AvgCaseTimeCostn =

X

i

P (i)T (i)

=

X

i

1

n
i

=

1

n

X

i

i

=

1

n

n(n+ 1)

2

=

n+ 1

2

= O(n)

1

Move 1/n out of the summation.

Formula for arithmetic series.

Substitute terms.

Redefine P(Xn) and T(Xn) in
terms of P(i) and T(i).

The n’s cancel.

Find asymptotic bound.

Thursday, July 19, 12

Performance
measurement.

Thursday, July 19, 12

Empirical performance
measurement

• As an alternative to describing an algorithm’s
performance with a “number of abstract
operations”, we can also measure its time
empirically using a clock.

• As illustrated last lecture, counting “abstract
operations” can anyway hide real performance
differences, e.g., between using int[] and
Integer[].

Thursday, July 19, 12

Empirical performance
measurement

• There are also many cases where you don’t know
how an algorithm works internally.

• Many programs and libraries are not open source!

• You have to analyze an algorithm’s performance
as a black box.

• “Black box” -- you can run the program but
cannot see how it works internally.

• It may even be useful to deduce the asymptotic time
cost by measuring the time cost for different input
sizes.

Thursday, July 19, 12

Procedure for measuring
time cost

• Let’s suppose we wish to measure the time cost of
algorithm A as a function of its input size n.

• We need to choose a set of values of n that we will
test.

• If we make n too big, our algorithm A may never
terminate (the input is “too big”).

• If we make n too small, then A may finish so fast
that the “elapsed time” is practically 0, and we
won’t get a reliable clock measurement.

Thursday, July 19, 12

Procedure for measuring
time cost

• In practice, one “guesses” a few values for n, sees
how fast A executes on them, and selects a range of
values for n.

• Let’s define an array of different input sizes, e.g.:
int[] N = { 1000, 2000, 3000, ..., 10000 };

• Now, for each input size N[i], we want to measure
A’s time cost.

Thursday, July 19, 12

Procedure for measuring
time cost

• Procedure (draft 1):

for (int i = 0; i < N.length; i++) {
 final Object X = initializeInput(N[i]);

 final long startTime = getClockTime();
 A(X); // Run algorithm A on input X of size N[i]
 final long endTime = getClockTime();

 final long elapsedTime = endTime - startTime;
 System.out.println(“Time for N[“ + i + “]: “ +
 elapsedTime);
}

Make sure to start and stop the clock
as “tightly” as possible around the

actual algorithm A.

Thursday, July 19, 12

Procedure for measuring
time cost

• The procedure would work fine if there were no variability
in how long A(X) took to execute.

• Unfortunately, in the “real world”, each measurement of
the time cost of A(X) is corrupted by noise:

• Garbage collector!

• Other programs running.

• Cache locality.

• Swapping to/from disk.

• Input/output requests from external devices.
Thursday, July 19, 12

Procedure for measuring
time cost

• If we measured the time cost of A(X) based on just one
measurement, then our estimate of the “true” time cost
of A(X) will be very imprecise.

• We might get unlucky and measure A(X) while the
computer is doing a “system update”.

• If we’ve very unlucky, this might occur during some
values of i, but not for others, thereby skewing the
trend we seek to discover across the different N[i].

Thursday, July 19, 12

Improved procedure for
measuring time cost

• A much-improved procedure for measuring the time cost
of A(X) is to compute the average time across M trials.

• Procedure (draft 2):
for (int i = 0; i < N.length; i++) {
 final Object X = initializeInput(N[i]);

 final long[] elapsedTimes = new long[M];
 for (int j = 0; j < M; j++) {
 final long startTime = getClockTime();
 A(X); // Run algorithm A on input X of size N[i]
 final long endTime = getClockTime();
 elapsedTimes[j] = endTime - startTime;
 }
 final double avgElapsedTime = computeAvg(elapsedTimes);
 System.out.println(“Time for N[“ + i + “]: “ +
 avgElapsedTime);
}

Thursday, July 19, 12

Improved procedure for
measuring time cost

• If the elapsed time measured in the jth trial is Tj, then the
average over all M trials is:

• We will use the average time “T-bar” as an estimate of the
“true” time cost of A(X).

• The more trials M we use to compute the average, the
more precise our estimate “T-bar” will be.

T =
1

M

MX

j=1

Tj

Thursday, July 19, 12

Improved procedure for
measuring time cost

• Alternatively, we can start/stop the clock just once.

• Procedure (draft 2b):
for (int i = 0; i < N.length; i++) {
 final Object X = initializeInput(N[i]);

 final long startTime = getClockTime();
 for (int j = 0; j < M; j++) {
 A(X); // Run algorithm A on input X of size N[i]
 }
 final long endTime = getClockTime();

 final double avgElapsedTime = (endTime - startTime) / M;
 System.out.println(“Time for N[“ + i + “]: “ +
 avgElapsedTime);
}

Thursday, July 19, 12

Quantifying uncertainty
• A key issue in any experiment is to quantify the uncertainty of

all measurements.

• Example:

• We are attempting to estimate the “true” time cost of A(X)
by averaging together the results of many trials.

• After computing “T-bar”, how far from the “true” time cost
of A(X) was our estimate?

Thursday, July 19, 12

Quantifying uncertainty
• A key issue in any experiment is to quantify the uncertainty of

all measurements.

• Example:

• We are attempting to estimate the “true” time cost of A(X)
by averaging together the results of many trials.

• After computing “T-bar”, how far from the “true” time cost
of A(X) was our estimate?

• In order to compute this, we would have to know what
the true time cost is -- and that’s what we’re trying to
estimate!

• We must find another way to quantify uncertainty...
Thursday, July 19, 12

Standard error versus
standard deviation

• Some of you may already be familiar with the standard deviation:

• The standard deviation measures how “varied” the individual
measurements Tj are.

• The standard deviation gives a sense of “how much noise
there is.”

• However, in most cases, we are less interested in
characterizing the noise, and more interested in measuring
the true time cost of A(X) itself.

• For this, we want the standard error.

� =

vuut 1

M

MX

j=1

(Tj � T)2

Thursday, July 19, 12

Quantifying your
uncertainty

• In statistics, the uncertainty associated with a
measurement (e.g., the time cost of A(X)) is typically
quantified using the standard error:

where “T-bar” is the average (computed on earlier
slide).

• Notice: as M grows larger, the StdErr becomes
smaller.

StdErr =
�p
M

� =

vuut 1

M

MX

j=1

(Tj � T)2where

Standard deviation

Thursday, July 19, 12

Error bars

• The standard error is often used to compute error
bars on graphs to indicate how reliable they are.

• Different error bars have different meanings! Some
of them indicate confidence intervals, some indicate
standard error, some indicate standard deviation --
it’s important to know which!

Thursday, July 19, 12

Example

0 2 4 6 8 10 12
x 104

0

1

2

3

4

5

6

7

data to add

Ti
m

e
(s

ec
)

ArrayList
LinkedList

Thursday, July 19, 12

Linear data structures:
a brief review.

Thursday, July 19, 12

Linear data structures
• So far in this course we have learned the basic

linear data structures:

• Array list

• Linked list

• Stack

• Queue

• These structures are linear because each element
contained within them is adjacent to at most 2
other elements.

Thursday, July 19, 12

Linear data structures
• Linked lists and array lists provide a form of

“permanent” storage of arbitrary data.

• Stacks and queues provide (typically) “temporary”
storage to data that we expect to remove at some
later point in time.

• LIFO for stack, FIFO for queue.

• All these data structures provide convenient
containers for storing unrelated data.

• There needn’t be any relationship among the
individual data.

Thursday, July 19, 12

Linear data structures
• With Java generics, we gained the ability to restrict

membership to an ADT to a particular class.

• E.g., allow only String objects to be added to a
List12 container).

• But beyond the class of the objects, we didn’t
“care” about any relationships between the data.

• In particular, we didn’t care whether the ADT
stored the individual data in some “natural order”:

• E.g., alphabetical order for Strings, integer
order for Integers.

Thursday, July 19, 12

Linear data structures
• Ignoring any relationships between data elements

allowed for an ADT that was:

• Simple to implement -- no need to consider order
relations.

• Flexible to use -- no need to define an order
relation.

• However, this simplicity/flexibility comes at the cost
that data retrieval is often slower than it needs to be.

• By considering the natural order relations between
objects, we can create data structures with superior
asymptotic time costs for storage/retrieval
operations.

Thursday, July 19, 12

Linear data structures:
asymptotic time costs

• Let’s review the “score card” of the ADTs
we’ve covered so far.

• Let’s consider three fundamental operations:

• void add (T o);

• void remove (T o);

• T find (T o);
Search for an element in the container that
equals o and returns it; if no such object
exists, then returns null.

Thursday, July 19, 12

Array-list and linked-list
scorecard

Array-list Linked-list

add(o) O(1) O(1)

find(o) O(n) O(n)

remove(o) O(n) O(n)

Adding is fast.

Finding is slow.

Removing is slow.

Thursday, July 19, 12

Array-list and linked-list
scorecard

• There are many occasions where the user will add new
data relatively rarely, but want to find data already in the
data structure relatively frequently.

• In order to improve the asymptotic time cost of the
find(o) and remove(o) operations, we will make use of
order relationships between data elements.

• Once we’ve found an element within a data
structure, it is typically easy for the data structure to
remove it.

Thursday, July 19, 12

Why find something?

• It may strike some as odd that an ADT would
support the method T find (T o).

• After all, if the user knows the object o he/she is
looking for, then why call find at all?

• Answer: sometimes the user knows part of the
information about an object o, but does not have
the whole record.

• This illustrates the difference between a record’s
key and its value.

Thursday, July 19, 12

Keys and values
• The part of the Student object that the user always knows

is called the key (e.g., student ID number at Student Health).

• The rest of the Student record is called the value.

class Student {
 String _studentID;
 String _firstName, _lastName;
 String _address;

 Student (String studentID) {
 _studentID = studentID;
 }

 Student (String studentID, String firstName, String lastName,
 String address) {
 _studentID = studentID;
 _firstName = firstName;
 _lastName = lastName;
 _address = address;
 }
}

Key

Value

Thursday, July 19, 12

Keys and values

• The user may store many Student objects inside a
List12 container, e.g.:
list.add(new Student(“A123”, “Bill”, “Carter”, “123 Main St”));
list.add(new Student(“A213”, “Jimmy”, “Clinton”, “124 Main St”));
...
list.add(new Student(“B092”, “Hillary”, “Nixon”, “125 Main St”));

• Later, the user may wish to find a particular Student
object using just the key, e.g., the student ID:

final Student cse12Student = list.find(new Student(“A123”));

Student initialized
with just the key.

Student containing both
the key and value.

Thursday, July 19, 12

Keys and values
• For some data structures, the key and value are

completely separate:

• Example:

• A “hash map/table” (covered later in this course)
allows O(1)-time retrieval of any value given its key.

• To add a new entry to the table, the user calls
put(key, value), e.g.:

hashMap.put(“A123”,
 new Student(“A123”, “Bill”, “Carter”,
 “123 Main St”)
);

Key
Value

Thursday, July 19, 12

Finding a particular key
• Given a request to find a particular key, and given that

keys often have an order relation defined between them,
it seems silly to search through the container as if the
keys were all unrelated.

• Example: Suppose we are searching for the student ID
“C237”. Do we really need to start at the very beginning?

A101 B972 D192
A102 C092 ...
A125 C100
A192 C200
A204 C203
B135 C237
B193 C292

Search

Thursday, July 19, 12

Finding a particular key
• Given a request to find a particular key, and given that

keys often have an order relation defined between them,
it seems silly to search through the container as if the
keys were all unrelated.

• Example: Suppose we are searching for the student ID
“C237”. Do we really need to start at the very beginning?

A101 B972 D192
A102 C092 ...
A125 C100
A192 C200
A204 C203
B135 C237
B193 C292

Search
No -- the natural order among keys
imposes structure on the “search
problem” that lets us find a
particular key much more quickly.

Thursday, July 19, 12

Binary order relations

• An example of a binary order relationship
is the Java < operator, e.g.:

int a = 3, b = 4;
if (a < b) {
 ...
}

• However, the < operator is only valid on
primitive numeric variables (int, float,
double, etc.).

Thursday, July 19, 12

Binary order relations
• More generally, two Java Objects can be compared if

they are Comparable, using the compareTo method:
int compareTo (T o);

• o1.compareTo(o2) is:

• < 0 if o1 is “less than” o2
• == 0 if o1 is “equal to” o2
• > 0 if o1 is “greater than” o2

• Classes that implement the compareTo(o) method
can implement the Comparable<T> interface.

Thursday, July 19, 12

Comparable<T>

• Example:

class Student implements Comparable<Student> {
 ...
 int compareTo (T other) {
 // Compare this._studentID to
 // other._studentID -- return -1, 0, or 1
 // if this._studentID is “less than”,
 // “equal to”, or “greater than”
 // other._studentID, respectively.
 ...
 }
}

Each Student might be “comparable to” objects
of a different class, e.g., UCSDMember (since faculty

and staff also have ID numbers).

Thursday, July 19, 12

Comparable<T>

• Example:

class Student implements Comparable<Student> {
 ...
 int compareTo (T other) {
 return _studentID.compareTo(
 other._studentID
);
 }
}

In this particular case, we can just
delegate to the

String.compareTo(o) method, since
String implements

Comparable<String>.

Thursday, July 19, 12

Comparable<T>

• Now, we can compare two Student
objects:

if (student1.compareTo(student2) < 0) {
 ...
}

Thursday, July 19, 12

