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Asymptotic performance analysis
• Asymptotic performance analysis is a coarse but useful 

means of describing and comparing the performance of 
algorithms as a function of the input size n when n gets 
large.

• Asymptotic analysis applies to both time cost and 
space cost.

• Asymptotic analysis hides details of timing (that we don’t 
care about) due to:

• Speed of computer.

• Slight differences in implementation.

• Programming language.
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Mathematical formalism

• In order to justify approximating a time cost 
T(n)=3n+3 just as “O(n)=n”, we need to define some 
mathematical notation:

• We say a function T(n) is big-O of another 
function g(n) (i.e., O(g(n)) if there exist positive 
constants c and n0 such that:
for all n > n0: T(n) ≤ c g(n)
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Mathematical formalism

• In order to justify approximating a time cost 
T(n)=3n+3 just as “O(n)=n”, we need to define some 
mathematical notation:

• We say a function T(n) is big-O of another 
function g(n) (i.e., O(g(n)) if there exist positive 
constants c and n0 such that:
for all n > n0: T(n) ≤ c g(n)

As long as n is “big enough”, then T(n) will always be less 
than a constant multiple of g(n).
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Mathematical formalism

• Example: consider T(n)=3n-6.

• If we pick g(n)=n, n0 = 0 and c = 4, then:

• T(n) = 3n-6 ≤ 4n = c g(n)  for all n > n0

• Hence, we can write: “T(n) is O(g(n)) where g(n)=n”.

• More simply, we can write: “T(n) is O(n)”.
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Mathematical formalism
• Note that, for T(n)=3n-6, we could also write T(n) = 

O(n2) because:

• If we pick n0 = 10 and c = 1, then:

• T(n) = 3n-6 ≤ n2 = c g(n)  for all n > n0

• The “O” notation gives an upper bound to the time 
cost T. It may not be a tight upper bound.
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Mathematical formalism
• Note that, for T(n)=3n-6, we could also write T(n) = 

O(n2) because:

• If we pick n0 = 10 and c = 1, then:

• T(n) = 3n-6 ≤ n2 = c g(n)  for all n > n0

• The “O” notation gives an upper bound to the time 
cost T. It may not be a tight upper bound.

• However, by convention, if we say “T(n) is O(g(n))”, 
then we pick g(n) to be a tight bound on T.

* This is achieved formally by also defining Ω, and θ notation.

*
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Mathematical formalism

• Note that, for T(n)=n2+2n, we could not write T(n) 
= O(n) because there do not exist positive 
constants c and n0 such that T(n) ≤ c g(n) for all n > 
n0.
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Different asymptotic costs

84 Design Fundamentals
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Figure 5.2 Near-origin details of common curves. Compare with Figure 5.3.
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Exercises

• T(n) = 2n3 + 2n4 - 3

• T(n) = 3n2 - 3n + 17

• T(n) = 2 log n

• T(n) = 3 log n + 5n
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Exercises
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Exercises

• T(n) = 2n3 + 2n4 - 3 = O(n4)

• T(n) = 3n2 - 3n + 17 = O(n2)

• T(n) = 2 log n = O(log n)

• T(n) = 3 log n + 5n = O(n)
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Properties of 
asymptotic notation

• If T(n) = U(n) + V(n),
and if both U(n) = O(g(n)) and V(n)=O(g(n)),
then T(n) = O(g(n)).

• In other words, the sum of two functions 
that are both O(g(n)) is also O(g(n)).
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Example 1 revisited
// Assume grades.length > 0
float computeAverageGrade (float[] grades) {
  float sum = 0;
  for (int i = 0; i < grades.length; i++) {
    sum += grades[i];
  }
  
  return sum / grades.length;
}

# operations

Using asymptotic notation, the 
analysis becomes much simpler.

O(1)
O(n)
O(n)

O(1)

Total:
O(n)
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Example 3
int someMethod (int[] numbers) {
  int sum = 0;
  for (int i = 0; i < numbers.length; i++) {
    for (int j = 0; j < numbers.length; j++) {
      sum += numbers[i] * numbers[j];
    }
  }
  return sum;
}

# operations
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Example 3
int someMethod (int[] numbers) {
  int sum = 0;
  for (int i = 0; i < numbers.length; i++) {
    for (int j = 0; j < numbers.length; j++) {
      sum += numbers[i] * numbers[j];
    }
  }
  return sum;
}

# operations

Total:
O(n2)
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Analysis of data structures

• Let’s put these ideas into practice and analyze the 
performance of algorithms related to ArrayList:

• add(o), get(index), find(o), and 
remove(index).

• As a first step, we must decide what the “input 
size” means.

•  What is the “input” to these algorithms?

Thursday, July 19, 12



Analysis of data structures
• Each of the methods (algorithms) above operates 

on the _underlyingStorage and either o or index.

• o and index are always length 1 -- their size 
cannot grow.

• However, the number of data in 
_underlyingStorage (stored in _numElements) 
will grow as the user adds elements to the 
ArrayList.

• Hence, we measure asymptotic time cost as a 
function of n, the number of elements stored 
(_numElements).
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Adding to back of list

class ArrayList<T> {
  private T[] _underlyingStorage;
  int _numElements;
  void addToBack (T o) {
    // Assume _underlyingStorage is big enough
    _underlyingStorage[_numElements] = o;
    _numElements++;
  }
  // ...
}

• What is the time complexity of this 
method?
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Adding to back of list

class ArrayList<T> {
  private T[] _underlyingStorage;
  int _numElements;
  void addToBack (T o) {
    // Assume _underlyingStorage is big enough
    _underlyingStorage[_numElements] = o;
    _numElements++;
  }
  // ...
}

• What is the time complexity of this 
method?

O(1) -- the number of abstract operations 
does not depend on _numElements.

Note that, for this 
method, the worst case, 
average case, and best 
case are all the same.
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Retrieving an element

class ArrayList<T> {
  ...
  T get (int index) {
    return _underlyingStorage[index];
  }
}

• What is the time complexity of this 
method?
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Retrieving an element

class ArrayList<T> {
  ...
  T get (int index) {
    return _underlyingStorage[index];
  }
}

O(1).

• What is the time complexity of this 
method?
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Adding to front of list
• What is the time complexity of this 

method?
class ArrayList<T> {
  ...
  void addToFront (T o) {
    // Assume _underlyingStorage is big enough
    for (int i = 0; i < _numElements; i++) {
      _underlyingStorage[i+1] = _underlyingStorage[i];
    }
    _underlyingStorage[i] = o;
    _numElements++;
  }
}
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Adding to front of list

class ArrayList<T> {
  ...
  void addToFront (T o) {
    // Assume _underlyingStorage is big enough
    for (int i = 0; i < _numElements; i++) {
      _underlyingStorage[i+1] = _underlyingStorage[i];
    }
    _underlyingStorage[i] = o;
    _numElements++;
  }
}

O(n).

• What is the time complexity of this 
method?

We have to move 
everything over by 1.
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Finding an element

class ArrayList<T> {
  ...
  // Returns lowest index of o in the ArrayList, or
  // -1 if o is not found.
  int find (T o) {
    for (int i = 0; i < _numElements; i++) {
      if (_underlyingStorage[i].equals(o)) { // not null
        return i;
      }
    }
    return -1;
  }
}

• What is the time complexity of this 
method in the best case? Worst case?
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Finding an element

class ArrayList<T> {
  ...
  // Returns lowest index of o in the ArrayList, or
  // -1 if o is not found.
  int find (T o) {
    for (int i = 0; i < _numElements; i++) {
      if (_underlyingStorage[i].equals(o)) { // not null
        return i;
      }
    }
    return -1;
  }
} O(1) in best case; O(n) in worst case.

• What is the time complexity of this 
method in the best case? Worst case?
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Adding n elements

• Now, let’s consider the time complexity of 
doing many adds in sequence, starting from 
an empty list:

void addManyToFront (T[] many) {
  for (int i = 0; i < many.length; i++) {
    addToFront(many[i]);
  }
}

• What is the time complexity of 
addManyToFront on an array of size n?
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Adding n elements
• To calculate the total time cost, we have to sum the 

time costs of the individual calls to addToFront.

• Each call to addToFront(o) takes about time i, where 
i is the current size of the list. (We have to “move 
over” i elements by one step to the right.)

void addManyToFront (T[] many) {
  for (int i = 0; i < many.length; i++) {
    addToFront(many[i]);
  }
}

• Let T(i) the cost of addToFront at iteration i:
T(0)=1, T(1)=2, ..., T(n-1)=n.
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Adding n elements
• Now we just have to add together all the T(i):

• Note that we would get the same asymptotic bound 
even if we calculated the cost T(i) slightly differently, 
e.g., T(i)=3i+2: n�1X

i=0

T (i) =
n�1X

i=0

(3i+ 2)

=
n�1X

i=0

3i+
n�1X

i=0

2

= 3
n�1X

i=0

i+ 2n

= 3

✓
n(n� 1)

2

◆
+ 2n

= O(n2)

1

n�1X

i=0

T (i) =
n�1X

i=0

(i+ 1) =
n(n� 1)

2
= O(n2)
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Finding an element

class ArrayList<T> {
  ...
  // Returns lowest index of o in the ArrayList, or
  // -1 if o is not found.
  int find (T o) {
    for (int i = 0; i < _numElements; i++) {
      if (_underlyingStorage[i].equals(o)) { // not null
        return i;
      }
    }
    return -1;
  }
}

• What is the time complexity of this 
method in the average case?
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Finding an element: average case
• Finding an exact formula for the average case performance 

can be tricky (if not impossible).

• In order to compute the average, or expected, time cost, 
we must know:

• The time cost T(Xn) for a particular input X of size n.

• The probability P(Xn) of that input X.

• The expected time cost, over all inputs X of size n, is then:

AvgCaseTimeCostn = E[T (Xn)] =

X

Xn

P (Xn)T (Xn)
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Finding an element: average case
• Finding an exact formula for the average case performance 

can be tricky (if not impossible).

• In order to compute the average, or expected, time cost, 
we must know:

• The time cost T(Xn) for a particular input X of size n.

• The probability P(Xn) of that input X.

• The expected time cost, over all inputs X of size n, is then:

“E” for 
“Expectation”

Sum the time costs for all 
possible inputs, and weight each 
cost by how likely it is to occur.

In this case, X consists of both the element o 
and the contents of _underlyingStorage.

AvgCaseTimeCostn = E[T (Xn)] =

X

Xn

P (Xn)T (Xn)
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Finding an element: average case
• In the find(o) method listed above, it is possible that 

the user gives us an o that is not contained in the list.

• This will result in O(n) time cost.

• How “likely” is this event?

• We have no way of knowing -- we could make an 
arbitrary assumption, but the result would be 
meaningless.

• Let’s remove this case from consideration and assume 
that o is always present in the list.

• What is the average-case time cost then?
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Finding an element: average case

• Even when we assume o is present in the list 
somewhere, we have no idea whether the o the user 
gives us will “tend to be at the front” or “tend to be at 
the back” of the list.

• However, here we can make a plausible assumption:

• For an ArrayList of n elements, the probability that 
o is contained at index i is 1/n.

• In other words, o is equally likely to be in any of 
the “slots” of the array.
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Finding an element: average case
• Given this assumption, we can finally make headway.

• Let’s define T(i) to be the cost of the find(o) method as a 
function of i, the location in _underlyingStorage where o 
is located. What is T(i)? 

class ArrayList<T> {
  ...
  // Returns lowest index of o in the ArrayList, or
  // -1 if o is not found.
  int find (T o) {
    for (int i = 0; i < _numElements; i++) {
      if (_underlyingStorage[i].equals(o)) { // not null
        return i;
      }
    }
    return -1;
  }
}
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Finding an element: average case

T(i)=i

• Given this assumption, we can finally make headway.

• Let’s define T(i) to be the cost of the find(o) method as a 
function of i, the location in _underlyingStorage where o 
is located. What is T(i)? 

class ArrayList<T> {
  ...
  // Returns lowest index of o in the ArrayList, or
  // -1 if o is not found.
  int find (T o) {
    for (int i = 0; i < _numElements; i++) {
      if (_underlyingStorage[i].equals(o)) { // not null
        return i;
      }
    }
    return -1;
  }
}
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Finding an element: average case
• Now, we can re-write the expected time cost in terms of 

an arbitrary input X, as the expected time cost in terms of 
where in the array the element o will be found.

AvgCaseTimeCostn =

X

i

P (i)T (i)

=

X

i

1

n
i

=

1

n

X

i

i

=

1

n

n(n+ 1)

2

=

n+ 1

2

= O(n)

1

Move 1/n out of the summation.

Formula for arithmetic series.

Substitute terms.

Redefine P(Xn) and T(Xn) in 
terms of P(i) and T(i).

The n’s cancel.

Find asymptotic bound.
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Performance 
measurement.
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Empirical performance 
measurement

• As an alternative to describing an algorithm’s 
performance with a “number of abstract 
operations”, we can also measure its time 
empirically using a clock.

• As illustrated last lecture, counting “abstract 
operations” can anyway hide real performance 
differences, e.g., between using int[] and 
Integer[].
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Empirical performance 
measurement

• There are also many cases where you don’t know 
how an algorithm works internally.

• Many programs and libraries are not open source!

• You have to analyze an algorithm’s performance 
as a black box.

• “Black box” -- you can run the program but 
cannot see how it works internally.

• It may even be useful to deduce the asymptotic time 
cost by measuring the time cost for different input 
sizes.
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Procedure for measuring 
time cost

• Let’s suppose we wish to measure the time cost of 
algorithm A as a function of its input size n. 

• We need to choose a set of values of n that we will 
test.

• If we make n too big, our algorithm A may never 
terminate (the input is “too big”).

• If we make n too small, then A may finish so fast 
that the “elapsed time” is practically 0, and we 
won’t get a reliable clock measurement.
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Procedure for measuring 
time cost

• In practice, one “guesses” a few values for n, sees 
how fast A executes on them, and selects a range of 
values for n.

• Let’s define an array of different input sizes, e.g.:
int[] N = { 1000, 2000, 3000, ..., 10000 };

• Now, for each input size N[i], we want to measure 
A’s time cost.
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Procedure for measuring 
time cost

• Procedure (draft 1):

for (int i = 0; i < N.length; i++) {
  final Object X = initializeInput(N[i]);

  final long startTime = getClockTime();
  A(X);  // Run algorithm A on input X of size N[i]
  final long endTime = getClockTime();

  final long elapsedTime = endTime - startTime;
  System.out.println(“Time for N[“ + i + “]: “ +
                     elapsedTime);
}

Make sure to start and stop the clock 
as “tightly” as possible around the 

actual algorithm A.
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Procedure for measuring 
time cost

• The procedure would work fine if there were no variability 
in how long A(X) took to execute.

• Unfortunately, in the “real world”, each measurement of 
the time cost of A(X) is corrupted by noise:

• Garbage collector!

• Other programs running.

• Cache locality.

• Swapping to/from disk.

• Input/output requests from external devices.
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Procedure for measuring 
time cost

• If we measured the time cost of A(X) based on just one 
measurement, then our estimate of the “true” time cost 
of A(X) will be very imprecise.

• We might get unlucky and measure A(X) while the 
computer is doing a “system update”.

• If we’ve very unlucky, this might occur during some 
values of i, but not for others, thereby skewing the 
trend we seek to discover across the different N[i].
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Improved procedure for 
measuring time cost

• A much-improved procedure for measuring the time cost 
of A(X) is to compute the average time across M trials.

• Procedure (draft 2):
for (int i = 0; i < N.length; i++) {
  final Object X = initializeInput(N[i]);

  final long[] elapsedTimes = new long[M];
  for (int j = 0; j < M; j++) {
    final long startTime = getClockTime();
    A(X);  // Run algorithm A on input X of size N[i]  
    final long endTime = getClockTime();
    elapsedTimes[j] = endTime - startTime;
  }
  final double avgElapsedTime = computeAvg(elapsedTimes);
  System.out.println(“Time for N[“ + i + “]: “ +
                     avgElapsedTime);
}
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Improved procedure for 
measuring time cost

• If the elapsed time measured in the jth trial is Tj, then the 
average over all M trials is:

• We will use the average time “T-bar” as an estimate of the 
“true” time cost of A(X).

• The more trials M we use to compute the average, the 
more precise our estimate “T-bar” will be.

T =
1

M

MX

j=1

Tj
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Improved procedure for 
measuring time cost

• Alternatively, we can start/stop the clock just once.

• Procedure (draft 2b):
for (int i = 0; i < N.length; i++) {
  final Object X = initializeInput(N[i]);

  final long startTime = getClockTime();
  for (int j = 0; j < M; j++) {
    A(X);  // Run algorithm A on input X of size N[i]  
  }
  final long endTime = getClockTime();

  final double avgElapsedTime = (endTime - startTime) / M;
  System.out.println(“Time for N[“ + i + “]: “ +
                     avgElapsedTime);
}
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Quantifying uncertainty
• A key issue in any experiment is to quantify the uncertainty of 

all measurements.

• Example:

• We are attempting to estimate the “true” time cost of A(X) 
by averaging together the results of many trials.

• After computing “T-bar”, how far from the “true” time cost 
of A(X) was our estimate?

Thursday, July 19, 12



Quantifying uncertainty
• A key issue in any experiment is to quantify the uncertainty of 

all measurements.

• Example:

• We are attempting to estimate the “true” time cost of A(X) 
by averaging together the results of many trials.

• After computing “T-bar”, how far from the “true” time cost 
of A(X) was our estimate?

• In order to compute this, we would have to know what 
the true time cost is -- and that’s what we’re trying to 
estimate!

• We must find another way to quantify uncertainty...
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Standard error versus 
standard deviation

• Some of you may already be familiar with the standard deviation:

• The standard deviation measures how “varied” the individual 
measurements Tj are.

• The standard deviation gives a sense of “how much noise 
there is.”

• However, in most cases, we are less interested in 
characterizing the noise, and more interested in measuring 
the true time cost of A(X) itself.

• For this, we want the standard error.

� =

vuut 1

M

MX

j=1

(Tj � T )2
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Quantifying your 
uncertainty

• In statistics, the uncertainty associated with a 
measurement (e.g., the time cost of A(X)) is typically 
quantified using the standard error:

where “T-bar” is the average (computed on earlier 
slide).

• Notice: as M grows larger, the StdErr becomes 
smaller.

StdErr =
�p
M

� =

vuut 1

M

MX

j=1

(Tj � T )2where

Standard deviation
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Error bars

• The standard error is often used to compute error 
bars on graphs to indicate how reliable they are.

• Different error bars have different meanings! Some 
of them indicate confidence intervals, some indicate 
standard error, some indicate standard deviation -- 
it’s important to know which!

Thursday, July 19, 12



Example
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Linear data structures:
a brief review.
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Linear data structures
• So far in this course we have learned the basic 

linear data structures:

• Array list

• Linked list

• Stack

• Queue

• These structures are linear because each element 
contained within them is adjacent to at most 2 
other elements.
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Linear data structures
• Linked lists and array lists provide a form of 

“permanent” storage of arbitrary data.

• Stacks and queues provide (typically) “temporary” 
storage to data that we expect to remove at some 
later point in time.

• LIFO for stack, FIFO for queue.

• All these data structures provide convenient 
containers for storing unrelated data.

• There needn’t be any relationship among the 
individual data.
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Linear data structures
• With Java generics, we gained the ability to restrict 

membership to an ADT to a particular class.

• E.g., allow only String objects to be added to a 
List12 container).

• But beyond the class of the objects, we didn’t 
“care” about any relationships between the data.

• In particular, we didn’t care whether the ADT 
stored the individual data in some “natural order”:

• E.g., alphabetical order for Strings, integer 
order for Integers.
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Linear data structures
• Ignoring any relationships between data elements 

allowed for an ADT that was:

• Simple to implement -- no need to consider order 
relations.

• Flexible to use -- no need to define an order 
relation.

• However, this simplicity/flexibility comes at the cost 
that data retrieval is often slower than it needs to be.

• By considering the natural order relations between 
objects, we can create data structures with superior 
asymptotic time costs for storage/retrieval 
operations.
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Linear data structures: 
asymptotic time costs

• Let’s review the “score card” of the ADTs 
we’ve covered so far.

• Let’s consider three fundamental operations:

• void add (T o);

• void remove (T o);

• T find (T o);
Search for an element in the container that 
equals o and returns it; if no such object 
exists, then returns null.
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Array-list and linked-list 
scorecard

Array-list Linked-list

add(o) O(1) O(1)

find(o) O(n) O(n)

remove(o) O(n) O(n)

Adding is fast.

Finding is slow.

Removing is slow.
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Array-list and linked-list 
scorecard

• There are many occasions where the user will add new 
data relatively rarely, but want to find data already in the 
data structure relatively frequently.

• In order to improve the asymptotic time cost of the 
find(o) and remove(o) operations, we will make use of 
order relationships between data elements.

• Once we’ve found an element within a data 
structure, it is typically easy for the data structure to 
remove it. 
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Why find something?

• It may strike some as odd that an ADT would 
support the method T find (T o).

• After all, if the user knows the object o he/she is 
looking for, then why call find at all?

• Answer: sometimes the user knows part of the 
information about an object o, but does not have 
the whole record.

• This illustrates the difference between a record’s 
key and its value.
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Keys and values
• The part of the Student object that the user always knows 

is called the key (e.g., student ID number at Student Health).

• The rest of the Student record is called the value. 

class Student {
  String _studentID;
  String _firstName, _lastName;
  String _address;

  Student (String studentID) {
    _studentID = studentID;
  }

  Student (String studentID, String firstName, String lastName,
           String address) {
    _studentID = studentID;
    _firstName = firstName;
    _lastName = lastName;
    _address = address;
  }
}

Key

Value
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Keys and values

• The user may store many Student objects inside a 
List12 container, e.g.:
list.add(new Student(“A123”, “Bill”, “Carter”, “123 Main St”));
list.add(new Student(“A213”, “Jimmy”, “Clinton”, “124 Main St”));
...
list.add(new Student(“B092”, “Hillary”, “Nixon”, “125 Main St”));

• Later, the user may wish to find a particular Student 
object using just the key, e.g., the student ID:

final Student cse12Student = list.find(new Student(“A123”));

Student initialized 
with just the key.

Student containing both 
the key and value.
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Keys and values
• For some data structures, the key and value are 

completely separate:

• Example:

• A “hash map/table” (covered later in this course) 
allows O(1)-time retrieval of any value given its key.

• To add a new entry to the table, the user calls
put(key, value), e.g.:

hashMap.put(“A123”,
            new Student(“A123”, “Bill”, “Carter”,
                        “123 Main St”)
           );

Key
Value

Thursday, July 19, 12



Finding a particular key
• Given a request to find a particular key, and given that 

keys often have an order relation defined between them, 
it seems silly to search through the container as if the 
keys were all unrelated.

• Example: Suppose we are searching for the student ID 
“C237”. Do we really need to start at the very beginning?

A101 B972 D192
A102 C092 ...
A125 C100
A192 C200
A204 C203
B135 C237
B193 C292

Search
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Finding a particular key
• Given a request to find a particular key, and given that 

keys often have an order relation defined between them, 
it seems silly to search through the container as if the 
keys were all unrelated.

• Example: Suppose we are searching for the student ID 
“C237”. Do we really need to start at the very beginning?

A101 B972 D192
A102 C092 ...
A125 C100
A192 C200
A204 C203
B135 C237
B193 C292

Search
No -- the natural order among keys 
imposes structure on the “search 
problem” that lets us find a 
particular key much more quickly.
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Binary order relations

• An example of a binary order relationship 
is the Java < operator, e.g.:

int  a = 3, b = 4;
if (a < b) {
  ...
}

• However, the < operator is only valid on 
primitive numeric variables (int, float, 
double, etc.).
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Binary order relations
• More generally, two Java Objects can be compared if 

they are Comparable, using the compareTo method:
int compareTo (T o);

• o1.compareTo(o2) is:

• < 0 if o1 is “less than” o2
• == 0 if o1 is “equal to” o2
• > 0 if o1 is “greater than” o2

• Classes that implement the compareTo(o) method 
can implement the Comparable<T> interface.
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Comparable<T>

• Example:

class Student implements Comparable<Student> {
  ...
  int compareTo (T other) {
    // Compare this._studentID to
    // other._studentID -- return -1, 0, or 1
    // if this._studentID is “less than”,
    // “equal to”, or “greater than”
    // other._studentID, respectively.
    ...
  }
}

Each Student might be “comparable to” objects 
of a different class, e.g., UCSDMember (since faculty 

and staff also have ID numbers).
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Comparable<T>

• Example:

class Student implements Comparable<Student> {
  ...
  int compareTo (T other) {
    return _studentID.compareTo(
      other._studentID
    );
  }
}

In this particular case, we can just 
delegate to the 

String.compareTo(o) method, since 
String implements 

Comparable<String>.
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Comparable<T>

• Now, we can compare two Student 
objects:

if (student1.compareTo(student2) < 0) {
  ...
}
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