CSE 12:
Basic data structures and object-oriented design

Jacob Whitehill
jake@mplab.ucsd.edu

Lecture Nine
19 July 2012
More on algorithmic analysis
Asymptotic performance analysis

• Asymptotic performance analysis is a coarse but useful means of describing and comparing the performance of algorithms as a function of the input size n when n gets large.

• Asymptotic analysis applies to both time cost and space cost.

• Asymptotic analysis hides details of timing (that we don’t care about) due to:
 • Speed of computer.
 • Slight differences in implementation.
 • Programming language.
Mathematical formalism

• In order to justify approximating a time cost $T(n)=3n+3$ just as “$O(n)=n$”, we need to define some mathematical notation:

• We say a function $T(n)$ is big-O of another function $g(n)$ (i.e., $O(g(n))$) if there exist positive constants c and n_0 such that:
 for all $n > n_0$: $T(n) \leq c \cdot g(n)$
Mathematical formalism

• In order to justify approximating a time cost \(T(n) = 3n + 3 \) just as “\(O(n) = n \)”, we need to define some mathematical notation:

• We say a function \(T(n) \) is big-O of another function \(g(n) \) (i.e., \(O(g(n)) \)) if there exist positive constants \(c \) and \(n_0 \) such that:

 for all \(n > n_0 \): \(T(n) \leq c \cdot g(n) \)

As long as \(n \) is “big enough”, then \(T(n) \) will always be less than a constant multiple of \(g(n) \).
Mathematical formalism

• Example: consider $T(n)=3n-6$.

• If we pick $g(n)=n$, $n_0 = 0$ and $c = 4$, then:

• $T(n) = 3n-6 \leq 4n = c \cdot g(n)$ for all $n > n_0$

• Hence, we can write: “$T(n)$ is $O(g(n))$ where $g(n)=n$”.

• More simply, we can write: “$T(n)$ is $O(n)$”.
Mathematical formalism

• Note that, for $T(n) = 3n - 6$, we could also write $T(n) = O(n^2)$ because:

 • If we pick $n_0 = 10$ and $c = 1$, then:

 • $T(n) = 3n - 6 \leq n^2 = c \cdot g(n)$ for all $n > n_0$

• The “O” notation gives an upper bound to the time cost T. It may not be a tight upper bound.
Mathematical formalism

• Note that, for $T(n) = 3n - 6$, we could also write $T(n) = O(n^2)$ because:

 • If we pick $n_0 = 10$ and $c = 1$, then:

 • $T(n) = 3n - 6 \leq n^2 = c \cdot g(n)$ for all $n > n_0$

 • The “O” notation gives an upper bound to the time cost T. It may not be a tight upper bound.

 • However, by convention, if we say “$T(n)$ is $O(g(n))$”, then we pick $g(n)$ to be a tight bound on T.

* This is achieved formally by also defining Ω, and Θ notation.
Mathematical formalism

- Note that, for \(T(n) = n^2 + 2n \), we could not write \(T(n) = O(n) \) because there do not exist positive constants \(c \) and \(n_0 \) such that \(T(n) \leq c g(n) \) for all \(n > n_0 \).
Different asymptotic costs

Figure 5.3 Long-range trends of common curves. Compare with Figure 5.2.

from Bailey (2007)
Exercises

- \(T(n) = 2n^3 + 2n^4 - 3 \)
- \(T(n) = 3n^2 - 3n + 17 \)
- \(T(n) = 2 \log n \)
- \(T(n) = 3 \log n + 5n \)
Exercises

- $T(n) = 2n^3 + 2n^4 - 3 = O(n^4)$
- $T(n) = 3n^2 - 3n + 17$
- $T(n) = 2 \log n$
- $T(n) = 3 \log n + 5n$
Exercises

• $T(n) = 2n^3 + 2n^4 - 3 = O(n^4)$
• $T(n) = 3n^2 - 3n + 17 = O(n^2)$
• $T(n) = 2 \log n$
• $T(n) = 3 \log n + 5n$
Exercises

- $T(n) = 2n^3 + 2n^4 - 3 = O(n^4)$
- $T(n) = 3n^2 - 3n + 17 = O(n^2)$
- $T(n) = 2 \log n = O(\log n)$
- $T(n) = 3 \log n + 5n$
Exercises

- $T(n) = 2n^3 + 2n^4 - 3 = O(n^4)$
- $T(n) = 3n^2 - 3n + 17 = O(n^2)$
- $T(n) = 2 \log n = O(\log n)$
- $T(n) = 3 \log n + 5n = O(n)$
Properties of asymptotic notation

• If $T(n) = U(n) + V(n)$, and if both $U(n) = O(g(n))$ and $V(n) = O(g(n))$, then $T(n) = O(g(n))$.

• In other words, the sum of two functions that are both $O(g(n))$ is also $O(g(n))$.
Example 1 revisited

// Assume grades.length > 0
float computeAverageGrade (float[] grades) {
 float sum = 0;
 for (int i = 0; i < grades.length; i++) {
 sum += grades[i];
 }
 return sum / grades.length;
}

Using asymptotic notation, the analysis becomes much simpler.
Example 3

```java
int someMethod (int[] numbers) {
    int sum = 0;
    for (int i = 0; i < numbers.length; i++) {
        for (int j = 0; j < numbers.length; j++) {
            sum += numbers[i] * numbers[j];
        }
    }
    return sum;
}
```
Example 3

```java
int someMethod (int[] numbers) {
    int sum = 0;
    for (int i = 0; i < numbers.length; i++) {
        for (int j = 0; j < numbers.length; j++) {
            sum += numbers[i] * numbers[j];
        }
    }
    return sum;
}
```

operations

Total: $O(n^2)$
Analysis of data structures

• Let’s put these ideas into practice and analyze the performance of algorithms related to ArrayList:
 • add(o), get(index), find(o), and remove(index).

• As a first step, we must decide what the “input size” means.

• What is the “input” to these algorithms?
Analysis of data structures

• Each of the methods (algorithms) above operates on the _underlyingStorage and either o or index.

• o and index are always length 1 -- their size cannot grow.

• However, the number of data in _underlyingStorage (stored in _numElements) will grow as the user adds elements to the ArrayList.

• Hence, we measure asymptotic time cost as a function of n, the number of elements stored (_numElements).
Adding to back of list

- What is the time complexity of this method?

class ArrayList<T> {
 private T[] _underlyingStorage;
 int _numElements;
 void addToBack (T o) {
 // Assume _underlyingStorage is big enough
 _underlyingStorage[_numElements] = o;
 _numElements++;
 }
 // ...
}
Adding to back of list

• What is the time complexity of this method?

class ArrayList<T> {
 private T[] _underlyingStorage;
 int _numElements;
 void addToBack (T o) {
 // Assume _underlyingStorage is big enough
 _underlyingStorage[_numElements] = o;
 _numElements++;
 }
 // ...
}

O(1) -- the number of abstract operations does not depend on _numElements.

Note that, for this method, the worst case, average case, and best case are all the same.
Retrieving an element

• What is the time complexity of this method?

class ArrayList<T> {
 ...
 T get (int index) {
 return _underlyingStorage[index];
 }
}
Retrieving an element

- What is the time complexity of this method?

```java
class ArrayList<T> {
    ...
    T get (int index) {
        return _underlyingStorage[index];
    }
}
```

$O(1)$.
Adding to front of list

• What is the time complexity of this method?

```java
class ArrayList<T> {
    ...
    void addToFront (T o) {
        // Assume _underlyingStorage is big enough
        for (int i = 0; i < _numElements; i++) {
            _underlyingStorage[i+1] = _underlyingStorage[i];
        }
        _underlyingStorage[i] = o;
        _numElements++;
    }
}
```
Adding to front of list

• What is the time complexity of this method?

```java
class ArrayList<T> {
    ...
    void addToFront (T o) {
        // Assume _underlyingStorage is big enough
        for (int i = 0; i < _numElements; i++) {
            _underlyingStorage[i+1] = _underlyingStorage[i];
        }
        _underlyingStorage[i] = o;
        _numElements++;
    }
}
```

We have to move everything over by 1.

$O(n)$.
Finding an element

- What is the time complexity of this method in the best case? Worst case?

```java
class ArrayList<T> {
    ...
    // Returns lowest index of o in the ArrayList, or // -1 if o is not found.
    int find (T o) {
        for (int i = 0; i < _numElements; i++) {
            if (_underlyingStorage[i].equals(o)) { // not null
                return i;
            }
        }
        return -1;
    }
}
```
Finding an element

- What is the time complexity of this method in the best case? Worst case?

```java
class ArrayList<T> {
  ...
  // Returns lowest index of o in the ArrayList, or
  // -1 if o is not found.
  int find (T o) {
    for (int i = 0; i < _numElements; i++) {
      if (_underlyingStorage[i].equals(o)) { // not null
        return i;
      }
    }
    return -1;
  }
}
```

\(O(1)\) in best case; \(O(n)\) in worst case.
Adding n elements

• Now, let’s consider the time complexity of doing *many adds in sequence*, starting from an empty list:

```java
void addManyToFront (T[] many) {
    for (int i = 0; i < many.length; i++) {
        addToFront(many[i]);
    }
}
```

• What is the time complexity of `addManyToFront` on an array of size n?
Adding n elements

- To calculate the total time cost, we have to sum the time costs of the individual calls to `addToFront`.

- Each call to `addToFront(o)` takes about time i, where i is the current size of the list. (We have to “move over” i elements by one step to the right.)

```java
void addManyToFront (T[] many) {
    for (int i = 0; i < many.length; i++) {
        addToFront(many[i]);
    }
}
```

- Let $T(i)$ the cost of `addToFront` at iteration i: $T(0)=1$, $T(1)=2$, ..., $T(n-1)=n$.
Adding n elements

- Now we just have to add together all the $T(i)$:

$$\sum_{i=0}^{n-1} T(i) = \sum_{i=0}^{n-1} (i + 1) = \frac{n(n - 1)}{2} = O(n^2)$$

- Note that we would get the same asymptotic bound even if we calculated the cost $T(i)$ slightly differently, e.g., $T(i)=3i+2$:

$$\sum_{i=0}^{n-1} T(i) = \sum_{i=0}^{n-1} (3i + 2)$$

$$= \sum_{i=0}^{n-1} 3i + \sum_{i=0}^{n-1} 2$$

$$= 3 \sum_{i=0}^{n-1} i + 2n$$

$$= 3 \left(\frac{n(n - 1)}{2} \right) + 2n$$

$$= O(n^2)$$
Finding an element

• What is the time complexity of this method in the *average case*?

```java
class ArrayList<T> {
    ...
    // Returns lowest index of o in the ArrayList, or -1 if o is not found.
    int find (T o) {
        for (int i = 0; i < _numElements; i++) {
            if (_underlyingStorage[i].equals(o)) { // not null
                return i;
            }
        }
        return -1;
    }
}
```
Finding an element: average case

• Finding an exact formula for the *average case* performance can be tricky (if not impossible).

• In order to compute the average, or *expected*, time cost, we must know:
 • The *time cost* $T(X_n)$ for a particular *input* X of size n.
 • The *probability* $P(X_n)$ of that input X.
 • The *expected time cost*, over all inputs X of size n, is then:

$$\text{AvgCaseTimeCost}_n = E[T(X_n)] = \sum_{X_n} P(X_n)T(X_n)$$
Finding an element: average case

• Finding an exact formula for the average case performance can be tricky (if not impossible).

• In order to compute the average, or expected, time cost, we must know:
 - The time cost $T(X_n)$ for a particular input X of size n.
 - The probability $P(X_n)$ of that input X.
 - The expected time cost, over all inputs X of size n, is then:

$\text{AvgCaseTimeCost}_n = E[T(X_n)] = \sum_{X_n} P(X_n) T(X_n)$

“E” for “Expectation”

In this case, X consists of both the element o and the contents of underlyingStorage. Sum the time costs for all possible inputs, and weight each cost by how likely it is to occur.
Finding an element: average case

- In the `find(o)` method listed above, it is possible that the user gives us an `o` that is not contained in the list.
 - This will result in $O(n)$ time cost.
 - How “likely” is this event?
 - We have no way of knowing -- we could make an arbitrary assumption, but the result would be meaningless.
 - Let’s remove this case from consideration and assume that `o` is always present in the list.
 - What is the average-case time cost then?
Finding an element: average case

- Even when we assume o is present in the list somewhere, we have no idea whether the o the user gives us will “tend to be at the front” or “tend to be at the back” of the list.

- However, here we can make a plausible assumption:
 - For an $ArrayList$ of n elements, the probability that o is contained at index i is $1/n$.
 - In other words, o is equally likely to be in any of the “slots” of the array.
Finding an element: average case

- Given this assumption, we can finally make headway.
- Let’s define $T(i)$ to be the cost of the $\text{find}(o)$ method as a function of i, the location in _underlyingStorage where o is located. What is $T(i)$?

```java
class ArrayList<T> {
    ...
    // Returns lowest index of $o$ in the ArrayList, or
    // -1 if $o$ is not found.
    int find (T o) {
        for (int i = 0; i < _numElements; i++) {
            if (_underlyingStorage[i].equals(o)) { // not null
                return i;
            }
        }
        return -1;
    }
}
```
Finding an element: average case

- Given this assumption, we can finally make headway.
- Let’s define $T(i)$ to be the cost of the $\text{find}(o)$ method as a function of i, the location in $_\text{underlyingStorage}$ where o is located. What is $T(i)$?

```java
class ArrayList<T> {
    ...
    // Returns lowest index of $o$ in the ArrayList, or
    // -1 if $o$ is not found.
    int find (T o) {
        for (int i = 0; i < _numElements; i++) {
            if (_underlyingStorage[i].equals(o)) { // not null
                return i;
            }
        }
        return -1;
    }
}
```

$T(i) = i$
Finding an element: average case

• Now, we can re-write the expected time cost in terms of an arbitrary input X, as the expected time cost in terms of where in the array the element o will be found.

$$\text{AvgCaseTimeCost}_n = \sum_i P(i)T(i)$$

Redefine $P(X_n)$ and $T(X_n)$ in terms of $P(i)$ and $T(i)$.

$$= \sum_i \frac{1}{n}i$$

Substitute terms.

$$= \frac{1}{n} \sum_i i$$

Move $1/n$ out of the summation.

$$= \frac{1}{n} \frac{n(n + 1)}{2}$$

Formula for arithmetic series.

$$= \frac{n + 1}{2}$$

The n's cancel.

$$= O(n)$$

Find asymptotic bound.
Performance measurement.
Empirical performance measurement

• As an alternative to describing an algorithm’s performance with a “number of abstract operations”, we can also measure its time empirically using a clock.

• As illustrated last lecture, counting “abstract operations” can anyway hide real performance differences, e.g., between using int[] and Integer[].

Thursday, July 19, 12
Empirical performance measurement

- There are also many cases where you don’t know how an algorithm works internally.
 - Many programs and libraries are not open source!
 - You have to analyze an algorithm’s performance as a black box.
 - “Black box” -- you can run the program but cannot see how it works internally.
 - It may even be useful to deduce the asymptotic time cost by measuring the time cost for different input sizes.
Procedure for measuring time cost

- Let’s suppose we wish to measure the time cost of algorithm A as a function of its input size n.
- We need to choose a set of values of n that we will test.
- If we make n too big, our algorithm A may never terminate (the input is “too big”).
- If we make n too small, then A may finish so fast that the “elapsed time” is practically 0, and we won’t get a reliable clock measurement.
Procedure for measuring time cost

• In practice, one “guesses” a few values for n, sees how fast A executes on them, and selects a range of values for n.

• Let’s define an array of different input sizes, e.g.:
  ```
  int[] N = { 1000, 2000, 3000, ..., 10000 }
  ```

• Now, for each input size $N[i]$, we want to measure A’s time cost.
Procedure for measuring time cost

• Procedure (draft 1):

```
for (int i = 0; i < N.length; i++) {
    final Object X = initializeInput(N[i]);

    final long startTime = getClockTime();
    A(X);  // Run algorithm A on input X of size N[i]
    final long endTime = getClockTime();

    final long elapsedTime = endTime - startTime;
    System.out.println("Time for N[" + i + "]: "+ elapsedTime);
}
```

Make sure to start and stop the clock as “tightly” as possible around the actual algorithm A.
Procedure for measuring time cost

• The procedure would work fine if there were no variability in how long $A(X)$ took to execute.

• Unfortunately, in the “real world”, each measurement of the time cost of $A(X)$ is corrupted by noise:
 • Garbage collector!
 • Other programs running.
 • Cache locality.
 • Swapping to/from disk.
 • Input/output requests from external devices.
Procedure for measuring time cost

• If we measured the time cost of \(A(X) \) based on just one measurement, then our estimate of the “true” time cost of \(A(X) \) will be very imprecise.

• We might get unlucky and measure \(A(X) \) while the computer is doing a “system update”.

• If we’ve very unlucky, this might occur during some values of \(i \), but not for others, thereby skewing the trend we seek to discover across the different \(N[i] \).
Improved procedure for measuring time cost

• A much-improved procedure for measuring the time cost of A(X) is to compute the average time across M trials.

• Procedure (draft 2):

  ```java
  for (int i = 0; i < N.length; i++) {
    final Object X = initializeInput(N[i]);

    final long[] elapsedTimes = new long[M];
    for (int j = 0; j < M; j++) {
      final long startTime = getClockTime();
      A(X); // Run algorithm A on input X of size N[i]
      final long endTime = getClockTime();
      elapsedTimes[j] = endTime - startTime;
    }
    final double avgElapsedTime = computeAvg(elapsedTimes);
    System.out.println("Time for N[" + i + "]: "+
      avgElapsedTime);
  }
  ```
Improved procedure for measuring time cost

• If the elapsed time measured in the jth trial is T_j, then the average over all M trials is:

$$\overline{T} = \frac{1}{M} \sum_{j=1}^{M} T_j$$

• We will use the average time “T-bar” as an estimate of the “true” time cost of $A(X)$.

• The more trials M we use to compute the average, the more precise our estimate “T-bar” will be.
Improved procedure for measuring time cost

- Alternatively, we can start/stop the clock just once.

- Procedure (draft 2b):
 for (int i = 0; i < N.length; i++) {
 final Object X = initializeInput(N[i]);

 final long startTime = getClockTime();
 for (int j = 0; j < M; j++) {
 A(X); // Run algorithm A on input X of size N[i]
 }
 final long endTime = getClockTime();

 final double avgElapsedTime = (endTime - startTime) / M;
 System.out.println("Time for N[" + i + "]: "+
 avgElapsedTime);
 }
Quantifying uncertainty

• A key issue in any experiment is to quantify the uncertainty of all measurements.

• Example:
 • We are attempting to estimate the “true” time cost of $A(X)$ by averaging together the results of many trials.
 • After computing “T-bar”, how far from the “true” time cost of $A(X)$ was our estimate?
Quantifying uncertainty

- A key issue in any experiment is to quantify the uncertainty of all measurements.

- Example:
 - We are attempting to estimate the “true” time cost of A(X) by averaging together the results of many trials.
 - After computing “T-bar”, how far from the “true” time cost of A(X) was our estimate?
 - In order to compute this, we would have to know what the true time cost is -- and that’s what we’re trying to estimate!
 - We must find another way to quantify uncertainty...
Standard error versus standard deviation

- Some of you may already be familiar with the standard deviation:

\[\sigma = \sqrt{\frac{1}{M} \sum_{j=1}^{M} (T_j - \bar{T})^2} \]

- The standard deviation measures how “varied” the individual measurements \(T_j \) are.

- The standard deviation gives a sense of “how much noise there is.”

- However, in most cases, we are less interested in characterizing the noise, and more interested in measuring the true time cost of \(A(X) \) itself.

- For this, we want the standard error.
Quantifying your uncertainty

• In statistics, the uncertainty associated with a measurement (e.g., the time cost of $A(X)$) is typically quantified using the *standard error*:

$$
\text{StdErr} = \frac{\sigma}{\sqrt{M}}
$$

where

$$
\sigma = \sqrt{\frac{1}{M} \sum_{j=1}^{M} (T_j - \bar{T})^2}
$$

where “\bar{T}-bar” is the average (computed on earlier slide).

• Notice: as M grows larger, the StdErr becomes smaller.
Error bars

• The standard error is often used to compute error bars on graphs to indicate how reliable they are.

• Different error bars have different meanings! Some of them indicate confidence intervals, some indicate standard error, some indicate standard deviation -- it’s important to know which!
Example

![Graph showing the performance comparison between ArrayList and LinkedList based on the number of data points added over time. The graph illustrates that ArrayList performs better with a lower Time (sec) compared to LinkedList, especially as the number of data points increases.](image-url)
Linear data structures: a brief review.
Linear data structures

• So far in this course we have learned the basic linear data structures:
 • Array list
 • Linked list
 • Stack
 • Queue

• These structures are linear because each element contained within them is adjacent to at most 2 other elements.
Linear data structures

- Linked lists and array lists provide a form of “permanent” storage of arbitrary data.

- Stacks and queues provide (typically) “temporary” storage to data that we expect to remove at some later point in time.

 - LIFO for stack, FIFO for queue.

- All these data structures provide convenient containers for storing unrelated data.

 - There needn’t be any relationship among the individual data.
Linear data structures

• With Java generics, we gained the ability to restrict membership to an ADT to a particular class.

• E.g., allow only `String` objects to be added to a `List` container.

• But beyond the class of the objects, we didn’t “care” about any relationships between the data.

• In particular, we didn’t care whether the ADT stored the individual data in some “natural order”:

 • E.g., alphabetical order for `Strings`, integer order for `Integers`.
Linear data structures

• Ignoring any relationships between data elements allowed for an ADT that was:
 • Simple to implement -- no need to consider order relations.
 • Flexible to use -- no need to define an order relation.
• However, this simplicity/flexibility comes at the cost that data retrieval is often slower than it needs to be.
• By considering the natural order relations between objects, we can create data structures with superior asymptotic time costs for storage/retrieval operations.
Linear data structures: asymptotic time costs

• Let’s review the “score card” of the ADTs we’ve covered so far.

• Let’s consider three fundamental operations:
 • void add (T o);
 • void remove (T o);
 • T find (T o);
 Search for an element in the container that equals o and returns it; if no such object exists, then returns null.
Array-list and linked-list scorecard

<table>
<thead>
<tr>
<th></th>
<th>Array-list</th>
<th>Linked-list</th>
</tr>
</thead>
<tbody>
<tr>
<td>add(o)</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>find(o)</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>remove(o)</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

Adding is fast.
Finding is slow.
Removing is slow.
Array-list and linked-list scorecard

- There are many occasions where the user will *add* new data relatively *rarely*, but want to *find* data already in the data structure relatively *frequently*.

- In order to improve the asymptotic time cost of the *find(o)* and *remove(o)* operations, we will make use of order relationships between data elements.

- Once we’ve *found* an element within a data structure, it is typically easy for the data structure to *remove* it.
Why \texttt{find} something?

• It may strike some as odd that an ADT would support the method \texttt{T find (T o)}.

• After all, if the user knows the object \(o \) he/she is looking for, then why call \texttt{find} at all?

• \textit{Answer}: sometimes the user knows \textit{part} of the information about an object \(o \), but does not have the whole record.

• This illustrates the difference between a record’s \textit{key} and its \textit{value}.
Keys and values

- The part of the `Student` object that the user always knows is called the `key` (e.g., student ID number at Student Health).
- The rest of the `Student` record is called the `value`.

```java
class Student {
    String _studentID;
    String _firstName, _lastName;
    String _address;

    Student (String studentID) {
        _studentID = studentID;
    }

    Student (String studentID, String firstName, String lastName,
              String address) {
        _studentID = studentID;
        _firstName = firstName;
        _lastName = lastName;
        _address = address;
    }
}
```
Keys and values

• The user may store many Student objects inside a `List` container, e.g.:

```java
list.add(new Student("A123", "Bill", "Carter", "123 Main St"));
list.add(new Student("A213", "Jimmy", "Clinton", "124 Main St"));
...
list.add(new Student("B092", "Hillary", "Nixon", "125 Main St"));
```

• Later, the user may wish to find a particular Student object using just the key, e.g., the student ID:

```java
final Student cse12Student = list.find(new Student("A123"));
```

Student containing both the key and value.
Student initialized with just the key.
Keys and values

• For some data structures, the key and value are completely separate:

• Example:

• A “hash map/table” (covered later in this course) allows $O(1)$-time retrieval of any value given its key.

• To add a new entry to the table, the user calls put(key, value), e.g.:

```java
hashMap.put("A123", new Student("A123", "Bill", "Carter", "123 Main St");
```
Finding a particular key

• Given a request to find a particular key, and given that keys often have an order relation defined between them, it seems silly to search through the container as if the keys were all unrelated.

• Example: Suppose we are searching for the student ID “C237”. Do we really need to start at the very beginning?
Finding a particular key

- Given a request to find a particular key, and given that keys often have an order relation defined between them, it seems silly to search through the container as if the keys were all unrelated.

- **Example**: Suppose we are searching for the student ID “c237”. Do we really need to start at the very beginning?

<table>
<thead>
<tr>
<th>Search</th>
<th>A101</th>
<th>B972</th>
<th>D192</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A102</td>
<td>C092</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>A125</td>
<td>C100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A192</td>
<td>C200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A204</td>
<td>C203</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B135</td>
<td>C237</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B193</td>
<td>C292</td>
<td></td>
</tr>
</tbody>
</table>

No -- the natural order among keys imposes structure on the “search problem” that lets us find a particular key much more quickly.
Binary order relations

• An example of a binary order relationship is the Java < operator, e.g.:

```java
int   a = 3, b = 4;
if (a < b) {
    ...
}
```

• However, the < operator is only valid on primitive numeric variables (int, float, double, etc.).
Binary order relations

- More generally, two Java Objects can be compared if they are Comparable, using the compareTo method:

  ```java
  int compareTo (T o);
  ```

- `o1.compareTo(o2)` is:
 - `< 0` if `o1` is “less than” `o2`
 - `== 0` if `o1` is “equal to” `o2`
 - `> 0` if `o1` is “greater than” `o2`

- Classes that implement the `compareTo` method can implement the `Comparable<T>` interface.
Comparable\langle T \rangle

• Example:

```java
class Student implements Comparable<Student> {
  ...
  int compareTo (T other) {
    // Compare this._studentID to
    // other._studentID -- return -1, 0, or 1
    // if this._studentID is “less than”,
    // “equal to”, or “greater than”
    // other._studentID, respectively.
    ...
  }
}
```

Each Student might be “comparable to” objects of a different class, e.g., UCSDMember (since faculty and staff also have ID numbers).
Comparable<T>

- Example:

```java
class Student implements Comparable<Student> {
    ...
    int compareTo (T other) {
        return _studentID.compareTo(
            other._studentID
        );
    }
}
```

In this particular case, we can just delegate to the String.compareTo(o) method, since String implements Comparable<String>.
Comparable<T>

• Now, we can compare two Student objects:

```java
if (student1.compareTo(student2) < 0) {
    ...
}
```