CSE 12: Basic data structures and object-oriented design

Jacob Whitehill jake@mplab.ucsd.edu

> Lecture Nine 19 July 2012

More on algorithmic analysis

Asymptotic performance analysis

- Asymptotic performance analysis is a coarse but useful means of describing and comparing the performance of algorithms as a function of the input size *n* when *n* gets large.
- Asymptotic analysis applies to both time cost and space cost.
- Asymptotic analysis hides details of timing (that we don't care about) due to:
 - Speed of computer.
 - Slight differences in implementation.
 - Programming language.

- In order to justify approximating a time cost
 T(n)=3n+3 just as "O(n)=n", we need to define some mathematical notation:
 - We say a function T(n) is big-O of another function g(n) (i.e., O(g(n)) if there exist positive constants c and n₀ such that:
 for all n > n₀: T(n) ≤ c g(n)

- In order to justify approximating a time cost
 T(n)=3n+3 just as "O(n)=n", we need to define some mathematical notation:
 - We say a function T(n) is big-O of another function g(n) (i.e., O(g(n)) if there exist positive constants c and n₀ such that:
 for all n > n₀: T(n) ≤ c g(n)

As long as *n* is "big enough", then T(n) will always be less than a constant multiple of g(n).

- Example: consider T(n)=3n-6.
- If we pick g(n)=n, $n_0 = 0$ and c = 4, then:
- $T(n) = 3n-6 \le 4n = c g(n)$ for all $n > n_0$
- Hence, we can write: "T(n) is O(g(n)) where g(n)=n".
- More simply, we can write: "T(n) is O(n)".

- Note that, for T(n)=3n-6, we could also write $T(n) = O(n^2)$ because:
 - If we pick $n_0 = 10$ and c = 1, then:
 - $T(n) = 3n-6 \le n^2 = c g(n)$ for all $n > n_0$
- The "O" notation gives an upper bound to the time cost T. It may not be a *tight* upper bound.

- Note that, for T(n)=3n-6, we could also write $T(n) = O(n^2)$ because:
 - If we pick $n_0 = 10$ and c = 1, then:
 - $T(n) = 3n-6 \le n^2 = c g(n)$ for all $n > n_0$
- The "O" notation gives an upper bound to the time cost T. It may not be a *tight* upper bound.
 - However, by convention, if we say "T(n) is O(g(n))", then we pick g(n) to be a tight bound on T.*

* This is achieved formally by also defining $\Omega,$ and θ notation.

• Note that, for $T(n)=n^2+2n$, we could **not** write T(n) = O(n) because there do **not** exist positive constants c and n_0 such that $T(n) \le c g(n)$ for all $n > n_0$.

Different asymptotic costs

from

Bailey

(2007)

Figure 5.3 Long-range trends of common curves. Compare with Figure 5.2.

- $T(n) = 2n^3 + 2n^4 3$
- $T(n) = 3n^2 3n + 17$
- $T(n) = 2 \log n$
- $T(n) = 3 \log n + 5n$

- $T(n) = 2n^3 + 2n^4 3 = O(n^4)$
- $T(n) = 3n^2 3n + 17$
- $T(n) = 2 \log n$
- $T(n) = 3 \log n + 5n$

- $T(n) = 2n^3 + 2n^4 3 = O(n^4)$
- $T(n) = 3n^2 3n + 17 = O(n^2)$
- $T(n) = 2 \log n$
- $T(n) = 3 \log n + 5n$

- $T(n) = 2n^3 + 2n^4 3 = O(n^4)$
- $T(n) = 3n^2 3n + 17 = O(n^2)$
- $T(n) = 2 \log n = O(\log n)$
- $T(n) = 3 \log n + 5n$

- $T(n) = 2n^3 + 2n^4 3 = O(n^4)$
- $T(n) = 3n^2 3n + 17 = O(n^2)$
- $T(n) = 2 \log n = O(\log n)$
- $T(n) = 3 \log n + 5n = O(n)$

Properties of asymptotic notation

- If T(n) = U(n) + V(n), and if both U(n) = O(g(n)) and V(n)=O(g(n)), then T(n) = O(g(n)).
 - In other words, the sum of two functions that are both O(g(n)) is also O(g(n)).

Example I revisited

```
# operations
```

Total: O(n)

```
Using asymptotic notation, the analysis becomes much simpler.
```

Example 3

operations

```
int someMethod (int[] numbers) {
    int sum = 0;
    for (int i = 0; i < numbers.length; i++) {
        for (int j = 0; j < numbers.length; j++) {
            sum += numbers[i] * numbers[j];
        }
    }
    return sum;</pre>
```

Example 3

operations

```
int someMethod (int[] numbers) {
    int sum = 0;
    for (int i = 0; i < numbers.length; i++) {
        for (int j = 0; j < numbers.length; j++) {
            sum += numbers[i] * numbers[j];
        }
    }
    return sum;
}</pre>
```

Total: O(n²)

Analysis of data structures

- Let's put these ideas into practice and analyze the performance of algorithms related to ArrayList:
 - add(o),get(index),find(o),and
 remove(index).
- As a first step, we must decide what the "input size" means.
 - What is the "input" to these algorithms?

Analysis of data structures

- Each of the methods (algorithms) above operates on the _underlyingStorage and either o or index.
 - o and index are always length I -- their size cannot grow.
 - However, the number of data in _underlyingStorage (stored in _numElements) will grow as the user adds elements to the ArrayList.
- Hence, we measure asymptotic time cost as a function of *n*, the number of elements stored (_numElements).

Adding to back of list

```
class ArrayList<T> {
  private T[] _underlyingStorage;
  int _numElements;
  void addToBack (T o) {
    // Assume _underlyingStorage is big enough
    _underlyingStorage[_numElements] = o;
    _numElements++;
  }
  // ...
```

Adding to back of list

• What is the time complexity of this method?

Note that, for this method, the worst case, average case, and best case are all the same.

```
class ArrayList<T> {
 private T[] underlyingStorage;
  int numElements;
 void addToBack (T o) {
    // Assume underlyingStorage is big enough
    underlyingStorage[ numElements] = o;
     numElements++;
 // ...
              O(1) -- the number of abstract operations
```

Retrieving an element

```
class ArrayList<T> {
    ...
    T get (int index) {
        return _underlyingStorage[index];
    }
}
```

Retrieving an element

```
class ArrayList<T> {
    ...
    T get (int index) {
        return _underlyingStorage[index];
    }
}
O(|).
```

Adding to front of list

```
class ArrayList<T> {
    ...
    void addToFront (T o) {
        // Assume _underlyingStorage is big enough
        for (int i = 0; i < _numElements; i++) {
            _underlyingStorage[i+1] = _underlyingStorage[i];
        }
        _underlyingStorage[i] = o;
        _numElements++;
    }
</pre>
```

Adding to front of list

Finding an element

• What is the time complexity of this method in the best case? Worst case?

class ArrayList<T> {

```
// Returns lowest index of o in the ArrayList, or
// -1 if o is not found.
int find (T o) {
  for (int i = 0; i < _numElements; i++) {
    if (_underlyingStorage[i].equals(o)) { // not null
      return i;
    }
  }
  return -1;
}
```

Finding an element

• What is the time complexity of this method in the best case? Worst case?

class ArrayList<T> {

```
// Returns lowest index of o in the ArrayList, or
// -1 if o is not found.
int find (T o) {
  for (int i = 0; i < _numElements; i++) {
    if (_underlyingStorage[i].equals(o)) { // not null
      return i;
    }
    }
    return -1;
}
O(1) in best case; O(n) in worst case.
```

}

Adding *n* elements

 Now, let's consider the time complexity of doing many adds in sequence, starting from an empty list:

```
void addManyToFront (T[] many) {
  for (int i = 0; i < many.length; i++) {
    addToFront(many[i]);
  }
}</pre>
```

 What is the time complexity of addManyToFront on an array of size n?

Adding *n* elements

- To calculate the total time cost, we have to sum the time costs of the individual calls to addToFront.
 - Each call to addToFront(o) takes about time *i*, where
 i is the *current* size of the list. (We have to "move
 over" *i* elements by one step to the right.)

```
void addManyToFront (T[] many) {
  for (int i = 0; i < many.length; i++) {
    addToFront(many[i]);
  }
}</pre>
```

• Let T(i) the cost of addToFront at iteration *i*: T(0)=1, T(1)=2, ..., T(n-1)=n.

Adding *n* elements

• Now we just have to add together all the T(i):

$$\sum_{i=0}^{n-1} T(i) = \sum_{i=0}^{n-1} (i+1) = \frac{n(n-1)}{2} = O(n^2)$$

• Note that we would get the same asymptotic bound even if we calculated the cost T(i) slightly differently, e.g., T(i)=3i+2: n-1 n-1

$$\sum_{i=0}^{n-1} T(i) = \sum_{i=0}^{n-1} (3i+2)$$

$$= \sum_{i=0}^{n-1} 3i + \sum_{i=0}^{n-1} 2$$

$$= 3\sum_{i=0}^{n-1} i + 2n$$

$$= 3\left(\frac{n(n-1)}{2}\right) + 2n$$

$$= O(n^2)$$

Finding an element

• What is the time complexity of this method in the *average case*?

```
class ArrayList<T> {
```

```
// Returns lowest index of o in the ArrayList, or
// -1 if o is not found.
int find (T o) {
  for (int i = 0; i < _numElements; i++) {
    if (_underlyingStorage[i].equals(o)) { // not null
      return i;
    }
  }
  return -1;
}
```

Finding an element: average case

- Finding an exact formula for the *average case* performance can be tricky (if not impossible).
- In order to compute the average, or expected, time cost, we must know:
 - The time cost $T(X_n)$ for a particular input X of size n.
 - The probability $P(X_n)$ of that input X.
 - The expected time cost, over all inputs X of size *n*, is then: AvgCaseTimeCost_n = $E[T(X_n)] = \sum_{X_n} P(X_n)T(X_n)$

Finding an element: average case

- Finding an exact formula for the *average case* performance can be tricky (if not impossible).
- In order to compute the average, or expected, time cost, we must know:
 In this case, x consists of both the element o and the contents of underlyingStorage.
 - The time cost $T(X_n)$ for a particular input X of size n.
 - The probability $P(X_n)$ of that input X.
 - The expected time cost, over all inputs X of size n, is then: AvgCaseTimeCost_n = $E[T(X_n)] = \sum_{n \in I} P(X_n)T(X_n)$

"E" for "Expectation" X_n Sum the time costs for all possible inputs, and weight each cost by how likely it is to occur.

Finding an element: average case

- In the find(o) method listed above, it is possible that the user gives us an o that is not contained in the list.
 - This will result in O(n) time cost.
 - How "likely" is this event?
 - We have no way of knowing -- we could make an arbitrary assumption, but the result would be meaningless.
 - Let's remove this case from consideration and assume that o is always present in the list.
 - What is the average-case time cost then?

- Even when we assume o is present in the list somewhere, we have no idea whether the o the user gives us will "tend to be at the front" or "tend to be at the back" of the list.
- However, here we can make a plausible assumption:
 - For an ArrayList of *n* elements, the probability that o is contained at index *i* is 1/*n*.
 - In other words, o is equally likely to be in any of the "slots" of the array.

- Given this assumption, we can finally make headway.
- Let's define T(i) to be the cost of the find(o) method as a function of i, the location in _underlyingStorage where o is located. What is T(i)?

```
class ArrayList<T> {
    ...
    // Returns lowest index of o in the ArrayList, or
    // -1 if o is not found.
    int find (T o) {
        for (int i = 0; i < _numElements; i++) {
            if (_underlyingStorage[i].equals(o)) { // not null
                return i;
            }
        }
    }
    return -1;
    }
}</pre>
```

- Given this assumption, we can finally make headway.
- Let's define T(i) to be the cost of the find(o) method as a function of i, the location in _underlyingStorage where o is located. What is T(i)?

 Now, we can re-write the expected time cost in terms of an arbitrary input X, as the expected time cost in terms of where in the array the element o will be found.

$$\begin{aligned} \operatorname{AvgCaseTimeCost}_{n} &= \sum_{i} P(i)T(i) & \operatorname{Redefine} P(X_{n}) \text{ and } T(X_{n}) \text{ in terms of } P(i) \text{ and } T(i). \\ &= \sum_{i} \frac{1}{n} i & \operatorname{Substitute terms.} \\ &= \frac{1}{n} \sum_{i} i & \operatorname{Move I/n out of the summation.} \\ &= \frac{1}{n} \frac{n(n+1)}{2} & \operatorname{Formula for arithmetic series.} \\ &= \frac{n+1}{2} & \operatorname{The } n's \text{ cancel.} \\ &= O(n) & \operatorname{Find asymptotic bound.} \end{aligned}$$

Performance measurement.

Empirical performance measurement

- As an alternative to describing an algorithm's performance with a "number of abstract operations", we can also measure its time empirically using a clock.
- As illustrated last lecture, counting "abstract operations" can anyway hide real performance differences, e.g., between using int[] and Integer[].

Empirical performance measurement

- There are also many cases where you don't know how an algorithm works internally.
 - Many programs and libraries are not open source!
 - You have to analyze an algorithm's performance as a black box.
 - "Black box" -- you can run the program but cannot see how it works internally.
- It may even be useful to *deduce* the asymptotic time cost by measuring the time cost for different input sizes.

- Let's suppose we wish to measure the time cost of algorithm A as a function of its input size *n*.
- We need to choose a set of values of *n* that we will test.
- If we make n too big, our algorithm A may never terminate (the input is "too big").
- If we make n too small, then A may finish so fast that the "elapsed time" is practically 0, and we won't get a reliable clock measurement.

- In practice, one "guesses" a few values for n, sees how fast A executes on them, and selects a range of values for n.
 - Let's define an array of different input sizes, e.g.:
 int[] N = { 1000, 2000, 3000, ..., 10000 };
- Now, for each input size N[i], we want to measure A's time cost.

• Procedure (draft 1):

Make sure to start and stop the clock as "tightly" as possible around the actual algorithm A.

for (int i = 0; i < N.length; i++) {
 final Object X = initializeInput(N[i]);</pre>

final long startTime = getClockTime();
A(X); // Run algorithm A on input X of size N[i]
final long endTime = getClockTime();

}

- The procedure would work fine if there were no variability in how long A(X) took to execute.
- Unfortunately, in the "real world", each measurement of the time cost of A(X) is corrupted by *noise*:
 - Garbage collector!
 - Other programs running.
 - Cache locality.
 - Swapping to/from disk.
 - Input/output requests from external devices.

- If we measured the time cost of A(X) based on just one measurement, then our estimate of the "true" time cost of A(X) will be very imprecise.
 - We might get unlucky and measure A(X) while the computer is doing a "system update".
 - If we've very unlucky, this might occur during some values of i, but not for others, thereby skewing the trend we seek to discover across the different N[i].

Improved procedure for measuring time cost

• A much-improved procedure for measuring the time cost of A(X) is to compute the *average time across M trials*.

```
• Procedure (draft 2):
   for (int i = 0; i < N.length; i++) {</pre>
     final Object X = initializeInput(N[i]);
     final long[] elapsedTimes = new long[M];
     for (int j = 0; j < M; j++) {
       final long startTime = getClockTime();
       A(X); // Run algorithm A on input X of size N[i]
       final long endTime = getClockTime();
       elapsedTimes[j] = endTime - startTime;
     final double avgElapsedTime = computeAvg(elapsedTimes);
     System.out.println("Time for N[" + i + "]: " +
                        avgElapsedTime);
```

Improved procedure for measuring time cost

• If the elapsed time measured in the *j*th trial is T_j , then the average over all M trials is:

$$\overline{T} = \frac{1}{M} \sum_{j=1}^{M} T_j$$

- We will use the average time "T-bar" as an estimate of the "true" time cost of A(X).
- The more trials *M* we use to compute the average, the more precise our estimate "*T*-bar" will be.

Improved procedure for measuring time cost

• Alternatively, we can start/stop the clock just once.

Quantifying uncertainty

- A key issue in any experiment is to quantify the uncertainty of all measurements.
- Example:
 - We are attempting to estimate the "true" time cost of A(X) by averaging together the results of many trials.
 - After computing "T-bar", how far from the "true" time cost of A(X) was our estimate?

Quantifying uncertainty

- A key issue in any experiment is to quantify the uncertainty of all measurements.
- Example:
 - We are attempting to estimate the "true" time cost of A(X) by averaging together the results of many trials.
 - After computing "T-bar", how far from the "true" time cost of A(X) was our estimate?
 - In order to compute this, we would have to know what the true time cost is -- and that's what we're trying to estimate!
 - We must find another way to quantify uncertainty...

Standard error versus standard deviation

• Some of you may already be familiar with the standard deviation:

$$\sigma = \sqrt{\frac{1}{M} \sum_{j=1}^{M} (T_j - \overline{T})^2}$$

- The standard deviation measures how "varied" the individual measurements T_j are.
 - The standard deviation gives a sense of "how much noise there is."
 - However, in most cases, we are less interested in characterizing the *noise*, and more interested in measuring the *true time cost* of A(X) itself.
 - For this, we want the standard error.

Quantifying your uncertainty

 In statistics, the uncertainty associated with a measurement (e.g., the time cost of A(X)) is typically quantified using the standard error:

StdErr =
$$\frac{\sigma}{\sqrt{M}}$$
 where $\sigma = \sqrt{\frac{1}{M} \sum_{j=1}^{M} (T_j - \overline{T})^2}$
where "T-bar" is the average (computed on earlier slide).

Standard deviation

ъ *п*

Notice: as M grows larger, the StdErr becomes smaller.

S

Error bars

- The standard error is often used to compute error bars on graphs to indicate how reliable they are.

Example

Linear data structures: a brief review.

- So far in this course we have learned the basic *linear* data structures:
 - Array list
 - Linked list
 - Stack
 - Queue
- These structures are *linear* because each element contained within them is *adjacent* to at most 2 other elements.

- Linked lists and array lists provide a form of "permanent" storage of arbitrary data.
- Stacks and queues provide (typically) "temporary" storage to data that we expect to remove at some later point in time.
 - LIFO for stack, FIFO for queue.
- All these data structures provide convenient containers for storing *unrelated* data.
 - There needn't be any relationship among the individual data.

- With Java generics, we gained the ability to restrict membership to an ADT to a particular class.
 - E.g., allow only String objects to be added to a List12 container).
- But beyond the class of the objects, we didn't "care" about any relationships between the data.
- In particular, we didn't care whether the ADT stored the individual data in some "natural order":
 - E.g., alphabetical order for Strings, integer order for Integers.

- Ignoring any relationships between data elements allowed for an ADT that was:
 - Simple to implement -- no need to consider order relations.
 - Flexible to use -- no need to define an order relation.
- However, this simplicity/flexibility comes at the cost that data retrieval is often slower than it needs to be.
 - By considering the natural order relations between objects, we can create data structures with superior asymptotic time costs for storage/retrieval operations.

Linear data structures: asymptotic time costs

- Let's review the "score card" of the ADTs we've covered so far.
- Let's consider three fundamental operations:
 - void add (T o);
 - void remove (T o);
 - T find (T o);
 Search for an element in the container that equals o and returns it; if no such object exists, then returns null.

Array-list and linked-list scorecard

	Array-list	Linked-list	
add(o)	O(I)	<i>O</i> (I)	Adding is fast.
find(o)	O(n)	O(n)	Finding is slow.
remove(o)	O(n)	O(n)	Removing is slow

Array-list and linked-list scorecard

- There are many occasions where the user will *add* new data relatively *rarely*, but want to *find* data already in the data structure relatively *frequently*.
- In order to improve the asymptotic time cost of the find(o) and remove(o) operations, we will make use of order relationships between data elements.
 - Once we've found an element within a data structure, it is typically easy for the data structure to remove it.

Why find something?

- It may strike some as odd that an ADT would support the method T find (T o).
- After all, if the user knows the object o he/she is looking for, then why call find at all?
- Answer: sometimes the user knows part of the information about an object o, but does not have the whole record.
 - This illustrates the difference between a record's key and its value.

Keys and values

- The part of the Student object that the user always knows is called the key (e.g., student ID number at Student Health).
- The rest of the Student record is called the value.

```
class Student {
                                   Key
  String studentID;
  String firstName, lastName;
                                   Value
  String address;
  Student (String studentID) {
    studentID = studentID;
  Student (String studentID, String firstName, String lastName,
           String address) {
    studentID = studentID;
    firstName = firstName;
    lastName = lastName;
   address = address;
```

Keys and values

• The user may store many Student objects inside a List12 container, e.g.:

```
list.add(new Student("A123", "Bill", "Carter", "123 Main St"));
list.add(new Student("A213", "Jimmy", "Clinton", "124 Main St"));
...
list.add(new Student("B092", "Hillary", "Nixon", "125 Main St"));
```

• Later, the user may wish to find a particular Student object using just the key, e.g., the student ID:

```
final Student cse12Student = list.find(new Student("A123"));
Student containing both Student initialized
the key and value. with just the key.
```

Keys and values

- For some data structures, the key and value are completely separate:
- Example:
 - A "hash map/table" (covered later in this course) allows O(I)-time retrieval of any value given its key.
 - To add a new entry to the table, the user calls put(key, value), e.g.:

Finding a particular key

- Given a request to find a particular key, and given that keys often have an *order relation* defined between them, it seems silly to search through the container *as if the keys were all unrelated*.
- Example: Suppose we are searching for the student ID "c237". Do we really need to start at the very beginning?

	A101	В972	D192
	A102	C092	•••
Search	A125	C100	
	A192	C200	
	A204	C203	
	B135	C237	
	B193	C292	

Finding a particular key

- Given a request to find a particular key, and given that keys often have an *order relation* defined between them, it seems silly to search through the container *as if the keys were all unrelated*.
- Example: Suppose we are searching for the student ID "c237". Do we really need to start at the very beginning?

	A101	В972	D192
	A102	C092	• • •
Search	A125	C100	N I -
	A192	C200	No
	A204	C203	imp
	B135	C237	pro
	B193	C292	par

No -- the natural order among keys imposes structure on the "search problem" that lets us find a particular key much more quickly.

Binary order relations

 An example of a binary order relationship is the Java < operator, e.g.:

```
int a = 3, b = 4;
if (a < b) {
   ...
}
```

 However, the < operator is only valid on primitive numeric variables (int, float, double, etc.).

Binary order relations

- More generally, two Java Objects can be compared if they are Comparable, using the compareTo method: int compareTo (T o);
- ol.compareTo(o2) is:
 - < 0 if o1 is "less than" o2
 - == 0 if o1 is "equal to" o2
 - > 0 if o1 is "greater than" o2
- Classes that implement the compareTo(o) method can implement the Comparable<T> interface.

Comparable<T>

• Example:

Each Student might be "comparable to" objects of a different class, e.g., UCSDMember (since faculty and staff also have ID numbers).

```
class Student implements Comparable<Student> {
    int compareTo (T other) {
        // Compare this._studentID to
        // other._studentID -- return -1, 0, or 1
        // if this._studentID is "less than",
        // if this._studentID is "less than"
        // other._studentID, respectively.
        ...
    }
}
```

Comparable<T>

```
• Example:
```

```
class Student implements Comparable<Student> {
    ...
    int compareTo (T other) {
        return _studentID.compareTo(
            other._studentID
        );
    }
        In this particular case, we can just
        delegate to the
        String.compareTo(o) method, since
            String implements
            Comparable<String>.
```

Comparable<T>

Now, we can compare two Student objects:

if (student1.compareTo(student2) < 0) {
 ...
}</pre>