
Name: __________________________ Student ID: __________________________

This exam is open-book -- you may refer to any book or any notes you have brought with you during the exam.
However, you may not use a computer of any kind (including cell-phones) during the exam.

Score:

Problem 1:! ______/6

Problem 2:! ______/6

Problem 3:! ______/3

Problem 4:! ______/4

Problem 5:! ______/4

Problem 6: ______/4

Problem 7: ______/3

Total:! ! ______/30

CSE 12 Summer Session 2 Final Examination.....................................2 September 2011

Problem 1: Short-answers -- 6 points

1. Why would it not make sense to try to instantiate an object of an interface type? (Your answer cannot be
“because it wonʼt compile” -- explain why the compiler prevents you from doing this.)

2. Both Mergesort and Quicksort divide the input array into two parts. Describe how the “partitioning” differs
between these two algorithms.

3. Describe one similarity and one difference between interfaces and abstract classes.

4. When implementing a DoublyLinkedList class that implements Iterable, it makes sense to define a
DLLIterator class as a non-static inner class of DoublyLinkedList -- why should this inner class be
defined as non-static?

5. In the space below, declare a class called MyClass that takes a generic type parameter that can be any class
that is a subclass of String. (The class doesnʼt have to contain any variables or methods.)

6. If a class C implements the Comparable interface, then which one method must C implement? What does this
method do, and what does it return?

CSE 12 Summer Session 2 Final Examination.....................................2 September 2011

2

Problem 2: Queues -- 6 points

Consider the following (incomplete) implementation of a queue that is implemented using a linked list of nodes
instead of a ring buffer. Recall that a queue is a first-in-first-out (FIFO) data structure.

class Queue<T> {
 static class Node<T> {
 T _data;
 Node<T> _next;
 }

 private Node<T> _head, _tail;

 Queue () {
 _head = new Node<T>();
 _tail = _head;
 }

 // Adds the specified object to the TAIL of the queue.
 public void enqueue (T o) {
 ... // See the code snippets below
 }

 // Removes and returns the object at the HEAD of queue.
 public T dequeue () throws NoSuchElementException {
 if (_head == _tail) {
 throw new NoSuchElementException("Queue is empty!");
 }

 _head = _head._next;
 final T _data = _head._data;
 _head._data = null;
 return _data;
 }
}

Now, for each of the 6 possible implementations of enqueue(o) below, say whether it is correct or incorrect
given the code shown above, without any modifications or additions. It is possible that some, all, or none of
the implementations are correct. You will receive 1 point for every right answer, and you will lose one point for
every wrong answer; hence, guessing is discouraged. The minimum score you can receive on this problem is 0.

public void enqueue (T o) { Correct or incorrect? __________
 Node<T> node = new Node<T>();
 node._data = o;
 node._next = _head;
 _tail = node;
}

public void enqueue (T o) { Correct or incorrect? __________
 Node<T> node = new Node<T>();
 node._data = o;
 _tail._next = node;
 _tail = node;
}

CSE 12 Summer Session 2 Final Examination.....................................2 September 2011

3

public void enqueue (T o) { Correct or incorrect? __________
 Node<T> node = new Node<T>();
 node._data = o;
 _head._next = node;
 _head = node;
}

public void enqueue (T o) { Correct or incorrect? __________
 Node<T> node = new Node<T>();
 node._data = o;
 node._next = _head;
 _head = node;
}

public void enqueue (T o) { Correct or incorrect? __________
 Node<T> node = new Node<T>();
 _tail._data = o;
 _tail = _tail._next;
 _tail = node;
}

public void enqueue (T o) { Correct or incorrect? __________
 Node<T> node = new Node<T>();
 _tail._next = node;
 _tail = node;
 node._data = o;
}

CSE 12 Summer Session 2 Final Examination.....................................2 September 2011

4

Problem 3: Binary search trees (BSTs) -- 3 points

Consider the binary search tree (BST) shown below:

o1

o2 o3

o4 o5 o6 o7

3.1 -- 2 points

Assume that the BST above contains no duplicates. Based on the node structure shown above, order the objects
o1, o2, ..., o7 so that they are in ascending order (i.e., smallest element first, largest element last). For instance,
if you think o1 is the smallest, o4 is the second-smallest, o5 is the third-smallest, etc., then you should respond
“o1 < o4 < o5 < ...”. If you are only certain about the relative order of a few pairs of elements, then list only
those, e.g., “o1 < o5, o3 < o4”. (This helps us to assign partial credit.)

3.2 -- 1 point

Draw the BST that arises if node o1 is removed.

CSE 12 Summer Session 2 Final Examination.....................................2 September 2011

5

Problem 4: Trees -- 4 points

The figure below shows a tree. Consider each node and its set of ancestors. We define the set of ancestors of a
node n to consist of n itself, nʼs parent, nʼs parentʼs parent, and so on. For instance, the set of ancestors of node
o5 contains o5, o2, and o1. The lowest common ancestor x between two nodes n and m is the node x that is an
ancestor of both n and m, such that no child of x is also an ancestor of both n and m. For instance, the lowest
common ancestor between o6 and o7 is o2. Notice that, although o1 is also a common ancestor of o6 and o7, it
is not the lowest common ancestor. For another example, the lowest common ancestor between o3 and o3 is just
o3 itself (since the set of ancestors of n includes n itself).

Now, examine the (incomplete) implementation of the Tree class shown on the next page. Tree contains a static
inner-class Node. (For simplicity, we assume the tree is a binary tree; hence, each node contains a _leftChild
and _rightChild pointer.) Tree also contains an instance variable _root that specifies the root of the tree.
Write a method findLowestCommonAncestor(n1, n2) that returns the lowest common ancestor of nodes n1
and n2, which are both non-null but are not necessarily distinct. If you find it useful, you are allowed to
instantiate and use any of the collection classes from P5, e.g., a Heap, BinarySearchTree, HashTable, or
LinkedList. Recall that their public interface contains methods add(o), contains(o), size(), clear(),
and remove(o).

o2

o4 o5

o6 o7 o8

o9

o3

o1

CSE 12 Summer Session 2 Final Examination.....................................2 September 2011

6

class Tree {
 static class Node {
 Node _parent;
 Node _leftChild, _rightChild;
 ...
 }

 Node _root;
 ...

 Node findLowestCommonAncestor (Node n1, Node n2) {

 }
}

CSE 12 Summer Session 2 Final Examination.....................................2 September 2011

7

Problem 5: Heaps -- 4 points

As you know, heaps are complete trees in which every node contains one element that the user stored in the
heap. Heaps are usually implemented using an array as the underlying storage, but in theory they could also be
implemented using node objects that contain parent and child pointers. Consider the (incomplete) implementation
of the node-based DAryHeap class shown below. DAryHeap contains a static inner-class Node. Each Node
contains a _parent pointer, a _data pointer (to store an object the user adds to the heap), an array Node[]
_children to store up to d children (for a d-ary heap), and finally a _numChildren variable to keep track of
how many children the node actually has.

In the space allotted, implement the trickleDown(node) method for a max-heap. trickleDown(node) is
analogous to the trickleDown(index) method discussed during lecture: The data stored in the specified node
may possibly be “less than” the data in one (or more) of its children. It is trickleDownʼs responsibility to
“restore” the heap condition by recursively swapping node._data down through the subtree rooted at node.

class DAryHeap<T extends Comparable<? super T>> {
 ...

 static class Node<T extends Comparable<? super T>> {
 Node<T> _parent;
 Node<T>[] _children;
 T _data;
 int _numChildren;
 }

 void trickleDown (Node<T> node) {

 }
}

CSE 12 Summer Session 2 Final Examination.....................................2 September 2011

8

Problem 6: Time cost analysis -- 4 points

6.1 -- 1 point
In the method below, assume that the BinarySearchTree is self-balancing (e.g., using AVL rotations).
long someMethod (int N) {
 final BinarySearchTree<Integer> bst = new BinarySearchTree<Integer>();
 for (int i = 0; i < N; i++) {
 bst.add(i);
 }

 final long start = ArtificialClock.getNumTicks();
 for (int i = 0; i < N; i++) {
 bst.remove(i);
 }
 final long end = ArtificialClock.getNumTicks();
 return end - start;
}
If you plot a curve of the return value of someMethod(N) versus N itself, what would be its asymptotic behavior?
Justify your response.

6.2 -- 1 point
In the code below, assume the HashTable has the same interface as it did in P5 -- it offers an add(o) method
which uses o.hashCode() to determine the “slot” in which to store o.
class A {
 static class B {
 int _num;
 B (int num) { _num = num; }
 int hashCode () {
 return 17; // Hash code is always the same!
 }
 }
 long someOtherMethod (int N) {
 final HashTable hashTable = new HashTable();
 final B[] lotsaB = new B[N];
 for (int i = 0; i < lotsaB.length; i++) {
 lotsaB[i] = new B(i);
 }
 final long start = ArtificialClock.getNumTicks();
 for (int i = 0; i < N; i++) {
 hashTable.add(lotsaB[i]);
 }
 final long end = ArtificialClock.getNumTicks();
 return end - start;
 }
}
If you plot a curve of the return value of A.someOtherMethod(N) versus N itself, what would be its asymptotic
behavior? Justify your response.

CSE 12 Summer Session 2 Final Examination.....................................2 September 2011

9

6.3 -- 2 points
The graph below shows the worst-case time cost T(N) for adding a single element to a binary heap that already
contains N - 1 elements. T(N) is approximately logarithmic; however, it has a “staircase” appearance to it -- for
certain values of N, T(N) increases sharply, then it plateaus, and then at some later value of N it increases again.

0 250 500 750 1000 1250 1500
400

500

600

700

800

900

1000

1100
T(N) versus N for add(o)

N

T(
N

) f
or

 a
dd

(o
)

Explain why the curve above has this “staircase” property. (The answer is not “noise”.)

CSE 12 Summer Session 2 Final Examination.....................................2 September 2011

10

Problem 7: Fantasy data structure -- 3 points

7.1 -- 2 points
Suppose there existed a class called FantasyDataStructure that allowed the storage of Comparable data,
as shown below, and that all of its methods operated in time O(1).

class FantasyDataStructure<T extends Comparable<? super T>> {
 // Adds the specified object to the FantasyDataStructure in O(1) time.
 void add (T o) {
 ...
 }
 // Removes the specified object from the FantasyDataStructure in O(1) time.
 void remove (T o) {
 ...
 }
 // Returns the value of the largest data element contained in the
 // FantasyDataStructure in O(1) time.
 T peekLargest () {
 }
}

In the space below, write code to use the FantasyDataStructure described above to sort a list of integers in
O(n) time in the worst case.

// numbers should be in ascending order by the time sort(numbers) finishes.
void sort (int[] numbers) {

}

7.2 -- 1 point
Based on the lower-bound of the time complexity of the worst-case performance of any comparison-based sorting
algorithm (given during lecture), explain why the FantasyDataStructure described above cannot possibly
exist.

CSE 12 Summer Session 2 Final Examination.....................................2 September 2011

11

