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The Data Explosion
Huge online repositories of data

Google images (somewhere in the billions of images)

Youtube (13 minutes of new video /second)

Machine learning algorithms have an immense thirst for 
data

Viola and Jones Face Detector (2001) 4916 training 
images

Omron Face Detector (200?) 5 million training 
images



Some Hope...
Games for collecting labels

Markets for Getting Labels

 

to solve. We don’t expect volunteers to label all images on 

the Web for us: we expect all images to be labeled because 

people want to play our game. 

GENERAL DESCRIPTION OF THE SYSTEM 

We call our system “the ESP game” for reasons that will 

become apparent as the description progresses. The game is 

played by two partners and is meant to be played online by 

a large number of pairs at once. Partners are randomly 

assigned from among all the people playing the game. 

Players are not told whom their partners are, nor are they 

allowed to communicate with their partners. The only thing 

partners have in common is an image they can both see.  

From the player’s perspective, the goal of the ESP game is 

to guess what their partner is typing for each image. Once 

both players have typed the same string, they move on to 

the next image (both player’s don’t have to type the string 

at the same time, but each must type the same string at 

some point while the image is on the screen). We call the 

process of typing the same string “agreeing on an image” 

(see Figure 1). 

                  

 

 

 

 

Figure 1. Partners agreeing on an image. Neither of them can 

see the other’s guesses. 

Partners strive to agree on as many images as they can in 

2.5 minutes. Every time two partners agree on an image, 

they get a certain number of points. If they agree on 15 

images they get a large number of bonus points. The 

thermometer at the bottom of the screen (see Figure 2) 

indicates the number of images that the partners have 

agreed on. By providing players with points for each image 

and bonus points for completing a set of images, we 

reinforce their incremental success in the game and thus 

encourage them to continue playing. Players can also 

choose to pass or opt out on difficult images. If a player 

clicks the pass button, a message is generated on their 

partner’s screen; a pair cannot pass on an image until both 

have hit the pass button.  

Since the players can’t communicate and don’t know 

anything about each other, the easiest way for both players 

to type the same string is by typing something related to the 

common image. Notice, however, that the game doesn’t ask 

the players to describe the image: all they are told is that 

they have to “think like each other” and type the same 

string (thus the name “ESP”). It turns out that the string on 

which the two players agree is typically a good label for 

the image, as we will discuss in our evaluation section. 

 

Figure 2. The ESP Game . Players try to “agree” on as many 

images as they can in 2.5 minutes. The thermometer at the 

bottom measures how many images partners have agreed on. 

Taboo Words 

A key element of the game is the use of taboo words 

associated with each image, or words that the players are 

not allowed to enter as a guess (see Figure 2). These words 

will usually be related to the image and make the game 

harder because they can be words that players commonly 

use as guesses. Imagine if the taboo words for the image in 

Figure 1 were “purse”, “bag”, “brown” and “handbag”; 

how would you then agree on that image?  

Taboo words are obtained from the game itself. The first 

time an image is used in the game, it will have no taboo 

words. If the image is ever used again, it will have one 

taboo word: the word that resulted from the previous 

agreement. The next time the image is used, it will have 

two taboo words, and so on. (The current implementation 

of the game displays up to six different taboo words.)  

Players are not allowed to type an image’s taboo words, nor 

can they type singulars, plurals or phrases containing the 

taboo words. The rationale behind taboo words is that often 

the initial labels agreed upon for an image are the most 

general ones (like “man” or “picture”), and by ruling those 

out the players will enter guesses that are more specific. 

Additionally, taboo words guarantee that each image will 

get many different labels associated with it.   

Labels and Good Label Threshold 

The words that we use as labels for images are the ones that 

players agree on. Although there is additional information 

that could be utilized (i.e., all other guesses that the players 

enter), for the purposes of this paper such information will 

be ignored. We use only words that players agree on to 

ensure the quality of the labels: agreement by a pair of 

independent players implies that the label is probably 

meaningful. In fact, since these labels come from different 

people, they have the potential of being more robust and 

Player 1 guesses: purse 
Player 1 guesses: bag 

Player 1 guesses: brown 
 

Success! Agreement on “purse” 

Player 2 guesses: handbag 
 

 
Player 2 guesses: purse 

Success! Agreement on “purse”



Labeling Using Mechanical Turk

“Requester” Posts HIT

Requester evaluates 
Work

User Browses HIT

User Completes HIT



Labeling Images using 
Mechanical Turk

demo



Economics of Mechanical Turk
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Issues in Labeling Large Datasets
Quality Control

Confidence in labels

Rewarding good Workers

Intelligent sampling



Related Work
Item Response Theory (e.g., Rasch, Birnbaum):

Model both labeler accuracy and image difficulty.

But true labels Z are assumed to be known.

Dawid and Skene (1979):

Use EM, but do not model difficulty.

As shown in paper (not presented here), difficulty 
parameters can significantly improve accuracy.



Issues in Labeling Large Datasets
Quality Control

Confidence in labels

Rewarding good Workers



Problem Formulation
Given image labels from a set of labelers

Goal:

determine accuracy of each labeler (use: give bonus payments)

determine difficulty of each image (use: choose images for training)

determine belief about each label (use: weight predictions of various 
labelers differentially)

Analogous to the problem of giving a bunch of people a test and simultaneously 
grading each person, estimating the true answers, and assigning difficulties to 
each item.
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Some Notation
m labelers
n images

Z ∈ {−1, 1}n denotes the vector of true labels of each image

β ∈ R+n denotes the vector of difficulties of each image
α ∈ Rm denotes the vector of accuracies of each labeler

L ∈ {−1, 1}m×n denotes the labelers’ responses

Lij denotes the label given by labeler i to image j

li denotes the collection of labels given to image i



Likelihood

Model behavior

Infinitely hard image will give a 50% chance of correctness

Infinitely good labeler (alpha very large) has a 100% chance of correctness

Infinitely good adversarial labeler (alpha very negative) has a 0% chance of correctness

This model is also utilized in item response theory

p(Lij = Zi|αj , βi) =
1

1 + e−αjβi

p(Lij |αj , βi, Zi) = p(Lij = Zi|αj , βi)Zi=Lij + (1− p(Lij = Zi|αj , βi))Zi !=Lij



Marginal and Conditional 
Distributions of Interest

Determine the distribution of true labels given the labelers’ 
responses

Determine the distribution of accuracies and difficulties 
conditioned on the labelers’ responses

p(Z|L) = p(Z)
∫

. . .

∫
p(L|Z, α, β)p(α)p(β)dαdβ Intractable!

Intractable to compute
full distribution, but
we can maximize

p(α,β|L) ∝ p(α)p(β)
∑

Z

p(L|Z, α, β)p(Z)

= p(α)p(β)Πj




∑

z′∈{−1,+1}

p(lj |α,βj , Zj = z′)







We can use Expectation-Maximization (EM) to maximize

E-Step: Update 

M-Step: Maximize! ! ! ! ! ! ! w.r.t. α, β.

Inference Using EM

p(α,β|L)

p(Z|α,β, L)

E[ln p(L,Zα, β)]



EM finds MAP estimates of α, β.

For the Z, we take the probability estimates
from the last E-Step.

Inference Using EM

p(Z|α,β, L)



E-Step

Calculate the distribution of the hidden variables (Z) given L 
and the estimates of α, β from the last M-Step:
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and the observed labels:

p(zj |l,α,β) = p(zj |lj ,α, βj)
∝ p(zj |α, βj)p(lj |zj ,α, βj)

∝ p(zj)
∏

i

p(lij |zj , αi, βj)

where we noted that p(zj |α, βj) = p(zj) using the condi-
tional independence assumptions from the graphical model.
M step: We maximize the auxiliary function Q, which is
defined as the expectation of the joint log-likelihood of the
observed and hidden variables (l,Z) given the parameters
(α,β), w.r.t. the posterior probabilities of the Z values com-
puted during the last E step:

Q(α,β)
= E [ln p(l, z|α,β)]

= E



ln
∏

j

(
p(zj)

∏

i

p(lij |zj , αi, βj)

)



since lij are cond. indep. given z,α,β

=
∑

j

E

[
ln p(zj) +

∑

i

ln p(lij |zj , αi, βj)

]

=
∑

j

E [ln p(zj)] +
∑

ij

E [ln p(lij |zj , αi, βj)]

where the expectation is taken over z given the old param-
eter values αold,βold as estimated during the last E-step.
Let us define pk = p(zj = k|l,αold,βold). Then we can
expand this expectation as:

Q(α,β)

=
∑

j

1∑

k=0

pk ln p(zj = k) +

∑

ij

1∑

k=0

pk ln p(lij |zj = k,αi, βj)

Based on Equation (1), we can compute p(lij |zj =
k,αi, βj) as:

p(lij |zj = 1, αi, βj) = σ(αiβj)lij (1− σ(αiβj))1−lij

and

p(lij |zj = 0, αi, βj) = σ(αiβj)1−lij (1− σ(αiβj))lij

where
σ(x) =

1
1 + e−x

is the logistic function. To avoid clutter, we will represent
σ(αiβj) simply as σ. Then, after expanding the summation
over k into the two cases z = 0 and z = 1, we get:

Q(α,β) =
∑

j

(
p1 ln p(zj = 1) + p0 ln p(zj = 0)

)
+

∑

ij

p1 [lij lnσ + (1− lij) ln(1− σ)] +

∑

ij

p0 [(1− lij) lnσ + lij ln(1− σ)]

Taking the first derivatives causes the first summation to
vanish since it is constant w.r.t α and β. Using the fact that

d

dx
σ(x) = σ(x)(1− σ(x))

we can differentiate Q to arrive at:

∂Q

∂αi
=

∑

j

p1(lij(1− σ)βj − (1− lij)σβj) +

∑

j

p0((1− lij)(1− σ)βj − lijσβj)

=
∑

j

(
p1lij + p0(1− lij)− (p1 + p0)σ

)
βj

=
∑

j

(
p1lij + p0(1− lij)− σ

)
βj

since p0 + p1 = 1

Similarly, we can derive:

∂Q

∂βj
=

∑

i

(
p1lij + p0(1− lij)− σ

)
αi

The gradient equation for ∂Q
∂αi

has an intuitive interpreta-
tion: The first two terms compute the empirical probability
of the given label lij being correct given posterior proba-
bilities of Zj from the previous E-Step. The σ that is sub-
tracted is the model’s current estimate of the probability that
lij is correct given the current estimate of the labeler’s abil-
ity and image’s difficulty. Hence, the likelihood function
will locally increase by increasing the labeler ability αi if
the empirical estimate of the number of correct images la-
beled by labeler i (weighted by image difficulty) is greater
than its previous belief of correctness (again, weighted by
difficulty). Similar intuition applies to ∂Q

∂βj
with regards to

image difficulty1.
To find locally optimal values of the α and β parameter

we set the gradient to zero. The resulting equations are non-
linear and thus needs to be solved using iterative methods.

1Keep in mind that larger β means easier images.

3

where p(lij|zj, αi, βj) can be evaluated in terms of probability of 
correctness (discussed earlier).



M-Step
The expression p(l,z|α,β) may contain a huge number of variables.

However, any particular given label lij depends only on αi,βj, and zj.

The given labels { lij } are conditionally independent given Z, α, β.
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and the observed labels:

p(zj |l,α,β) = p(zj |lj ,α, βj)
∝ p(zj |α, βj)p(lj |zj ,α, βj)

∝ p(zj)
∏

i

p(lij |zj , αi, βj)

where we noted that p(zj |α, βj) = p(zj) using the condi-
tional independence assumptions from the graphical model.
M step: We maximize the auxiliary function Q, which is
defined as the expectation of the joint log-likelihood of the
observed and hidden variables (l,Z) given the parameters
(α,β), w.r.t. the posterior probabilities of the Z values com-
puted during the last E step:

Q(α,β)
= E [ln p(l, z|α,β)]

= E



ln
∏

j

(
p(zj)

∏

i

p(lij |zj , αi, βj)

)



since lij are cond. indep. given z,α,β

=
∑

j

E

[
ln p(zj) +

∑

i

ln p(lij |zj , αi, βj)

]

=
∑

j

E [ln p(zj)] +
∑

ij

E [ln p(lij |zj , αi, βj)]

where the expectation is taken over z given the old param-
eter values αold,βold as estimated during the last E-step.
Let us define pk = p(zj = k|l,αold,βold). Then we can
expand this expectation as:

Q(α,β)

=
∑

j

1∑

k=0

pk ln p(zj = k) +

∑

ij

1∑

k=0

pk ln p(lij |zj = k,αi, βj)

Based on Equation (1), we can compute p(lij |zj =
k,αi, βj) as:

p(lij |zj = 1, αi, βj) = σ(αiβj)lij (1− σ(αiβj))1−lij

and

p(lij |zj = 0, αi, βj) = σ(αiβj)1−lij (1− σ(αiβj))lij

where
σ(x) =

1
1 + e−x

is the logistic function. To avoid clutter, we will represent
σ(αiβj) simply as σ. Then, after expanding the summation
over k into the two cases z = 0 and z = 1, we get:

Q(α,β) =
∑

j

(
p1 ln p(zj = 1) + p0 ln p(zj = 0)

)
+

∑

ij

p1 [lij lnσ + (1− lij) ln(1− σ)] +

∑

ij

p0 [(1− lij) lnσ + lij ln(1− σ)]

Taking the first derivatives causes the first summation to
vanish since it is constant w.r.t α and β. Using the fact that

d

dx
σ(x) = σ(x)(1− σ(x))

we can differentiate Q to arrive at:

∂Q

∂αi
=

∑

j

p1(lij(1− σ)βj − (1− lij)σβj) +

∑

j

p0((1− lij)(1− σ)βj − lijσβj)

=
∑

j

(
p1lij + p0(1− lij)− (p1 + p0)σ

)
βj

=
∑

j

(
p1lij + p0(1− lij)− σ

)
βj

since p0 + p1 = 1

Similarly, we can derive:

∂Q

∂βj
=

∑

i

(
p1lij + p0(1− lij)− σ

)
αi

The gradient equation for ∂Q
∂αi

has an intuitive interpreta-
tion: The first two terms compute the empirical probability
of the given label lij being correct given posterior proba-
bilities of Zj from the previous E-Step. The σ that is sub-
tracted is the model’s current estimate of the probability that
lij is correct given the current estimate of the labeler’s abil-
ity and image’s difficulty. Hence, the likelihood function
will locally increase by increasing the labeler ability αi if
the empirical estimate of the number of correct images la-
beled by labeler i (weighted by image difficulty) is greater
than its previous belief of correctness (again, weighted by
difficulty). Similar intuition applies to ∂Q

∂βj
with regards to

image difficulty1.
To find locally optimal values of the α and β parameter

we set the gradient to zero. The resulting equations are non-
linear and thus needs to be solved using iterative methods.

1Keep in mind that larger β means easier images.

3



M-Step (cont.)

To maximize the auxiliary function Q, we use gradient ascent.

The logistic probability of correctness readily lends itself to this 
operation.



Using Prior Information

If true labels (Z) are (somehow) known for certain images, then 
these labels can be “clamped” to their correct values.

Set p(Zj=zj) for these images to be very high for the 
appropriate class.

Priors over α and β can also be easily set.



Runtime Performance

N images, M labelers, T total labels

Each E-Step is linear N+T

The M-Step requires repeated calculation of Q and ∇Q

Estimating Q and ∇Q is  linear in N+M+T

Number of iterations for convergence will vary.



Runtime Performance

On a set of 1,000,000 labels, BLOG converged in about 8 
minutes on a single-core.

Algorithm is parallelizable.

When appending new data to L, it is possible that convergence 
will be faster when good starting values for α, β are known.



Simulation

We demonstrate the utility of BLOG using simulation.

The data are drawn according to the generative model on 
which BLOG is based.



Simulation
2000 images (N = 2000)

Up to 20 labelers (4 <= M <= 20)

Model:

Ability α ~ Gaussian(1,1)

Difficulty β ~ LogGaussian(1,1)

True labels Z ~ Uniform({0,1})

L ~ BLOG(α, β,Z)



Simulation

On each simulation run, MAP estimates α, β (and Z) were 
calculated.

Correlations with true α, β, and Z values were calculated as a 
function of M (number of labelers).

Correlations were averaged over 40 simulation runs.



Simulation 1: Results
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Figure 2. Left: The accuracies of the BLOG model versus simple voting for inferring the underlying class labels on simulation data.
Middle: The ability of BLOG to recover the true alpha and beta parameters on simulation data. Right: The ability of BLOG versus a
simple voting heuristic to predict accurate confidence estimates of the image labels on simulated data.

4.1. Modeling Image Difficulty

Models exist [4] that attempt to infer class labels and
labeler expertise without modeling image difficulty. To ex-
plore the importance of estimating image difficulty we per-
formed a simple simulation: Image labels (0 or 1) were
assigned randomly (with equal probability) to 5000 im-
ages. Half of the images were “hard”, and half were “easy.”
Thirty simulated labelers labeled all 5000 images. The pro-
portion of “good” to “bad” labelers is 10:1. The probability
of correctness for each image difficulty and labeler quality
combination was given by the table below:

Image Type
Labeler type Hard Easy

Good 0.95 1
Bad 0.54 1

We measured performance in terms of proportion of cor-
rectly estimated labels. We compared three approaches: (1)
our proposed method, BLOG (2) The method proposed in
[4], which models labeler ability but not image difficulty,
and (3) Simple Majority Vote. The simulations were re-
peated 20 times and average performance calculated for the
three methods. The results shown below indicated that mod-
eling image difficulty can result in significant performance
improvements.

Method Error
BLOG 3%

Majority Vote 9%
[4] 8%

5. Empirical Study: Gender Recognition
In this section we explore the use of BLOG to obtain

image labels to train a “gender classifier”. We wish to
determine whether the Z labels estimated by BLOG were
sufficiently more reliable than simple Majority Vote labels
that the resultant gender classifier would demonstrate higher
generalization performance.

To this end, we used the Amazon.com Mechanical Turk
facilities to obtain 10 gender labels for a dataset of 10000
face images (see Figure 5 for examples). In total there
were 154 unique labelers who labeled the data. 5000 of
the images were designated as training images, from which
Viola-Jones-style [13] single-cascade gender classifiers (at
36x36 face resolution) were trained. The remaining 5000
images were used for validation; only those validation im-
ages on which there was 90% agreement of class label
(Male/Female) were used for testing so as to ensure reli-
ability. After using this criterion there were 3683 images
remaining in the test set. The “true label” of these images
was then taken to be the majority vote.

For simulation purposes in this dataset we collected 10
labels per image. However in very large datasets with mil-
lions of images, the number of labels per image is often
no more than two or three. To simulate these more real-
istic conditions we randomly selected 3 labels per training
image in every experimental run. The class labels of the
5000 training images were then inferred using two alterna-
tive methods: (1) BLOG, and (2) a Majority Vote method,
in which the majority label for each image is used as the es-
timate of the true label. We then trained two single-cascade
Viola-Jones-style classifiers, one trained with the labels ob-
tained using BLOG and one trained with the Majority Vote
labels. The two classifiers were then evaluated in terms of
classification accuracy (area under the ROC curve) on the
validation set. All results reported below were averaged
over 10 experimental runs.

When using Internet-based facilities for labeling large
datasets one needs to prepare for situations in which a pro-
portion of labelers may either be adversarial or very unreli-
able. In the next two sections we explore how well BLOG
handles these two cases.

5

The fact that BLOG outperforms Majority Vote in the left 
graph means that BLOG inferred the correct label even when 
the true image was the minority opinion of the given labels.



Empirical Results: MTurk Data

We collected labels of face gender:

10,000 images

10 labels per image

Using the face patches and associated labels, we train an 
automated gender classifier using a single-cascade Viola-Jones 
architecture.



Gender Classification

Question: Does BLOG help us create a better automatic gender 
classifier than the Majority Vote heuristic?

Performance metric:

Area under ROC curve measured on an independent 
validation set.



Three Scenarios
From the 100,000 given labels we collected, we studied two 
conditions:

1.Adversarial labelers: a fraction of labelers purposely 
labeled images incorrectly (flip all bits).

2.Noisy labelers: a fraction of labelers gave random or 
near-random labels (flip some bits).

3.Unmodified labelers: the raw labels.



Experimental Setup
Infer training labels:

Z1 = BLOG(L)

Z2 = MajorityVote(L)

Train gender classifiers:

C1 = ViolaJones(Faces,Z1)

C2 = ViolaJones(Faces,Z2)

Compute accuracies A1 and A2 and compare.
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Adversarial Labelers
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Figure 3. Accuracy (area under ROC curve) of gender classifiers trained from data from noisy labelers. Two methods of inferring true
image labels Z were compared: (1) BLOG, and (2) a Majority Vote approach. Trend: BLOG is more robust to noisy labels (as the number
of noisy labelers increases) than a Majority Vote approach.

5.1. Noisy Labelers

We simulated the effect of noisy labelers by adding noise
(by randomly flipping bits) to the gender labels given by a
randomly selected subset of labelers. We used two noise
rates (r): r = 0.4, which is the noise rate used in sim-
ulation in [8] and according to [6] is not uncommon on
real-life labeling tasks; and r = 0.5, which corresponds
to completely random labelers. Figure 3 shows the general-
ization accuracy (area under the ROC curve) of the Viola-
Jones classifiers trained using BLOG, and using the Ma-
jority Vote method. As the proportion of labelers who are
noisy increases, the accuracy of the classifier trained using
Majority Vote-based labels decreases significantly. In con-
trast, BLOG effectively learns to ignore the noisy labelers,
which results in more accurate image labels and a better-
performing classifier.

5.2. Adversarial Labelers

We modeled adversarial labelers by flipping all of the la-
bels of a random subset of labelers. We then used either
BLOG, or the Majority Vote approach, to infer the class la-
bels, and trained one Viola-Jones-style classifier for each
set of inferred image labels. As shown in Figure 4, the per-
formance of the classifier trained using Majority Vote labels
degrades substantially. In contrast, BLOG was very robust
to the presence of relatively large proportions of adversarial
labelers. When the proportion of adversarial labelers was
larger than 25% the performance of the BLOG-based clas-
sifier started to deteriorate but it was still always several
percentage points better than the performance with the Ma-
jority Vote approach.
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Figure 4. Accuracy (area under ROC curve) of gender classifiers
trained from data from adversarial labelers. Trend: BLOG is con-
siderably more robust to adversarial labelers than a Majority Vote
heuristic.

5.3. Inferred Difficulty Parameters

Along with the most likely class labels and labeler accu-
racies α, BLOG also estimates the difficulty of each image
1/βj . Figure 5 shows examples of the 10 hardest images
(largest 1/β estimates) across both genders – as well as the
10 easiest images (smallest 1/β estimates) for each gender
separately. The difficulty 1/β value is shown below each
image.
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As proportion of adversarial labelers increases, BLOG 
maintains substantial advantage in accuracy.
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Figure 3. Accuracy (area under ROC curve) of gender classifiers trained from data from noisy labelers. Two methods of inferring true
image labels Z were compared: (1) BLOG, and (2) a Majority Vote approach. Trend: BLOG is more robust to noisy labels (as the number
of noisy labelers increases) than a Majority Vote approach.

5.1. Noisy Labelers

We simulated the effect of noisy labelers by adding noise
(by randomly flipping bits) to the gender labels given by a
randomly selected subset of labelers. We used two noise
rates (r): r = 0.4, which is the noise rate used in sim-
ulation in [8] and according to [6] is not uncommon on
real-life labeling tasks; and r = 0.5, which corresponds
to completely random labelers. Figure 3 shows the general-
ization accuracy (area under the ROC curve) of the Viola-
Jones classifiers trained using BLOG, and using the Ma-
jority Vote method. As the proportion of labelers who are
noisy increases, the accuracy of the classifier trained using
Majority Vote-based labels decreases significantly. In con-
trast, BLOG effectively learns to ignore the noisy labelers,
which results in more accurate image labels and a better-
performing classifier.

5.2. Adversarial Labelers

We modeled adversarial labelers by flipping all of the la-
bels of a random subset of labelers. We then used either
BLOG, or the Majority Vote approach, to infer the class la-
bels, and trained one Viola-Jones-style classifier for each
set of inferred image labels. As shown in Figure 4, the per-
formance of the classifier trained using Majority Vote labels
degrades substantially. In contrast, BLOG was very robust
to the presence of relatively large proportions of adversarial
labelers. When the proportion of adversarial labelers was
larger than 25% the performance of the BLOG-based clas-
sifier started to deteriorate but it was still always several
percentage points better than the performance with the Ma-
jority Vote approach.
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Figure 4. Accuracy (area under ROC curve) of gender classifiers
trained from data from adversarial labelers. Trend: BLOG is con-
siderably more robust to adversarial labelers than a Majority Vote
heuristic.

5.3. Inferred Difficulty Parameters

Along with the most likely class labels and labeler accu-
racies α, BLOG also estimates the difficulty of each image
1/βj . Figure 5 shows examples of the 10 hardest images
(largest 1/β estimates) across both genders – as well as the
10 easiest images (smallest 1/β estimates) for each gender
separately. The difficulty 1/β value is shown below each
image.
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Results:
Unmodified Labelers

Using the raw (unmodified) MTurk labels of gender, BLOG and 
Majority Vote delivered comparable performance.

Area under ROC: ~88%

The gender labeling task may have been too easy.

To show the benefit of BLOG, we may need a task where some 
people are good labelers and some people are bad.



Future Work
Intelligent sampling (active learning problem with multiple noisy 
oracles)

Dynamic pricing

Continuous response variables

Modeling “tricky” questions.  (e.g. What is the plural of 
octopus?)



Questions



Heuristics
Voting

Establishing confidence in labels (strength of agreement?)

 Evaluating individual labelers (agreement with majority?)

Evaluating difficult of instances (labeler disagreement?)

Unclear how to justify these heuristics in a unified fashion



M-Step (cont.)

The probability p(lij|zj, αi, βj) can be derived from the 
probability of correct response:

If zj=1,! then lij=1 iff Correct.
! ! ! then lij=0 iff Incorrect.

If zj=0,! then lij=1 iff Incorrect.
! ! ! then lij=0 iff Correct.



M-Step (cont.)

Derivative w.r.t α (Ability):! ! dQ/dα =

Derivative w.r.t. β (Difficulty):! dQ/dβ =
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and the observed labels:

p(zj |l,α,β) = p(zj |lj ,α, βj)
∝ p(zj |α, βj)p(lj |zj ,α, βj)

∝ p(zj)
∏

i

p(lij |zj , αi, βj)

where we noted that p(zj |α, βj) = p(zj) using the condi-
tional independence assumptions from the graphical model.
M step: We maximize the auxiliary function Q, which is
defined as the expectation of the joint log-likelihood of the
observed and hidden variables (l,Z) given the parameters
(α,β), w.r.t. the posterior probabilities of the Z values com-
puted during the last E step:

Q(α,β)
= E [ln p(l, z|α,β)]

= E



ln
∏

j

(
p(zj)

∏

i

p(lij |zj , αi, βj)

)



since lij are cond. indep. given z,α,β

=
∑

j

E

[
ln p(zj) +

∑

i

ln p(lij |zj , αi, βj)

]

=
∑

j

E [ln p(zj)] +
∑

ij

E [ln p(lij |zj , αi, βj)]

where the expectation is taken over z given the old param-
eter values αold,βold as estimated during the last E-step.
Let us define pk = p(zj = k|l,αold,βold). Then we can
expand this expectation as:

Q(α,β)

=
∑

j

1∑

k=0

pk ln p(zj = k) +

∑

ij

1∑

k=0

pk ln p(lij |zj = k,αi, βj)

Based on Equation (1), we can compute p(lij |zj =
k,αi, βj) as:

p(lij |zj = 1, αi, βj) = σ(αiβj)lij (1− σ(αiβj))1−lij

and

p(lij |zj = 0, αi, βj) = σ(αiβj)1−lij (1− σ(αiβj))lij

where
σ(x) =

1
1 + e−x

is the logistic function. To avoid clutter, we will represent
σ(αiβj) simply as σ. Then, after expanding the summation
over k into the two cases z = 0 and z = 1, we get:

Q(α,β) =
∑

j

(
p1 ln p(zj = 1) + p0 ln p(zj = 0)

)
+

∑

ij

p1 [lij lnσ + (1− lij) ln(1− σ)] +

∑

ij

p0 [(1− lij) lnσ + lij ln(1− σ)]

Taking the first derivatives causes the first summation to
vanish since it is constant w.r.t α and β. Using the fact that

d

dx
σ(x) = σ(x)(1− σ(x))

we can differentiate Q to arrive at:

∂Q

∂αi
=

∑

j

p1(lij(1− σ)βj − (1− lij)σβj) +

∑

j

p0((1− lij)(1− σ)βj − lijσβj)

=
∑

j

(
p1lij + p0(1− lij)− (p1 + p0)σ

)
βj

=
∑

j

(
p1lij + p0(1− lij)− σ

)
βj

since p0 + p1 = 1

Similarly, we can derive:

∂Q

∂βj
=

∑

i

(
p1lij + p0(1− lij)− σ

)
αi

The gradient equation for ∂Q
∂αi

has an intuitive interpreta-
tion: The first two terms compute the empirical probability
of the given label lij being correct given posterior proba-
bilities of Zj from the previous E-Step. The σ that is sub-
tracted is the model’s current estimate of the probability that
lij is correct given the current estimate of the labeler’s abil-
ity and image’s difficulty. Hence, the likelihood function
will locally increase by increasing the labeler ability αi if
the empirical estimate of the number of correct images la-
beled by labeler i (weighted by image difficulty) is greater
than its previous belief of correctness (again, weighted by
difficulty). Similar intuition applies to ∂Q

∂βj
with regards to

image difficulty1.
To find locally optimal values of the α and β parameter

we set the gradient to zero. The resulting equations are non-
linear and thus needs to be solved using iterative methods.

1Keep in mind that larger β means easier images.
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and the observed labels:

p(zj |l,α,β) = p(zj |lj ,α, βj)
∝ p(zj |α, βj)p(lj |zj ,α, βj)

∝ p(zj)
∏

i

p(lij |zj , αi, βj)

where we noted that p(zj |α, βj) = p(zj) using the condi-
tional independence assumptions from the graphical model.
M step: We maximize the auxiliary function Q, which is
defined as the expectation of the joint log-likelihood of the
observed and hidden variables (l,Z) given the parameters
(α,β), w.r.t. the posterior probabilities of the Z values com-
puted during the last E step:
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where the expectation is taken over z given the old param-
eter values αold,βold as estimated during the last E-step.
Let us define pk = p(zj = k|l,αold,βold). Then we can
expand this expectation as:
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Based on Equation (1), we can compute p(lij |zj =
k,αi, βj) as:

p(lij |zj = 1, αi, βj) = σ(αiβj)lij (1− σ(αiβj))1−lij

and

p(lij |zj = 0, αi, βj) = σ(αiβj)1−lij (1− σ(αiβj))lij

where
σ(x) =

1
1 + e−x

is the logistic function. To avoid clutter, we will represent
σ(αiβj) simply as σ. Then, after expanding the summation
over k into the two cases z = 0 and z = 1, we get:

Q(α,β) =
∑

j

(
p1 ln p(zj = 1) + p0 ln p(zj = 0)

)
+

∑

ij

p1 [lij lnσ + (1− lij) ln(1− σ)] +

∑

ij

p0 [(1− lij) lnσ + lij ln(1− σ)]

Taking the first derivatives causes the first summation to
vanish since it is constant w.r.t α and β. Using the fact that

d

dx
σ(x) = σ(x)(1− σ(x))

we can differentiate Q to arrive at:

∂Q

∂αi
=
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p1(lij(1− σ)βj − (1− lij)σβj) +

∑
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=
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(
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)
βj

=
∑
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since p0 + p1 = 1

Similarly, we can derive:

∂Q

∂βj
=

∑

i

(
p1lij + p0(1− lij)− σ

)
αi

The gradient equation for ∂Q
∂αi

has an intuitive interpreta-
tion: The first two terms compute the empirical probability
of the given label lij being correct given posterior proba-
bilities of Zj from the previous E-Step. The σ that is sub-
tracted is the model’s current estimate of the probability that
lij is correct given the current estimate of the labeler’s abil-
ity and image’s difficulty. Hence, the likelihood function
will locally increase by increasing the labeler ability αi if
the empirical estimate of the number of correct images la-
beled by labeler i (weighted by image difficulty) is greater
than its previous belief of correctness (again, weighted by
difficulty). Similar intuition applies to ∂Q

∂βj
with regards to

image difficulty1.
To find locally optimal values of the α and β parameter

we set the gradient to zero. The resulting equations are non-
linear and thus needs to be solved using iterative methods.

1Keep in mind that larger β means easier images.
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