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1 Introduction

In an undergraduate (BSc, BComm) degree program in computer science, it’s easy to lose track of
the “science” in “computer science” because a large proportion of courses are devoted to computer
programming. In this tutorial, we will run through a few hypothetical but realistic experiments and
demonstrate some simple but powerful data analysis tools.

Scientific research can be divided into two categories – theoretical and empirical. Theoretical research
uses mathematics and logic to prove beyond any uncertainty that certain propositions are true. For
instance, one can prove that the average-case time complexity of Quicksort is O(n log n). Empirical
research is about drawing conclusions from observations. For example, in biology, based on comparing
the DNA of two species, one might conclude that the species likely have common ancestry. Computer
science is replete with examples of empirical data analyses. Here are a few examples from various
sub-fields.

• Databases: You wish to monitor the number of queries submitted to a server as a function of
time. For instance, maybe queries go up over certain holidays and down during other periods.
Maybe the total number of customers is increasing year-by-year in an exponential fashion.

• Networking: How long, on average, does it take a packet to travel from client to server? What
is the average packet queue length at a particular router? Which routing protocol delivers packets
most consistently?

• Human-computer interaction: Which user interface satisfies users more? What other factors
are these preferences correlated with?

• Machine learning: Aside from the fact that statistics and probability theory form the theoretical
foundation of machine learning, there are countless empirical questions as well, e.g.: Which pattern
recognition algorithm works better? What is the probability that a randomly selected image will
be classified correctly?

• Architecture: Which caching strategy (e.g., write-through, write-back, etc.) delivers the highest
throughput (processes-per-second)?

2 Notation

For anyone who doesn’t know, the “big sigma” notation
∑n

i=1 xi translates into the following C code:

total = 0;
for (i = 1; i <= n; i++) {

total += x[i];
}

3 First Example: Comparing Two Hardware Caches

We’re going to motivate some of the techniques explained in this tutorial with a simple example from
computer architecture. Suppose you have just developed a new memory cache on a computer chip, and
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you wish to assess how much of a performance boost this gives to your programs. How would you go
about answering this question?

The first thing to consider is what kinds of computer programs your target computer is intended
to run. Knowing this will help you to design a test bed – a set of programs to run and whose running
times to measure, both on your “new and improved” cache, and on the “regular” cache to which you’re
comparing it. Note that programs such as Firefox and Microsoft Word would likely not be good choices,
because how long they take to “complete” depends entirely on when the user selects to “Quit”. Instead,
you would likely choose such programs as (under UNIX) gcc, gzip, or sort because they start and
terminate by themselves, and their running times are not affected by user input.

Let’s suppose that you write a single shell script to run all of the programs in your test bed consec-
utively; call this script run.sh. Now, for both your “new and improved” cache (which we’ll call Cache
A) and the “old” cache (we’ll call it B), we can run run.sh, measure how long it takes the script to
terminate, and compare the results between A and B. Hopefully (in our hypothetical scenario), the total
running time for A will be lower than that for B.

It turns out that it is better to run run.sh not just once for A and B, but many times. In fact, the
more times, the better. The reason is, each individual time you measure the running time of the script,
there is always a bit of “noise” in the measurement. For one thing, the method with which you measure
running time may not be completely precise – if you just look at a stop-watch, for example, there will
likely be slight human error during each test run. More likely, you would use more sophisticated timing
methods, but even then there will be noise. For instance, the exact order in which “system interrupts”
(this will be discussed in Operating Systems) occur will also affect timing. Hence, in order to get a good
idea of how long run.sh would run for A and B, it is better to run the script multiple times, and average
the results.

Let’s say we run the script 10 times each for A and B. (This is actually not that many, but otherwise
the example will become tedious to typeset.) Each run time for Cache A will be called xi (i = 1, 2, . . . , 20),
and each run time for Cache B will be called yi. The data are as follows (measured in seconds):

x = [264.1, 188.8, 323.4, 156.6, 306.0, 155.0, 210.5, 287.6, 334.0, 124.3]
y = [365.8, 335.1, 277.3, 267.1, 269.3, 241.2, 281.7, 282.1, 343.5, 338.9]

Which cache implementation, A or B, is better, i.e., delivers shorter run times for our test bed? In
the sections that follow we’ll introduce both visualization and statistical analysis methods to help answer
this question.

4 Visualizing Data

The main reason to collect data is to discover some trend among them. Maybe the trend is that data in
set x are smaller, bigger, more varied, less varied, faster-growing, slower-growing, etc., than the data in
set y. This is especially useful for time series, i.e., data that were collected over different points in time.
We’re going to start with a simpler example, however, namely the series of repeated measurements of
run times for Cache A and Cache B, as described in the previous example.

Various software packages, some free and some not, offer simple to sophisticated graphing capabilities.
Some free packages include Octave, Gnuplot, and Python’s SciPy package. The graphs in this tutorial
were created using Matlab, but I also present code for Octave.

Let’s visualize the cache run-time data. The plot of run times is shown below:
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Perhaps the first thing that jumps out is that the run times for Cache B are much more “consistent” than
those for Cache A, which are all over the place. If you look carefully, it also appears that the average
run time for Cache A is slightly lower than for Cache B, i.e., Cache A is faster on average.

Visualizing your data is often extremely useful because it suggests to you a first place to start further
analysis. The fact that Cache A’s data points look “spread out” is an indication that we might want
to compare the variance, which we’ll discuss shortly, of both data series. Visualizing may also reveal a
trend right-off – for instance, in a later example during this tutorial we’ll find a more subtle trend among
the data that would have been difficult to identify if the graph didn’t point us in the right direction first.

For the cache example, however, it seems that visualization alone won’t quite resolve the question of
which cache implementation is faster. Cache A looks a little faster, on average, but we’ll need to conduct
a proper statistical analysis to be sure. This will be introduced in the next section.

5 Simple Summary Statistics

Suppose you’ve collected some set of N data points. Summary statistics provide a mean of succinctly
characterizing data so that one can more easily find trends and compare different datasets than by
analyzing the entire sets of data. Two of the most common summary statistics are the mean and
standard deviation.

5.1 Mean

The mean of a set of data {xi} is

x =
1
N

N∑
i=1

xi

where xi is the ith data point. Intuitively, the mean x is the average of the data points.

5.2 Variance

The variance of a set of data {xi} is

s2 =
1

N − 1

N∑
i=1

(xi − x)2

Intuitively, the variance measures the average distance, squared, of each data point from the mean. Why
use square distance? Because otherwise, if one data point is, say, 5 less than the mean x̄, and another
data point is 5 more than the mean, then these distances would “cancel out.” Since the variance is an
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estimate of how “varied” the data is, we don’t want this cancelling to occur. Hence, we square each
distance so that each term in the summation is positive. Note that one could conceivably use the absolute
value |xi−x| instead of (xi−x)2 instead; the problem with absolute value is that it is not differentiable,
which can be a problem in some cases. Hence, we use square distance (deviation) instead. Why divide
by N − 1 instead of N? Because using the former will give us an unbiased estimate of the variance. We
won’t worry about this now, but keep in mind for large data set sizes (i.e., large N) that dividing by N
and dividing by N − 1 will give almost exactly the same answer.

5.3 Standard Deviation

The standard deviation of a set of data {xi} is simply the square-root of the variance, i.e.,
√

s2 = s. You
can think of the standard deviation as roughly measuring the average distance of each data point from the
mean, but since the square root is taken around the entire sum instead of around each square-distance,
this is of course only approximate.

When reporting basic characteristics of a particular data set, one usually reports the standard devi-
ation. In other cases, such as adding together several Gaussian random variables, it may be simpler to
work with variances instead.

5.4 Example

Let’s calculate the mean, variance, and standard deviation of the cache performance data, i.e., x and y
as given above.

x =
1
10

(264.1 + 188.8 + 323.4 + 156.6 + 306.0 + 155.0 + 210.5 + 287.6 + 334.0 + 124.3) = 235.0ms

y =
1
10

(365.8 + 335.1 + 277.3 + 267.1 + 269.3 + 241.2 + 281.7 + 282.1 + 343.5 + 338.9) = 300.2ms

s2
x =

1
9

(
(264.1− 235.0)2 + (188.8− 235.0)2 + (323.4− 235.0)2 + . . .

)
= 5978.4(ms)2

sx =
√

s2
x = 77.3ms

s2
y = . . . = 1735.5(ms)2

sy =
√

s2
y = 41.7ms

where s2
x and s2

y refer to the variance of data sets x and y, respectively.
By comparing the two means x and y, we see that mean (average) of Cache A (the x data) was lower

than that of Cache B; hence, it’s faster. However, we also see that the variance of A is much higher than
that of B. This means that the run times from Cache A will vary much more widely from their mean
than for Cache B.

Whenever you collect a set of data that are inherently related to each other – e.g., a set of marks of
fellow students in the same class, temperature readings from the same location, counts of the number
of goals scored by the same player, etc. – it is a good idea to report both the mean and the standard
deviation of these data. E.g., “We measured run times for both Cache A and Cache B over 10 trials.
The mean and standard deviation of the run times for Cache A were 235.0sec and 77.3sec, and for Cache
B they were 300.2sec and 41.7sec, respectively. (Keep in mind that the units for the mean and standard
deviation are the same as for the individual data themselves.)

6 Second Example: Disk Fragmentation

To introduce our second topic of data analysis we’re going to switch to a different question. Suppose
we wish to examine how disk fragmentation affects file read times. The more a disk is used by various
programs, the more that small files tend to accumulate on the disk. The fact that small files are scattered
all across the disk platters means that larger files have to be split up into smaller pieces in order to find
enough room for storage. Splitting them up means it takes longer to read the contents of such files.
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In this example we are interested in measuring the amount of time, in milliseconds, that it takes to
read an entire file into memory as a function of the lifetime, in days, of the disk. We will assume that
the disk is used by various programs, possibly by various users, during every day of its lifetime. The test
program we will use to measure read time will create a file of 100MB, write it to disk, and then read
it back. Due to increasing disk fragmentation through time, we expect that the read time will increase
over the disk’s lifetime.

Suppose the data look as follows (some of the data are omitted for brevity, but the graph that will
follow contains them all):

Day Read time (millisec)
1 12
2 12
3 13
4 15
5 17

. . . . . .
49 56
50 56

We can graph these data, which form a time series, as shown below:
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It doesn’t take much effort to see that the data shown above follow a more or less linearly increasing
path. In the next section, we’ll talk about how to fit a line to data.

7 Regression

In the previous example, the data followed an approximately linear path. By plotting a line through
the data points and extending it farther to the right, we can extrapolate to predict the y values for new
x values. Similarly, we can interpolate between two existing x values and predict the corresponding y
values. But how do we compute this line?

The topic of fitting a line to a set of given data points is known as linear regression.1 Let’s say you
have collected some data {xi} and {yi} such that each yi is associated with the corresponding xi. We
wish to come up with a linear function

yi = wxi + b

1If you wish to fit a different kind of function to your data, e.g., a polynomial function, then non-linear regression can
also be employed.
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that takes any xi point as input and outputs the corresponding yi value.2 Recall from basic algebra that
a linear function has the form y = wx + b. In the case of linear regresion, the w is called the weight, and
the b is called the bias term.

Now, keep in mind that the data you’ve supplied ({xi}) may not be perfectly linear, so the function
we create will never be exactly correct for all data points, i.e., some of the yi values output by our
function will not exactly match the {yi} that we supplied. To denote the fact that our output y values
are not exact, we’ll add a “hat” to the yi so it becomes ŷi:

ŷi = wxi + b

The objective in linear regression is to come up with values for w and b so that the distance between each
ŷi – the approximate y value as estimated by the linear function – and the true value yi is minimized.
This should be intuitive because a “good” linear approximation to the data should pass as closely to the
{yi} as possible. We wish to set w and b so that the sum of squared errors between each yi and ŷi is
minimized. Since each ŷi depends on w and b, we will write the sum as a function:

f(w, b) =
N∑

i=1

(ŷi − yi)2

This function f may be called variously the reconstruction error, or the sum of residual errors, among
other things.

Plugging in wxi + b for ŷi, we get

f(w, b) =
N∑

i=1

(wxi + b− yi)2

This function can be minimized using elementary differential calculus.
Given that we’ve computed w and b to give the best line that approximates the {yi} for each cor-

responding {xi}, we can actually drop the subscript by i because this linear function can be used to
estimate the y value for any corresponding x value:

ŷ = wx + b

7.1 Example

Continuing with the disk fragmentation example started earlier, let’s fit the best line possible to our
data. It turns out that that values w = and b = minimize the sum of residual errors. The result is shown
below:
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2An example of a non-linear function would be yi = wx2
i + b because now the input is squared.
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We can also show the individual deviations from the prediction for each data point, i.e., yi − ŷi, for each
i:
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7.2 Code

In Octave, the easiest way (that I know of) of computing the best linear fit of a set of data is to use
the polyfit function. It’s called that because it fits a polynomial function of arbitrary degree (a linear
function is a polynomial of degree 1) to a set of input data. It takes care of the calculus for you. All
you give it are the {xi} and corresponding {yi}, and it returns to you w and b. Actually, it will combine
both w and b into a 2× 1 vector, but this shouldn’t be hard to work with. It works as follows:

x = ... % fill in values
y = ... % fill in values
v = polyfit(x, y);
w = v(1);
b = v(2);

You can now obtain the estimated ŷ for a new x point with the line:

yhat = w * xNew + b;

7.3 Generalization to Vectors

Up to now, the {xi} and {yi} we’ve been dealing with have been scalar quantities, i.e., simple real
numbers. However, they could instead be vectors of multiple numbers, and the mathematics largely
remains the same. Linear regression over vectors is sometimes called multi-linear regression. We won’t
explore this topic further in this tutorial.

8 Third Example: Hand Gesture Recognition

This example will use real data obtained from Andrew Williams. Suppose you videorecord a person
gesturing in front of a camera, and using the video input, wish to determine whether the person is
making a particular hand gesture. This is an example of pattern recognition, a topic within the broader
field of machine learning. In this example, we will use the following strategy to recognize a hand gesture:
In each video frame, measure the total amount of motion that took place relative to the previous frame.
This results in a single number (if you sum over all pixels in the image) for each frame. When we wish to
recognize a person’s gesture, we compare a time series (over all video frames we record) of that person’s
“motion numbers” to a database of previously recorded and analyzed gestures. Whichever gesture most
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closely “matches up,” in terms of those motion numbers, to the gesture in the newly recorded video, will
be assigned to that new video.

The question is, how do we know how well each gesture in our database “matches up”?
Below is an example of two instances of the same hand gesture, performed (I believe) by two different

people. Clearly, they are similar. But how do we measure this objectively and quantitatively? This leads
us to the topic of correlation, discussed in the next section.
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9 Correlation

There are different kinds of correlation. The most common is the Pearson correlation.

9.1 Pearson Correlation

The Pearson correlation r is a similarity measure between two data series {yi} and {zi} such that
−1 ≤ r ≤ 1. Informally: If r = 1, then the two series are “completely similar.” If r = 0, then they are
not similar at all. If r = −1, then they are completely inverse to each other, i.e., when one series goes
up, the other one goes down, and vice-versa.

The idea behind the Pearson correlation is that, given two data series {yi} and {zi}, we want to get
rid of “superficial differences,” and then look at how close the data are to each other. By superficial
differences, we mean any scaling or shifting of one series toward the other. Scaling and shifting are the
result of a linear transformation, which we already discussed under the topic of regression, and indeed
regression and correlation have much in common (they are highly correlated, harhar). The question
when computing the “correlation coefficient” r is, after linearly transforming one data series to look as
similar as possible to the other, how much residual error is there between the two series relative to the
amount of variance in that target series?

9.2 Computing r2

In this section we will discuss the meaning of the r2 value, where r is the Pearson correlation coefficient.
There’s actually an explicit formula for r as well, but the one for r2 offers a perhaps more intuitive
interpretation. The formula for r2 is as follows:

r2 = 1−
∑N

i=1(ẑi − zi)2∑N
i=1(zi − z)2

Let’s analyze this equation starting with the numerator of the fraction: ẑi is the best estimate of each
zi from the corresponding yi value using linear regression, as discussed in the previous section. Hence,
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the entire numerator is just the sum of residual errors. For two data series that are highly correlated,
the sum of residual errors will be relatively small, and for data series that are not very correlated, the
sum will be relatively large. Relative to what? To the denominator: the denominator measures the
variance of the {zi}. (In fact, the denominator is the variance multiplied by N − 1, but this ends up
being unimportant). Hence, in the formula for r2, the fraction, taken as a whole, measures how much
residual error there is, when trying to predict the {zi} from the {yi}, relative to how much variance there
is in the {zi}. If the variance in the {zi} is low, then they are clustered relatively close to their mean.
Hence, if the correlation between {yi} and {zi} is low, then the sum of residual errors better must also
be low.

The value of the fraction just described can be at most 1 because the sum of residual errors can never
exceed the variance. (Just accept this as fact for now.) Hence, when we subtract it from 1, we arrive at
the following interpretation for r2: it is the proportion of variance of {zi} that does not arise from the
residual error, i.e., it is the proportion of variance of {zi} that is accounted for by {yi}. For two sets of
data {yi} and {zi} that are highly correlated, the proportion of variance of {zi} that is accounted for by
the {yi} (after linearly transforming them) must be high.

9.3 Procedure

To summarize the above mathematics in a procedural form, here is how the r2 value is computed between
data {yi} and {zi}:

1. Perform linear regression from {yi} to {zi}. As discussed in Section 7, linear regression minimizes
the sum of residual errors, which is the numerator in Equation 1. This gives you a w and b with
which you can estimate the {zi} as ẑ.

2. Calculate the sum of residual squared errors g(w, b) for the {zi}.

3. Calculate the variance of {zi}.

4. Compute r2 using the equation listed above.

One usually relies on a statistical software package to take care of this math. In Octave, this works
as follows:

y = ... % fill in values
z = ... % fill in values
r = corrcoeff(y, z);

9.4 Example: Temperature Conversion

Suppose we measure the temperature, in degrees Celsius, of 12 consecutive days in Cape Town. The
{xi} in this case will just be 1, 2, . . . , 12, and the {yi} will be the temperature measurements. We can
plot these data in the following manner:
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Now, suppose we convert the measurements in Celsius into measurements in Fahrenheit. We’ll call the
new “data” {zi}. We can plot the two data series in the same graph:
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Clearly, the two data series are related (“correlated”, in fact) – each zi is a linear transformation of the
corresponding yi (Recall that, to convert from Celsius to Fahrenheit, the formula is Tf = 9

cTc + 32.)
Given yi, we can perfectly compute zi, and vice-versa.

Given either yi or zi we can perfectly estimate each of the other variable by performing some linear
transformation – i.e., by multiplying the variable by some number, and then adding something to it.
This stems from the fact that the {yi} and {zi} are perfectly correlated. In the language of statistics,
we say that the Pearson r correlation between variables {yi} and {zi} is 1. What does this mean
mathematically?

9.5 Computing the Pearson r correlation coefficient

The direct method of computing the correlation between two sets of data {yi} and {zi} is via the
covariance of these two sets of data. First off, reality check: when computing the correlation between
two sets of data points, each set must contain an equal number of elements. Second, we must first
understand the concept of covariance.
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9.5.1 Covariance

The quantity
1

N − 1

N∑
i=1

(yi − y)(zi − z

is known as the covariance of {yi} and {zi}. Intuitively, if {yi} and {zi} have positive covariance, then
each yi tends to be bigger, on average, than y whenever zi is bigger than z. If they have negative
covariance, then each yi tends to be smaller, on average, than y whenever zi is bigger than z. Finally,
if two variables have covariance of 0, then the fact that yi > y for some i has no bearing whatsoever on
whether zi > z.

Below are examples of {yi} and {zi} that have positive (Left), zero (Middle), and negative (Right)
covariance:
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Given a basic understanding of covariance, we can now compute the Pearson r correlation coefficient
r (note that −1 ≤ r ≤ 1). The formula is:

r =
1

N−1

∑N
i=1(yi − y)(zi − z)

sysz

where sy and sz are the standard deviations of {yi} and {zi}, respectively. You will recognize immediately
the numerator, which is the covariance. When you divide the covariance by the product of the standard
deviations sysz, the fraction becomes normalized, i.e., it is bounded below by -1 and above by 1.

9.5.2 Interpreting r

If the Pearson correlation r between two sets of data {yi} and {zi} is 1, then the two sets of data are
perfectly positively correlated. This means that, if yi > yj , then zi > zj . Moreover, the amount yi − yj

is always in fixed proportion to zi − zj .
If r is -1, then the two sets of data are perfectly negatively correlated, i.e., if yi > yj , then zi < zj

Finally, if r = 0, then the data are uncorrelated.

9.6 Interpreting r2

Why the h*ll did I go through all this math? Because it is important to understand it when interpreting
correlation coefficients. Suppose you use some statistical software package like Octave, Stata, Matlab,
or whatever else, and determine that for two sets of data, their Pearson correlation coefficient r = 0.7.
Since the maximum r is 1, this sounds reasonably high. The r2 value is then 0.49. We can then interpret
this number as follows: just under half of the variance in the {zi} is accounted for when predicting {zi}
from the {yi} using linear regression. Where does the remaining variance come from? Noise. That is,
most of the variation in the {zi} has nothing to do with the corresponding {yi}.

9.7 Example

Let’s look at another example of correlations, this time using a topic from computer science. Suppose
we’re interested in how the average “ping” time from our computer to a particular server fluctuates as a
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function of time. Let’s say we measure the average ping time (in milliseconds) on 28 consecutive days,
starting on a Saturday, and that we get the following data:

y = [72, 75, 84, 81, 79, 90, 87, 75, 79, 87, 86, 82, 91, 90, 67, 67, 80, 82, 100, 90, 91, 82, 80, 90, 95, 87, 86, 79]

Is there any meaningful trend in this data to be found? First, let’s plot the data:
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It’s a bit hard to make out, but if you look carefully, you see that there are pairs of consecutive days,
that occur every 7 days, on which the average ping time is lower. Why might this be? Where could
this pattern of 5-days-higher followed by 2-days-lower come from? Recall that the first measurement
was on a Saturday, which is a weekend day. It is conceivable that Internet traffic to the particular server
we’re querying might be lower on the weekend than on a weekday, and that the ping times would be
correspondingly lower. Is there any quantitative evidence to support this hypothesis?

It turns out that correlation can help us here as well. Let’s begin by adding some more “data” {zi}
whose value is 0 if the corresponding xi falls on a weekend, and 1 if xi falls on a weekday. Let’s plot the
{zi} along with the {yi} ping data. To make the graph easier to read, we’ll actually plot {10 ∗ zi}.
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By examining the ping times above those days marked by {zi} as weekends, it seems, graphically,
as though there might indeed be a trend. Now we can make use of correlation: Knowing whether
each particular day xi is a weekend, how well can we estimate each corresponding ping time yi? In
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particular, how much of the variance of the {yi} can we “explain” by making use of the {zi} under a
linear transformation? This is simply the r2 value, as we discussed before.

Using a statistical software package, we can calculate the Pearson r correlation coefficient. It turns
out to be 0.72, which is quite high. This means that about 0.722 ≈ 52% of the variance in the ping times
can be attributed to whether or not the day happens to be on a weekend. This is a fairly substantial
fraction.

9.8 Spearman Rank Correlation

The Pearson correlation is the most commonly used form of regression. Another useful kind of correlation
is the Spearman Rank Correlation. It is based on the following intuitive idea: Rank each data point in
each set of data by how big it is relative to the other ones. That is, for each {xi}, assign it rank 1 if it is
the biggest, 2 if it is the second-biggest, and so on. Break ties arbitrarily. Then, compare the ranks of
the {xi} with the ranks of the {yi}, and assess how much they agree. Note that, in contrast to Pearson
correlation, whether the relationship between the {xi} and the {yi} is linear or non-linear is irrelevant –
all that matters is that, whenever xi is bigger than xj , the corresponding yi should also be bigger than
yj .

9.9 Example

Consider the following data:
y = [1, 10, 0, 5, 3]

and
z = [2, 11,−4, 12, 10]

The Pearson correlation r is about 0.77, but the Rank correlation is 1. Notice how, if you sort the {yi},
you’ll get the same “ordering” as if you sort the {zi}.

In Octave:

r = spearman(y, z)

10 Review and Concluding Remarks

This tutorial discussed the basic summary statistics of mean, variance, and standard deviation. It also
introduced linear regression, which is a method of estimating one variable from another using a linear
transformation, and correlation, which measures the proportion of variance of one set of data that can
be explained by estimating them from another set of data using linear regression.

Regression is a very general technique and should be considered whenever you want to estimate one
quantity, which presumably you do not know, from another, which is presumably easier to come by.
Correlation is used to measure how related two sets of data are, i.e., whether knowing one can help
you estimate the other. Both regression and correlation are bread-and-butter techniques of many, many
empirical experiments that you may encounter in computer science and other science disciplines.
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