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Abstract

In machine learning and computer vision, input signals
are often filtered to increase data discriminability. For ex-
ample, preprocessing face images with Gabor band-pass fil-
ters is known to improve performance in expression recog-
nition tasks [1]. Sometimes, however, one may wish to pur-
posely decrease discriminability of one classification task
(a “distractor” task), while simultaneously preserving in-
formation relevant to another task (the target task): For
example, due to privacy concerns, it may be important to
mask the identity of persons contained in face images be-
fore submitting them to a crowdsourcing site (e.g., Mechan-
ical Turk) when labeling them for certain facial attributes.
Suppressing discriminability in distractor tasks may also
be needed to improve inter-dataset generalization: train-
ing datasets may sometimes contain spurious correlations
between a target attribute (e.g., facial expression) and a dis-
tractor attribute (e.g., gender). We might improve general-
ization to new datasets by suppressing the signal related to
the distractor task in the training dataset. This can be seen
as a special form of supervised regularization. In this paper
we present an approach to automatically learning prepro-
cessing filters that suppress discriminability in distractor
tasks while preserving it in target tasks. We present promis-
ing results in simulated image classification problems and
in a realistic expression recognition problem.

1. Introduction

In machine learning problems, signals are commonly
pre-filtered prior to classification to enhance class discrim-
inability. For example, pre-filtering face images with Ga-
bor band-pass filters is known to increase performance in
expression recognition tasks [1]. Such filters may be man-
ually constructed or may be learned directly from the data
(e.g., using Deep Belief Networks [8] or Independent Com-
ponents Analysis [2]). However, there also exist scenar-
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ios in which it may be useful to intentionally decrease dis-
criminability for one classification task (a “distractor” task),
while enhancing or at least preserving discriminability for
another task (the target task). Two such scenarios include
(1) preservation of privacy during data labeling, and (2) gen-
eralization to datasets with different correlation structure.

(1) Preservation of privacy: Computer vision is in-
creasingly making use of crowdsourcing services such as
the Amazon Mechanical Turk, with anonymous labelers.
Sometimes, the data to be labeled may contain sensitive in-
formation that should not be released to the public, e.g., the
identity of people’s faces or the geographical locations of
satellite images. It may be useful to first filter the images
before uploading them to the Mechanical Turk so that iden-
tity/location is removed, but so that the target task remains
highly discriminable. For the case of facial identity re-
moval, this process is known as face de-identification [11].

(2) Generalization to new datasets: It is not unusual
for datasets used to train classifiers to have spurious cor-
relations that impair generalization performance to other
datasets. Consider, for example, a classifier to discriminate
smiles from neutral facial expressions. Suppose in the train-
ing dataset 90% of the male faces have smiles while only
20% of the females smile. A classifier may learn to dis-
criminate smile from neutral expressions by capitalizing on
features that discriminate male from female faces. Such a
classifier will perform well in cross-validation tests within
the dataset, but it will perform badly when tested on a new
dataset in which females smile more than males. To im-
prove generalization, standard regularization methods such
as L2 weight penalization can be used; many such meth-
ods are equivalent to adding uncorrelated noise to the data
in the training set, with the hope that adding such noise
will suppress small spurious correlations while still pre-
serving some of the information about the task of interest.
In some cases, however, a more targeted regularization ap-
proach may be desirable in which we suppress information
about a specific attribute in the training set while preserving
information about the attribute of interest.

In this paper, we present a novel algorithm for auto-
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matically learning data filters that simultaneously preserve
discriminability of a target task while suppressing discrim-
inability of distractor task. In this sense, the filter “discrim-
inately decreases discriminability” of the training data. We
focus on image filters, but in fact the data can be of arbi-
trary modalities. In Section 2 we provide a simple example
of “discriminately decreasing discriminability” (DDD) . In
Section 3 we present the proposed algorithm. We conclude
with empirical evaluations on synthetic data and on a real-
istic facial expression recognition task.

2. Simple example in R2

Consider the set of 28 data points {xi} (in R2) shown
in Figure 1 (left): Each point xi is given binary labels for
two labeling tasks. Points labeled 0 for Task A are shown
in magenta, while points labeled 1 for Task A are black. On
the other hand, points labeled 0 for Task B are marked as
crosses, while points labeled 1 are shown as circles. In their
unfiltered original form, both tasks are easily discriminated.

Suppose now that we filter the data using θ1 (in this case,
a general linear transformation), as shown in the center part
of the figure: Task A (color) is highly discriminable, while
Task B (marker) is not – the two marker styles (circles and
crosses) appear to overlap. Similarly, we can use θ2 to sup-
press discriminability of Task A and preserve discriminabil-
ity of Task B, in which case we arrive at the filtered points
shown in Figure 1 (right). The goal of the algorithm in this
paper is to learn such linear filters automatically.

3. DDD Algorithm: Learning a filter to dis-
criminately decrease discriminability

We pose the task of learning a filter to discriminately
decrease discriminability as an optimization problem. The
formulation is flexible in that two of the inputs, f and D,
can take any form as long as they are differentiable. Inputs:

1. A dataset consisting of ordered triples {(xi, l
A
i , lBi )},

where each xi ∈ Rd, lAi ∈ {0, 1} is the label of xi

for Task A, and lBi ∈ {0, 1} is the label of xi for Task
B. For example, each xi might be a face image with
d pixels represented as a column vector, Task A might
indicate whether x is smiling or not, and Task B might
indicate whether x is male or female.

From the {(xi, l
A
i , lBi )}, we can define the following

matrices (each with d rows), each containing some of
the data points as column vectors: X0a contains all
the xi s.t. lAi = 0, while X1a contains all the xi s.t.
lAi = 1. Similarly, X0b contains all the xi s.t. lBi = 0,
while X1b contains all the xi s.t. lBi = 1.

2. A filter function f(θ, x) that filters input vector x using
parameters specified by θ. We define the output of the
filter on input vector x as y

.= f(θ, x).

For an input matrix X =
[

x1 · · · xN

]
of N col-

umn vectors, we also define

F (θ, X) = F (θ,
[

x1 · · · xN

]
)

.=
[

f(θ, x1) · · · f(θ, xN )
]

=
[

y1 · · · yN

]
and then define Y

.=
[

y1 · · · yN

]
.

3. A “discriminability metric” D(X0, X1) which mea-
sures the real-valued “discriminability” of data in ma-
trix X1 from data in matrix X0. In our implementation,
we use the ratio of between-class variance to within-
class variance as the discriminability metric.

Objective function: Given the inputs above, and as-
suming that Task A is the “target” task while Task B is
the “distractor” task, we must select an objective function
R(θ) to minimize w.r.t. the filter parameters θ. R should
be small when D(F (θ, X0a), F (θ, X1a)) (i.e., the discrim-
inability of the filtered data for Task A) is large and when
D(F (θ, X0b), F (θ, X1b)) is small. Several choices for R
are possible; we use the following ratio of discriminabili-
ties formulation:

R(θ) = log
D(F (θ, X0b), F (θ, X1b))
D(F (θ, X0a), F (θ, X1a))

+
1
2
β tr(θ>θ)

where β ≥ 0 is a scalar regularization parameter on θ. We
wish to find θ∗ such that

θ∗ = arg min
θ

R(θ)

While the global minimum may be difficult to find, we can
use gradient descent to find a local minimum as long as both
f and D are differentiable; hence, the output of the DDD
algorithm is a θ that locally minimizes R.

Ideally, one chooses f and D with derivatives that are
available analytically so that gradients can be computed ex-
actly. Below we suggest some functions with this property:

3.1. Filter function f

For a variety of filter functions f , the derivative df/dθ
can be found analytically. Useful examples include:

• Convolution: f(θ, x) = θ ∗ x, where θ represents the
convolution kernel.

• General linear transformations: f(θ, x) = θx, where θ
is any matrix that can be right-multiplied by x.

• Pixel-wise “masking”: f(θ, x) = θx, where θ is a d×d
diagonal matrix. In this case, element θii represents
the strength with which pixel i of the image is allowed
to pass through.
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Figure 1. A minimal example in R2 showing (left) unfiltered data, data filtered to preserve Task A’s and suppress Task B’s discriminability
(center), and data filtered to suppress Task A’s and preserve Task B’s discriminability (right).

• Sum of filters: f(θ, x) =
∑K

k=1 θkfk(x), where θ is a
K-vector specifying the weight of a bank of K fixed
filter functions {fk}. For example, the {fk} might
constitute a Gabor filter bank [10] of different spatial
frequencies and orientations.

Although the above examples are linear, non-linear filters
are also admissible as long as they are differentiable in θ.

3.2. Discriminability metric D

For the discriminability metric, we use DLDA – the max-
imum ratio, over all unit vectors p ∈ Rd, of the between-
class variance to within-class variance of the data points af-
ter projecting them onto p. This discriminability metric was
first proposed by Fisher [5] and is used in Fisher’s Linear
Discriminant Analysis (LDA).

Notation: Suppose that X1 and X0 contain the data
points labeled 1 and 0, respectively, for some labeling task
(Task A or Task B), and suppose that Y1 = F (θ, X1) and
Y0 = F (θ, X0). Then we can define the mean vector for
class 1 as x1

.= 1
N1

X11 where N1 is the number of columns
in X1 and 1 is a column vector of N1 ones. We can also de-
fine the “mean matrix” X1, consisting of N1 copies of x1,
as X1

.= x11>. We define x0 and X0 analogously. Fi-
nally, we define y1

.= 1
N1

Y11, and Y 1
.= y11

> as the mean
filtered vector and matrix for class 1, and do the same analo-
gously for y0, Y 0 for class 0. Given this notation, we define

DLDA(X0, X1)
.= max

p

p>B(X0, X1)p
p>W (X0, X1)p

where the between-class variance is given by B(X0, X1) =
(x1 − x0)(x1 − x0)> and the within-class variance is given
by W (X0, X1) = (X1 − X1)(X1 − X1)> + (X0 −
X0)(X0 −X0)>.

Computing DLDA requires solving an optimization prob-
lem over p. The key feature that makes DLDA useful for the

DDD algorithm is that the optimal p can be found analyti-
cally [4]. (Note: this contrasts with certain other discrim-
inability measures such as the margin of an SVM, which
can only be found numerically.) The optimal p is

p∗(X0, X1)
.= arg max

p

p>B(X0, X1)p
p>W (X0, X1)p

= W (X0, X1)−1(x1 − x0)
and hence

DLDA(X0, X1) =
p∗(X0, X1)>B(X0, X1)p∗(X0, X1)
p∗(X0, X1)>W (X0, X1)p∗(X0, X1)

To avoid clutter, we abbreviate DLDA as

DLDA(X0, X1) =
p∗>Bp∗

p∗>Wp∗

With DDD, the inputs to DLDA are filtered data matrices
Y1 = F (θ, X1) and Y0 = F (θ, X0) that depend on θ.
Hence, B, W , and p∗ will implicitly also depend on θ.

3.3. Gradient descent on R(θ)

Putting all the parts together, we can now perform gra-
dient descent on R w.r.t. θ. Below we derive the gradient
expressions for the most important terms:

∂R

∂θij
(θ) =

∂
∂θij

(DLDA(F (θ, X0b), F (θ, X1b)))

DLDA(F (θ, X0b), F (θ, X1b))
−

∂
∂θij

(DLDA(F (θ, X0a), F (θ, X1a)))

DLDA(F (θ, X0a), F (θ, X1a))
+ βθij

∂DLDA

∂θij
(Y0, Y1) =

∂
∂θij

(p∗>Bp∗)

p∗>Wp∗
−

p∗>Bp∗

(p∗>Wp∗)2
∂

∂θij

(
p∗>Wp∗

)



∂p∗

∂θij
(Y0, Y1) =

∂

∂θij

(
W−1(y1 − y0)

)
= −W−1

(
∂

∂θij
W

)
W−1(y1 − y0) +

W−1

(
∂

∂θij
(y1 − y0)

)
∂W

∂θij
=

∂

∂θij

(
(Y1 − Y 1)(Y1 − Y 1)>

)
+

∂

∂θij

(
(Y0 − Y 0)(Y0 − Y 0)>

)
∂B

∂θij
=

∂

∂θij

(
(y1 − y0)(y1 − y0)

>)
∂y

∂θij
=

∂

∂θij
f(θ, x)

For general linear transformation filters f(θ, x) = θx,
∂

∂θij
f(θ, x) = Ejx, where Ej is a d×d matrix consisting of

all 0’s except the (j, j)th entry, which is 1. The gradients of
pixel-wise mask filters and discrete convolution filters are
given in the Supplementary Materials.

3.4. Reconstruction from filtered images

Gradient descent will find a θ that locally minimizes
R(θ), but there is no guarantee that the filtered images Y
will visually resemble the original images X or that humans
can interpret them. For machine classification (e.g., when
learning a filter to improve inter-dataset performance), this
may not matter, but for human labeling applications, it may
be necessary to “restore” the filtered images to a more intu-
itive form. Hence, as an optional step, linear ridge regres-
sion can be used to convert the filtered images Y to a form
more closely resembling the original images X , while still
preserving the property that they are highly discriminability
for Task A and not highly discriminable for Task B. In par-
ticular, we can compute the d× (d + 1) (the extra +1 is for
the bias term) linear transformation P that minimizes∥∥∥∥X − P

[
Y
1

]∥∥∥∥2

Fr
+ δ

∥∥∥P Ĩ
∥∥∥2

Fr

where δ > 0 is a scalar ridge strength parameter, Ĩ is the
identity matrix except that the last diagonal entry is 0 in-
stead of 1 (so that there is no regularization on the bias
weight), and Fr means Frobenius norm.

The ridge term in the linear reconstruction is critical: be-
cause many of the filters that the gradient descent procedure
learns correspond to invertible linear transformations, lin-
ear regression without regularization would transform each
yi back to xi with no loss of information, which would de-
feat the purpose of filtering at all. With ridge regression, on
the other hand, only the “more discernible” aspects of the
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Gradient descent over θ

# gradient descent steps

R
(θ

)

Learned convolution kernel (θ ∈ R5×5)

0 10 20 30 40 50
# gradient descent steps

Figure 2. Upper-left: Synthetic images consisting of vertical and
horizontal lines at different positions. Upper-right: gradient de-
scent curve over R(θ) to a learn a filter to preserve Task A and
suppress Task B. Bottom: The filters learned at corresponding gra-
dient descent steps.

Unfiltered patches {xi}

Filtered patches {yi}

Figure 3. Top: unfiltered image patches consisting of superim-
posed vertical and horizontal lines plus uniform noise. Bottom:
the same images filtered with a convolution kernel designed to
suppress discriminability of Task B (horz. lines) while preserving
discriminability of Task A (vert. lines).

image (i.e., the target task) are restored clearly, while the
“less discernible” aspects (pertaining to the distractor task)
are not. By varying δ, one can cause each “reconstructed”

image ri (where ri
.= P

[
yi

1

]
) to strongly resemble the

mean image x (for large δ) or to strongly resemble its un-
filtered counterpart xi (for small δ). In practice, δ is chosen
based on visual inspection of the reconstructed training im-
ages so that, to the human observer, the target task is clearly
discriminable while the distractor task is not.

4. Experiment I: synthetic data
In our first experiment we studied whether the DDD

algorithm could operate on images (16 × 16 pixels) con-
sisting of simple line patterns in order to suppress lines
in one direction while preserving them in another. For
the filtering operation, we chose “clipped” convolution –
y = f(θ, x) = θ ∗ x, whereby the output image y is the
same size as the input image x – using a convolution ker-
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Figure 4. Not DDD: here, the filter θ optimized RRidgeOnly to pre-
serve discriminability of Task A without specifically suppressing
discriminability of Task B. The filter preserves the vertical image
components, but does little to suppress the horizontal components.

nel of 5 × 5 pixels. In this study, all images contained one
horizontal line and one vertical line at random locations: In
Task A, an image was labeled 0 if its vertical line was in
the left half of the image and 1 if the vertical line was in
the right half. In Task B, an image was labeled 0 if its hor-
izontal line was in the top half and 1 if it was in the bottom
half. Each image xi ∈ R16×16 was generated by adding
one vertical and one horizontal line (of pixel intensity 1) at
random image positions, and then adding uniform noise in
U [0, 0.5) to all pixels in the image. Examples are shown in
Figure 2 (upper-left).

After generating 1000 images according to the procedure
above, we initialized the convolution kernel θ ∈ R5×5 to
random values from U [0, 1) (shown in Figure 2 as the filter
kernel at gradient descent step 0). We then applied DDD to
learn a filter θ to preserve Task A while suppressing Task
B. We set β = 1. The descent curve is shown in Figure 2
(upper-right), and the learned filter kernel at every 10 steps
is shown in the bottom of the figure. After filtering the im-
ages using the convolution kernel learned after 50 descent
steps, we arrived at the images shown in Figure 3. Notice
how the horizontal lines have been almost completely erad-
icated, thus decreasing class discriminability for Task B.

4.1. Effect of the ridge term by itself

One might reasonably posit that the eradication of
the horizontal line components has more to do with the
regularization term 1

2β tr(θ>θ) than with the “ratio of
discriminabilities” used in the objective function. To
test this hypothesis, we created a second objective func-
tion RRidgeOnly(θ) = − log D(F (θ, X0a), F (θ, X1a)) +
1
2β tr(θ>θ) that does not explicitly penalize discriminabil-
ity of Task B (the distractor task). We then optimized
the ridge parameter β (by visual inspection, where β ∈
{100, 101, . . . , 107}) so that the learned filter θ maximally
reduced the visibility of the horizontal components. The re-
sult for β = 103 is shown in Figure 4 (though the filter out-
puts were similar across different β): although the learned
filter does preserve the vertical components, its effect on
the horizontal line is to “smear” it across the image, leav-
ing it highly discriminable. In contrast, DDD offers a more
“surgical” form of regularization that removes specific, un-
desired components of the data set.

4.2. Comparison to “nullspace filter”

Another plausible method of achieving the “discrimi-
nately discriminable” property is to use LDA to find the
most discriminable directions of the distractor task, and
then to reconstruct the images from the nullspace of those
directions. More precisely, we can compute the d×k matrix
A whose columns contain the top k directions that maxi-
mize DLDA of the distractor task (for some chosen k). Then,
each image x can be filtered as y = θnsx where θns

.= BB>

where B is a matrix whose columns span the nullspace of
A. This filter will tend to suppress aspects of the image cor-
related with the distractor task. In practice, however, we
found that this method could not suppress the horizontal
lines (distractor task) from human perception while still pre-
serving the vertical lines (target task), even for a variety of
choices for k. (See Supp. Materials for details.) One reason
may be that DDD can be constrained to optimize particu-
lar families of filters (e.g., convolution, pixel-wise masking)
that may be harder for humans to “invert” than other linear
transformations.

5. Experiment II: natural face images
5.1. Preserve expression, suppress gender

We applied the DDD algorithm to natural face images
from the GENKI dataset [14], which consists of 60,000
face images, collected from thousands of different per-
sons and geographical locations, and which was used to
train a commercial smile detector. Each GENKI image has
been manually labeled for 2 binary attributes – smile/non-
smile and male/female – as well as the 2D positions of the
eyes, nose, and mouth, and the 3D head pose (yaw, pitch,
and roll). In this experiment we assessed whether a fil-
ter could be learned to preserve discriminability of expres-
sion (smile/non-smile), while suppressing discriminability
of gender. For f we used a pixel-wise “mask” filter (see
Section 3.1) of the same size as the images (16×16 pixels).

From the whole GENKI dataset we selected a training
set consisting of 1740 images (50% male and 50% female;
50% smile and 50% non-smile) whose yaw, pitch, and roll
parameters were all within 5◦ of frontal. All of the images
were registered to a common face cropping using the center
of the eyes and mouth as anchor points. They were then
downscaled to a resolution of 16 × 16 pixels. In addition,
we similarly extracted a separate testing set consisting of
100 images (50 males, 50 females, and 50 smiling, 50 non-
smiling) with the same 3D pose characteristics. The filter θ
was initialized component-wise by sampling from U [0, 1).

Using the training set for learning the filter, and setting
the regularization parameter β = 1, we applied conjugate
gradient descent for 100 function evaluations. The learned
filter was then applied to all of the training images. Finally,
we applied the image reconstruction technique from Section
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Figure 5. Face images from the GENKI dataset that have been filtered to preserve expression and suppress gender (left), or to preserve
gender and suppress expression (right). Filters were learned using the algorithm presented in Section 3.

3.4 to restore the filtered images to a form more easily an-
alyzable by humans. The reconstruction ridge parameter δ
was selected, by looking only at the training images, so that
smile appeared well discriminable whereas gender did not
(in this case, δ = 6× 10−2). Examples of the input images
as well as the filtered (+ reconstructed) images are shown in
Figure 5 (left). The learned filter mask is shown to the right
of the text “Learned filter 1”. As shown in the figure, the
filter allows most of the smile information to pass through,
but it removes most of the gender information, as intended.

To assess quantitatively the ability of the learned filter to
preserve expression and suppress gender, we posted a label-
ing task to the Amazon Mechanical Turk (AMT) consisting
of 50 randomly selected pairs of filtered images selected
from the testing set using the filter learned according to
the above procedure. Each pair contained 1 smiling image
and 1 non-smiling image presented in random order (Left
or Right), and the labeler was asked to select which image
– Left or Right – was “smiling more”. The entire set of 50
image pairs was presented to 10 AMT workers, and their
opinions on each pair were combined using Majority Vote,
with ties resolved by selecting the “Right” image. Accuracy
of the AMT labelers compared to the official GENKI labels
was measured as the probability of correctness on a 2 al-
ternative forced choice task (2AFC), which is equivalent to
the Area under the Receiver Operating Characteristics curve
(A′ statistic) that is commonly used in the automatic facial
expression recognition literature (e.g., [9]). We similarly
generated a set of 50 randomly selected pairs of filtered im-
ages containing 1 male and 1 female and asked AMT work-
ers to select the image (Left or Right) appeared “more fe-

male”. As a baseline, we compared gender and smile label-
ing accuracy of the filtered images to similar tasks for the
unfiltered images.

Results are shown in Table 1 and indicate that the learned
filter substantially reduced discriminability of gender (from
98% to 58%) while maintaining high discriminability of ex-
pression (94% to 96%) compared to the unfiltered images.

Comparison to manually constructed filter: In the
case of expression and gender, one might reasonably argue
that the “optimal filter” for preserving smile/non-smile and
suppressing male/female information would be simply to
crop and display only the mouth region of each face. Hence,
we performed an additional experiment in which we com-
pared Mechanical Turk labeling accuracy on 50 pairs of fil-
tered images, generated similarly as described above, us-
ing a manually constructed mask filter consisting of just the
mouth region (rows 11 through 15 and columns 4 through
13 of each 16×16 face image). Results are in Table 1: while
smile discriminability is equally high as the learned filter 1,
gender discriminability using the manually constructed fil-
ter was substantially higher (74% compared to 58%), indi-
cating that the hand-crafted filter actually allowed consider-
able gender information to pass through. This suggests that
a learned filter can work better than a manually constructed
one even when strong prior domain knowledge exists.

5.2. Preserve gender, suppress expression

Analogously to Section 5.1, we also learned a filter to
preserve gender and suppress expression, using an identical
training procedure to that described above. Examples of
the filtered (+ reconstructed) images (δ = 9 × 10−3) are



Table 1. Accuracy (2AFC) of workers on Mechanical Turk when
labeling filtered GENKI images

Filter method Expression Gender
Unfiltered (baseline) 94% 98%
Learned filter 1:
Preserve expr., suppress gender 96% 58%
Manually constructed filter:
show mouth region only 96% 74%
Learned filter 2:
Preserve gender, suppress expr. 64% 86%

Whose face is this?

Match the filtered face image above
to its unfiltered image below.

a b c d e

f g h i j

Figure 6. The preserve-smile, suppress-gender filter both allows
smile/non-smile information to pass through, and also serves as
a “face de-identification” mechanism, as illustrated in the face
recognition task above. The correct face match is (f).

shown in Figure 5 (right). Notice how, for face image (b),
the filter not only “suppressed” the expression of the non-
smiling female, but actually seems to “flip” the smile/non-
smile label so that the woman appears to be smiling. The
accuracy compared to baseline (unfiltered) images is shown
in Table 1. While accuracy of gender labeling did drop from
98% to 86%, it dropped much more for the smiling labeling
(94% to 64%) compared to unfiltered images.

6. Experiment III: Preserving privacy in face
images (face de-identification)

The filter learned in Section 5 to preserve smile while
suppressing gender information was not designed specifi-
cally to suppress the faces’ identity. In practice, however,
we found that the identity of the people shown was very
difficult to discern in the filtered images. Indeed, it is pos-
sible that gender represents one of the first “principal com-
ponents” of face space, and that, by removing gender, one
implicitly removes substantial identity information as well.

To test the hypothesis that identity was effectively
masked by suppressing gender, we created a face recogni-
tion test consisting of 40 questions similar to Figure 6: a sin-
gle face must be matched to one of 10 unfiltered candidate
face images. In half of the questions, the face to be matched
was filtered using the preserve-expression, suppress-gender
filter (Section 5). In this case, the matching task was very
challenging. In the other half of the questions, the face to
be matched was unfiltered, and hence the matching task was
nearly trivial. The order of the questions presented to the
labelers was randomized, and we obtained results from 10
workers on the Amazon Mechanical Turk.

Results: For the unfiltered images, the rate of successful
match was 100% for each of the 10 labelers. For the fil-
tered images, the rate of successful match, using Majority
Vote, was 15%, indicating that the preserve-smile, suppress-
gender filter also removed identity. The highest successful
matching rate of the filtered images for any one labeler was
30%. Baseline rate for guessing was 10%.

7. Experiment IV: Filtering to improve gener-
alization across datasets

Here we show a proof-of-concept of learning a filter
to improve generalization to novel datasets. Consider a
dataset of face images such as GENKI with a positive cor-
relation between gender and smile. If a gender classifier
were trained on these data, then it might learn to distin-
guish gender not just by male/female information alone, but
also by the correlated presence of smile. When tested on a
dataset with different covariance structure, e.g., with neg-
ative correlation between smile and gender, the classifier
would likely perform badly. If we first filter the data to sup-
press smile but preserve gender, then the performance of the
trained classifier might not suffer when applied to the new
dataset.

To test this hypothesis, we partitioned the GENKI im-
ages used in Section 5 into a training set (4062 images) and
test set (970 images). As before, all images were 16 × 16
pixels. In the training set, the correlation between smile
and gender was +0.64, whereas in the test set, it was −1.
We then trained two support vector machine (SVM) clas-
sifiers with radial basis function (RBF) kernels to classify
gender. One classifier was trained on filtered training im-
ages, using the gender-preservation, smile-suppression fil-
ter learned in Section 5.2, and the other was trained on
unfiltered images. The RBF width γ was optimized inde-
pendently (γ ∈ {10−8, 10−7, . . . , 10+4}) for each classi-
fier using a holdout set (a randomly selected 20% subset
of the training images). The SVM trained on unfiltered im-
ages was then applied to the unfiltered test set, and the SVM
trained on filtered images was applied to the filtered test set.

Results: Filtering the data using the gender-
preservation, smile-suppression filter increased gener-



alization performance substantially: 2AFC accuracy was
0.92 for the SVM trained on filtered images, whereas it was
only 0.79 for the SVM trained on unfiltered images.

Comparison to LMNN: We also compared DDD to
an existing supervised learning method for learning a data
transformation to increase classification accuracy – Large
Margin Nearest Neighbors (LMNN [15]). LMNN uses
semidefinite programming to find a transformation L that
decreases the distance between each data point and its k
nearest neighbors of the same class, while maximally in-
creasing the distance to data of a different class. It is con-
ceivable that such an approach would also aid generaliza-
tion across datasets of different covariate structure.

In our experiment, we used LMNN to learn a filter L
to increase gender classification accuracy. The LMNN pa-
rameter k was selected to maximize gender classification
accuracy on the holdout set after applying the learned data
transformation Lk associated with k. Then, after fixing L
for the best k, we re-trained an SVM on the transformed
training set and then applied it to the transformed test set.

Results: Using LMNN to learn a filter to increase gender
discriminability improved classification accuracy to 0.87
(2AFC). While this is better than 0.79 for the unfiltered im-
ages, it is still less than the 0.92 achieved by DDD.

8. Related work

We are unaware of any work that specifically learns fil-
ters to simultaneously preserve and suppress different im-
age attributes. However, our approach is somewhat reminis-
cent of work by Birdwell and Horn [3], in which an optimal
combination of a fixed set of filters is learned to minimize
the conditional entropy of class labels given filtered inputs.

In terms of applications to data privacy, our method is re-
lated to “face de-identification” methods such as [11, 7, 6].
Such methods identify faces which are similar either in
terms of pixel space ([11, 6]), eigenface space ([11]), or Ac-
tive Appearance Model parameters ([7]), and then replace
clusters of k similar faces with their mean face, thus guaran-
teeing that no face can be identified more specifically than
to a cluster of k candidates. However, in contrast to our
proposed algorithm, these methods cannot be “reversed”
to maximally preserve identity while minimizing discrim-
inability of a given face attribute.

For inter-dataset generalization, our work is related to
covariate shift [13] and transfer learning [12]. The method
proposed in our paper is useful when dataset differences are
known a priori – the learned filter helps to overcome covari-
ate shift by altering the underlying images themselves. In
addition, our work is related to Subclass Discriminant Anal-
ysis [16] which partially overcomes covariate shift by learn-
ing important subclasses (e.g., smiling males) of a given
task (e.g., male versus female).

9. Summary
We have presented a novel method for learning filters

that can preserve binary discriminability of a target task
while suppressing the discriminability of a distractor task.
The effectiveness of the approach was demonstrated on nat-
ural face images. Interestingly, the suppression of gender
implicitly removed considerable facial identity information,
which renders the technique useful for labeling tasks where
personal identity should remain private. Finally, we demon-
strated that “discriminately decreasing discriminality” may
help classifiers to generalize across datasets.

Matlab code for the DDD algorithm is available at
http://mplab.ucsd.edu/∼jake.
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