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Abstract

We examined the open issue of whether FACS action
units (AUs) can be recognized more accurately by clas-
sifying local regions around the eyes, brows, and mouth
compared to analyzing the face as a whole. Our empir-
ical results showed that, contrary to our intuition, lo-
cal expression analysis showed no consistent improve-
ment in recognition accuracy. Moreover, global anal-
ysis outperformed local analysis on certain AUs of the
eye and brow regions. We attributed this unexpected re-
sult partly to high correlations between different AUs in
the Cohn-Kanade expression database. This underlines
the importance of establishing a large, publicly avail-
able AU database with singly-occurring AUs to facili-
tate future research.

1. Introduction

Automatic facial expression recognition has ap-
plications to human-computer interaction, interactive
computer games, and psychological research. It is also
a crucial component of any computer system designed
to recognize a signed language in real time. As part of
a larger project on the integration of signed with spoken
communication, we are studying machine-learning al-
gorithms for the recognition of facial expressions. The
well-known Facial Action Coding System (FACS) by
Ekman and Friesen [3] provides the framework.

FACS defines expressions in terms of the presence
or absence of 44 elementary muscle movements, called
action units (AUs). Although these muscles are situ-
ated within local regions of the face (see Figure 1), AUs
can sometimes also impact on facial regions outside of

their origin. For example, AU 6 (cheek raise), though
triggered by a muscle circling the eye, can also accen-
tuate the nasolabial furrow around the mouth [3]. It
is thus unclear whether local classification would im-
prove recognition accuracy through reduced noise, or
decrease accuracy due to the loss of relevant, global ap-
pearance information.

2. Problem Statement

In this paper, we investigate the open issue of
whether local analysis of the face and classification of
AUs results in higher AU recognition accuracy than
global classification, i.e., from the whole face. Our met-
ric for comparison is the percentage of face pictures that
are classified correctly for the presence or absence of a
particular AU. We restrict our study to images without
partial occlusion or out-of-plane rotation of the head.
Support vector machines with linear kernels are used
for classification.

3. Related Work

Techniques for expression recognition can be di-
vided roughly into two classes: appearance-based
methods, and feature-point methods. Appearance-based
techniques analyze the individual pixels of the face,
possibly after performing a dimension reduction or fre-
quency filtering. Feature-point methods instead track
the locations of key points of the face (e.g., corners of
the eyes) and classify expressions based on the spatial
relationship between these points. Best results for each
approach are similar:

Tian, et al [8] developed a feature point-based,



multi-state model of 7 upper- and 11 lower-face AUs.
Using neural networks as classifiers, they achieved over
95% accuracy in each group of AUs. Donato, et al [2]
compared a variety of appearance-based methods and
achieved 96% accuracy on 12 AUs, both with Gabor fil-
ters and independent component analysis. Bartlett, et
al [1], in more recent work, used Gabor filters, support
vector machines, and hidden Markov models to detect
AUs 1, 2, and 4 with up to 90% accuracy.

3.1. Local versus Global Segmentation

Little work has been done comparing the advan-
tage of local versus global regions for facial expression
recognition. Most such work has conducted this com-
parison for prototypical expressions, and no study, to
our knowledge, has assessed the comparative perfor-
mance for FACS AUs.

Lisetti and Rumelhart developed neural networks
to classify faces as either smiling or neutral [5]. They
compared two networks: one which was trained and
tested on the whole face, and one which was applied
only to the lower half of the face (containing the mouth).
For their application, local analysis of the lower face-
half outperformed the global, whole-face analysis.

Padgett and Cottrell compared global to local face
analysis in the recognition of six prototypical emotions.
In particular, they compared principle component anal-
ysis (PCA) on the whole-face (eigenfaces) to PCA on
localized windows around the eyes and mouth (eigen-
features). The projections onto the eigenvectors from
each analysis were submitted to neural networks for ex-
pression classification. In their experiments, the local-
ized recognition clearly outperformed global recogni-
tion. Padgett and Cottrell attribute these results both
to an increased signal-to-noise ratio and to quicker net-
work generalization due to fewer input parameters [7].

Finally, Littlewort, et al compared whole-face,
upper-half, and lower-half face segmentations for the
recognition of prototypical facial expressions. In their
experiments, the whole-face analysis clearly outper-
formed the other two segmentation strategies by several
percentage points [6].

4. Experiment

We assessed the comparative performance of the
local and global segmentations in the task of FACS AU
recognition for the following AUs: 1, 2, and 4 (brow
AUs); 5, 6, and 7 (eye AUs); and 15, 17, 20, 25, and 27
(mouth AUs). We denote this combined set of AUs as
A .

Each AU number, along with a sample image and

the number of samples in our test database (described
later), is shown in Figure 1.

As data set we used the Cohn-Kanade AU-Coded
Facial Expression Database [4]. This database contains
images of individual human subjects performing a vari-
ety of facial expressions. In the public version of this
database, 97 different human subjects, ranging from
ages to 18 to 30, performed six prototypical expres-
sions: anger, disgust, fear, joy, sadness, and surprise.
For each subject and expression, the database contains
a sequence of face images beginning with the “neutral”
expression (containing no AUs) and ending with the tar-
get expression. Certified FACS coders mapped each im-
age sequence in the database to the set of AUs that were
exhibited in that sequence.

Our experiments required the positions of the eyes
and mouth in each image. We used a subset of the
Cohn-Kanade Database containing 580 images from 76
human subjects. From each image sequence of each
subject, we used the first two images, which contained
the “neutral” expression, and the last two images, in
which the target expression was most pronounced. We
classified only those AUs for which at least 40 posi-
tively labelled images were available in our data subset.

AU recognition was performed in four stages: im-
age processing, image segmentation, feature extraction,
and classification. We describe each stage below.

4.0.1. Image Processing. Prior to segmenting the lo-
cal and global regions, all images were rotated and
scaled such that the coordinates of the eyes and mouth
were constant over all images. The face width was set
to 64 pixels; the inter-ocular distance was set to 24 pix-
els; and the y-distance between the eyes and mouth was
26 pixels.

4.0.2. Image Segmentation. For the local expression
analysis, images were segmented by cropping square
regions around the center of the eyes brows, and mouth.
The center of the brows was estimated by shifting the
center of the eyes up by one-fourth the inter-eye width.
In all cases, the width of each square was 24 pixels.

For global analysis, the face square region was
cropped at a width of 64 pixels around (xc,yc), where
xc is the x-coordinate of the midpoint between the eyes,
and yc is the y-coordinate of the midpoint between the
eyes and mouth. See Figure 2 for an illustration of im-
age segmentation.

4.0.3. Feature Extraction. Each segmented image
was converted into a Gabor representation using a bank
of 40 Gabor filters. Five spatial frequencies (spaced
in half-octaves) and eight orientations (spaced at π/8)
were used. Feature vectors were calculated as the com-



Brow AUs
AU 1 AU 2 AU 4

(200 samples) (120 samples) (176 samples)

Eye AUs
AU 5 AU 6 AU 7

(94 samples) (56 samples) (114 samples)

Mouth AUs
AU 15 AU 17 AU 20 AU 25 AU 27

(44 samples) (116 samples) (68 samples) (168 samples) (86 samples)

Pictures courtesy of Carnegie Mellon University Automated Face Analysis Group,
http://www-2.cs.cmu.edu/afs/cs/project/face/www/facs.htm.

Figure 1. Classified AUs and Prevalence in Dataset

Figure 2. The global segmentation (top-left);
and the local segmentations of the mouth
(top-right), eye (bottom-left), and brow regions
(bottom-right).

plex magnitude of the Gabor jets, and vectors were then
subsampled by a factor of 16 and normalized to unit
length as in [2].

4.0.4. Classification. We trained and tested all classi-
fiers on the subset of the Cohn-Kanade database de-
scribed in Section 4. Each trained classifier detected the
presence or absence of one AU, regardless of whether it
occurred in combination. We did not attempt to account
for non-additive AU combinations.

Ten-fold cross-validation was employed to test the
generalization performance. Each fold contained all
the images of a particular group of subjects. None of
the validation folds contained the same human subject.
We calculated mean accuracies over the ten test folds.
When comparing recognition accuracy between two fa-
cial segmentations, we performed matched-pairs t-tests
in order to assess the statistical significance of any dif-
ference in mean performance.

5. Results

Recognition accuracies (%) are displayed in Table
1 for both the local and global segmentations; the par-
ticular local segmentation depended on the region in
which the AU is centered. Whenever a statistically sig-
nificant difference was identified (for 95% confidence,
the p value of the t-test must be less than 0.05), the
superior segmentation is listed. When no statistically



Table 1. Cross-validation recognition accura-
cies for all AUs.

AU Recognition Accuracy
Segmentation

AU # Local Global Best
Brow AUs

1 77.99 89.67 Global
2 88.29 94.23 =
4 86.65 89.73 =

Eye AUs
5 94.08 92.60 =
6 87.80 94.44 Global
7 93.86 92.43 =

Mouth AUs
15 94.96 95.07 =
17 90.67 91.47 =
20 96.51 95.16 =
25 96.49 95.08 =
27 98.16 99.42 Global

Avg 91.41 93.57

significant difference was present, an = sign is listed. In
some cases (e.g., AU 2), the mean accuracies between
segmentations may differ by several percentage points
and yet not be statistically significant.

To summarize the results, the local segmentation
failed to achieve any consistent and statistically signif-
icant advantage over the global segmentation in terms
of recognition accuracy. More surprising is that, for for
AUs 1 and 6, the global strategy achieved higher accu-
racy. Overall, the average accuracy over all AUs was
higher for the global segmentation.

6. Analysis

We view two factors as possibly responsible for the
statistically indistinguishable, and sometimes even sig-
nificantly superior performance of the global segmenta-
tion relative to the local strategy. The first is that certain
AUs may affect regions of the face outside of the AUs’
muscular origin (see Section 1), and therefore the global
segmentation may profit from this non-local appearance
information. The second is that, due to the high de-
gree of AU correlation in the Cohn-Kanade database,
one AU in one face region may be predictive of another
AU elsewhere in the face.

6.1. Inter-AU Correlation

Some AUs are easier to detect to classify than oth-
ers, both by humans and, as witnessed by the results of
Table 1, by computerized classification. Suppose now
that AU i were more difficult to classify than AU j: If
it were known that AU i were highly correlated with
another AU j (e.g., ρi j = 1), then a classifier for AU i
could attempt to classify instead AU j, and then output
the same result for AU i. Note that the global segmen-
tation could benefit from this correlation even if AUs i
and j occur in different parts of the face. A local seg-
mentation strategy, on the other hand, would be unable
to observe AU j’s appearance changes on the face and
thus would not profit from this correlation.

This hypothesis is supported by the matrix of inter-
AU correlations over our data subset given in Table 2.
Correlation coefficients over the entire Cohn-Kanade
database are similar. We considered the correlation be-
tween AUs i and j to be high if |ρi j| ≥ 0.60; the cor-
responding entries are shown in bold. Notice how AUs
in one region of the face may be highly correlated with
AUs in a different region. In particular, AU 1 is highly
correlated with AU 25, and AU 2 is highly correlated
with both AU 25 and AU 27.

6.1.1. Experiment. In order to test whether inter-AU
correlation was responsible for the superior perfor-
mance of the global classifier for certain AUs, we per-
formed the following experiment: To the feature vec-
tors of both the global and local segmentations, we ap-
pended the classification label aui ∈ {0,1} of every AU
in A except the one to be classified. For instance, for
a classifier for AU 1, we augmented the standard Gabor
feature vector Fn of each classified image n to be:

Fn . (au2,au4,au5,au6,au7,au15,au17,au20,au25,au27)

where the dot . represents vector concatenation, and aui
is the true classification label for AU i in image n. Each
feature vector was thus given perfect knowledge of the
presence or absence of every other AU in A . If the cor-
relation was truly responsible for the global segmenta-
tion strategy’s superior classification performance, then
the local classifier should perform at least as well as the
global classifier when using the modified feature vec-
tors.

In our experiment, we modified the feature vectors
for AUs 1, 2 6, and 27 - all the AUs for which the global
segmentation had shown superior performance 1. Clas-
sification results are displayed in Table 3.

1In the case of AU 2, the difference in mean accuracy was statisti-
cally insignificant.



Table 2. Inter-AU correlation matrix for our subset of the Cohn-Kanade database. Entries ρi j where
|ρi j| ≥ 0.60 (other than self-correlation) are marked in bold.

Brow AUs Eye AUs Mouth AUs
AU # 1 2 4 5 6 7 15 17 20 25 27

1 1.00 0.69 0.26 0.59 -0.08 -0.07 0.39 0.15 0.38 0.69 0.58
2 0.69 1.00 -0.18 0.76 -0.13 -0.23 0.02 -0.08 0.01 0.65 0.83
4 0.26 -0.18 1.00 -0.13 0.46 0.73 0.26 0.61 0.45 0.17 -0.23
5 0.59 0.76 -0.13 1.00 -0.08 -0.15 -0.09 -0.15 0.05 0.65 0.76
6 -0.08 -0.13 0.46 -0.08 1.00 0.53 -0.09 0.26 0.18 0.11 -0.13
7 -0.07 -0.23 0.73 -0.15 0.53 1.00 -0.08 0.43 0.31 0.14 -0.21

15 0.39 0.02 0.26 -0.09 -0.09 -0.08 1.00 0.54 -0.10 -0.15 -0.08
17 0.15 -0.08 0.61 -0.15 0.26 0.43 0.54 1.00 -0.12 -0.26 -0.21
20 0.38 0.01 0.45 0.05 0.18 0.31 -0.10 -0.12 1.00 0.54 -0.12
25 0.69 0.65 0.17 0.65 0.11 0.14 -0.15 -0.26 0.54 1.00 0.65
27 0.58 0.83 -0.23 0.76 -0.13 -0.21 -0.08 -0.21 -0.12 0.65 1.00

Table 3. Recognition accuracies with SVMs for
the local and global segmentations, using both
the standard and augmented feature vectors
(with inter-AU correlation information).

Feature Vector
AU Local Augmented Global Augmented
# Local Global
1 77.99 86.15 89.67 89.93
2 88.29 92.66 94.23 94.36
6 87.80 87.47 94.44 94.62

27 98.16 98.16 99.42 99.42

The local segmentations for AUs 1 and 2 benefited
significantly (p << 0.01) from the appended correla-
tion information. The corresponding global segmen-
tations, on the other hand, were nearly equal despite
the added correlation data. Moreover, after augmenting
both the local and global feature vectors for AUs 1 and
2, no statistically significant difference between the lo-
cal and global segmentations remained (p > 0.05). We
thus conclude that inter-AU correlation was responsible
for the higher recognition accuracy of the global seg-
mentation for these AUs.

For AUs 6 and 27, however, the augmentation of
the actual AU labels did not appreciably benefit the
local segmentations. Correspondingly, the increase in
recognition accuracy achieved by the global segmenta-
tion remained statistically significant (p < 0.01 for AU
6 and p < 0.02 for AU 27). These results are consis-

tent with the relatively low correlations of AU 6 with
other AUs in A , as shown in Table 2. It is conceivable,
however, that the global classifier for AUs 6 and 27 did
profit from correlations with AUs not in A , and that
this contributed to the global classifier’s higher perfor-
mance.

7. Summary and Conclusions

We have investigated empirically the effect of a
global versus local face segmentation on the task of
FACS AU recognition. The local segmentation strat-
egy failed to demonstrate a consistent advantage for any
AU over both classifiers. Some AUs were even classi-
fied more accurately with both classifiers when the en-
tire face was analyzed.

We also studied the effect of inter-AU correlation
within facial images on the recognition accuracies of
various AUs. Our results show that this correlation ef-
fect can impact recognition rates significantly for some
AUs. Such correlation effects may be of little conse-
quence when recognizing prototypical expressions, in
which high AU correlation is natural. They are of con-
siderable importance, however, when analyzing single
AUs, as recognition rates will appear misleadingly high.
We would thus like to underline the importance of es-
tablishing a large, publicly available AU database with
singly-occurring AUs to facilitate future research.
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