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Motivation

Advancements in Bow model

Advantages over other methods
— Ex. Gabor, Local binary patterns

Recently applied to subordinate level
classification problems

Few previous studies and/or systematic
evaluations



Goals

Compare BoW to current approaches
— Ex. LBP and Gabor

Identify differences in BoW model for AFER vs. object (or
scene) recognition

Propose a BoW pipeline tailored to requirements of AFER

Evaluate the contribution of each component of the
proposed BoW pipeline

*AFER- Automatic Facial Expression Recognition



Challenges

 Fundamental differences described between faces and
objects*

« BoW pipeline suited for objects may differ for faces

* Biederman et.al, Neurocomputational bases of objects and bases, Neurocomputational bases of objects and face
recognition (1997). 4
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Related Works

Appearance based Discriminative Approaches

e Gabor wavelets:

— Multi-scale-orientation features extracted densely at every
pixel.

» Lower spatial invariance relative to other features.

« LBP: Local Binary Patterns
— Binary Histograms encoding local texture.

— Features pooled over Rectangular region of support
achieving higher spatial invariance.

¢+ Selecting grid-pattern is a non-trivial problem.



Related Works

 BoW + PHOG™:

— Visual words pooled over 4 facial regions obtained via
segmentation.

— Fused PHOG features at classifier level.

“*BoW representation didn’t give good performance alone.

« Unanswered guestion: if BoW has any coding
advantages?

*Imai et.al, Facial-component-based bag of words and phog descriptor for facial expression recognition, |EEE
Systems, Man and Cybernetics, 2009
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Proposed Approach

 Features
— SIFT- Scale invariant Feature Transform.
— Histograms of gradient.

« Sampling
— Dense or sparse (interest points) sampling.

— (1) Interest point based features saturate* (2) Patches at
fine-scales are most informative™.

— Multi-scale dense SIFT- MSDF features.

Image gradients Keypoint descriptor

*Nowak et.al, Sampling strategies for Bag of feature image classification, ECCV 2006



Proposed Approach

* MSDF

— Dense: Features extracted every 2 pixels.
— Multi-scale: SIFT spatial bin setto 4, 8, 12, 16, 24.

e Codebook

— Approximate k-means clustering.
— Codebook size set to 800 (empirically).

* Encoding and Pooling
— Encoding and pooling is important for good classification™.
— Employ LLC with max-pooling.

* Chatfield et.al, Devil is in the details, BMVC 2011



Proposed Approach

— LLC- Locality Constrained Linear Encoding*.

— Projects each descriptor to a subspace spanned by few
codewords.

« Spatial information
— Spatial Pyramid Matching (SPM) framework.

— Advantage: Standard way to pool features. (vs LBP and
BoW+PHOG).

— Shown to work well and eliminates need to find the best grid

pattern. I
[QM)“ %’6‘ % o0

* J. Wang et.al, Locality-constrained linear coding for image classification, CVPR, 2010
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Datasets

« CK+
— 123 subjects.
— Seven facial expressions.
— 327 Samples (peak-frame).
— Leave-one subject out validation

o Adfes

— 22 subjects

— SiX basic emotions

— 216 Samples (peak-frame).

— 5 fold cross validation on subjects. (Balanced training set)



Comparison
Architectures

* Pre-Processing:
— Variant of Viola Jones detector.

* Gabor:
— Gabor* (72 Filters) + Linear SVM.

e LBP:

— Uniform LBP histograms
— Best performing parameters selected for fair comparison.
— Polynomial kernel SVM.

* Littlewort et.al, The computer expression recognition toolbox (cert), FG 2011



Results

DATASET ADFES CK+
Gabor 94.59 £+ 2.61 91.81 +1.94
LBP 94.96 1+ 1.96 82.38 £ 2.34

« How does BoW compare to previous approaches?
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Results

DATASET ADFES CK+
Gabor 94.59 + 2.61 91.81 +1.94
LBP 94.96 + 1.96 82.38 £+ 2.34
Proposed Method 96.30 + 1.08 95.85 1+ 1.40

« BoW outperforms previous state of the art approaches.
« Thus BoW provides performance benefits for AFER.



Results

DATASET ADFES CK+

MSDF

Proposed Method

« Does BoW gives any performance advantages over MSDF
features.

— Employed MSDF features without encoding and pooling (similar to
Gabor).




Results

DATASET ADFES CK+
MSDF 92.59 £+ 3.41 94.34 + 1.62
Proposed Method 96.30 + 1.08 95.85 + 1.40

« “BoW provides performance benefits beyond MSDF features”

— MSDF has lower performance compared to proposed method
Involving BoW.
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Results

DATASET ADFES CK+
SS-SIFT + BowW
Proposed Method 96.30 + 1.08 95.85 + 1.40

* How does Multi-scale SIFT (MSDF) compare to single scale
SIFT (SS-SIFT)”

— Employed SS-SIFT instead of MSDF with the proposed pipeline.
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Results

DATASET ADFES CK+
SS-SIFT + BowW 93.30 £ 1.13 93.28 £ 1.76
Proposed Method 96.30 + 1.08 95.85 + 1.40

e “Multi-scale SIFT (MSDF) are better than single scale SIFT
(SS-SIFT)”
— MSDF features give 3% advantage over single scale features.
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Results

DATASET ADFES CK+
Simple BoW
Proposed Method 96.30 + 1.08 95.85 + 1.40

Is LLC + max-pooling better than simple voting + sum-
pooling (simple BoW) for AFER.
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Results

DATASET ADFES CK+
Simple BowW 94.09 £+ 2.32 92.67 +1.93
Proposed Method 96.30 + 1.08 95.85 + 1.40

* “LLC + max-pooling Is better than simple voting + sum-
pooling (simple BoW)”.

— LLC with max-pooling lead to significant improvement.
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Results

DATASET ADFES CK+
MSDF 92.59 £+ 3.41 94.34 + 1.62
Simple BowW 94.09 £+ 2.32 92.67 +1.93
SS-SIFT + BowW 93.30 £ 1.13 93.28 £ 1.76
Proposed Method 96.30 + 1.08 95.85 + 1.40

* “ Most substantial benefit by Spatial Pyramids”
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Results

DATASET ADFES CK+
MSDF 92.59 £+ 3.41 94.34 + 1.62
Simple BowW 94.09 £+ 2.32 92.67 +1.93
SS-SIFT + BowW 93.30 £ 1.13 93.28 £ 1.76
Proposed Method 96.30 + 1.08 95.85 + 1.40

“ Most substantial benefit by Spatial Pyramids”
— Without SPM performance dropped from 95.9% to 83.1% for CK+.




Conclusion

Explored application of BoW for AFER.

Spatial information provided by SPM

— Performance drops significantly without it.

Employed highly discriminative MSDF features
— Multi-scale SIFT better than single-scale SIFT.

— Non-linearities introduced in BoW provide performance benefit
beyond MSDF features.

Application of novel encoding and pooling strategies for AFER
— Better than traditional histogramming techniques.
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