
A Discriminative Parts Based Model Approach for Fiducial Points Free and
Shape Constrained Head Pose Normalisation In The Wild

Abhinav Dhall1 Karan Sikka2 Gwen Littlewort2 Roland Goecke3,1 Marian Bartlett2
1iHCC, Australian National University, Australia

2Machine Perception Laboratory, University of California San Diego
3Vision & Sensing Group, HCC Lab, University of Canberra, Australia

abhinav.dhall@anu.edu.au, gwen@mplab.ucsd.edu, roland.goecke@ieee.org, {ksikka, mbartlett}@ucsd.edu

Abstract

This paper proposes a method for parts-based view-
invariant head pose normalisation, which works well even
in difficult real-world conditions. Handling pose is a classi-
cal problem in facial analysis. Recently, parts-based mod-
els have shown promising performance for facial landmark
points detection ‘in the wild’. Leveraging on the success of
these models, the proposed data-driven regression frame-
work computes a constrained normalised virtual frontal
head pose. The response maps of a discriminatively trained
part detector are used as texture information. These sparse
texture maps are projected from non-frontal to frontal pose
using block-wise structured regression. Finally, a facial
kinematic shape constraint is achieved by applying a shape
model. The advantages of the proposed approach are: a) no
explicit dependence on the outputs of a facial parts detector
and, thus, avoiding any error propagation owing to their
failure; (b) the application of a shape prior on the recon-
structed frontal maps provides an anatomically constrained
facial shape; and c) modelling head pose as a mixture-of-
parts model allows the framework to work without any prior
pose information. Experiments are performed on the Multi-
PIE and the ‘in the wild’ SFEW databases. The results
demonstrate the effectiveness of the proposed method.

1. Introduction
In everyday situations and natural conversations, humans

generally tend to move their head while speaking as part
of non-verbal communication. This leads to several chal-
lenges, such as out-of-plane head rotations, (self-)occlusion
and illumination variations. Facial landmark localisation
and head pose handling play a vital role for facial analysis
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Figure 1. Automatic Head Pose Normalisation (HPN): Given
a non-frontal face [10], the proposed framework reconstructs the
input face’s corresponding virtual facial points in the frontal pose.

in fields such as human-computer interaction, biometrics,
and affective computing, and have been active fields of re-
search (e.g. [7, 20]). For instance, for face recognition and
spontaneous facial expression analysis in real-world condi-
tions, the head pose is normalised, to cancel the effect of
head rotation [15], as a pre-processing step. The task of
head pose normalisation (HPN) in particular aims at recon-
structing the fiducial points for the input face in its frontal
pose (referred to as virtual pose [15]) given a non-frontal
face image (or fiducial points). Different from earlier ap-
proaches, this work proposes a view-invariant HPN method
that does not require fiducial points as input in non-frontal
pose and works directly with the input image (Figure 1).

Our approach employs the response maps generated by
discriminatively trained facial part detectors. These con-
fidence score maps are then normalised from non-frontal
to frontal head pose using block-wise structure regres-
sion. A shape model is further applied on the virtual pose
normalised confidence score maps to generate the virtual
frontal landmark points. The entire approach is embedded
in the Mixture of Pictorial Structures (MoPS) framework
[20] to achieve robust performance on real-world images.

The contributions of the paper are as follows:
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1. The proposed HPN approach is based on texture infor-
mation generated from discriminative part detectors,
unlike traditional approaches [1, 2, 16, 17], which are
based on fiducial points.

2. The virtual frontal points generated by the proposed
HPN methods are explicitly shape constrained. This
overcomes the problem of standard regression based
methods [1, 2, 17, 16] where there is no implicit con-
straint on the shape of the object among the input and
output data.

3. Previous methods [1, 2, 15, 16, 17] required head pose
information for selecting a pose-specific regression
model, which is certainly error-prone on real-world
images. In contrast, the proposed method is head pose
invariant.

Traditionally, pose-affected face analysis problems
(recognition, expression analysis, etc.) can be broadly di-
vided into two categories: a) top-down and b) bottom-up.
In the former, the head pose is estimated first and then
pose-specific classification models are used for inference
[12, 13]. In the latter, the head pose is normalised first
and then a frontal pose-specific classification model is used
[2, 16, 17].

In one of the first works, Blanz et al. [4] proposed 3D
Morphable Models for constructing 3D facial points from a
single image. Asthana et al. [2] proposed a 3D HPN method
using view-based Active Appearance Models (AAM) [8] and
3D model warping. The biggest drawback of these ap-
proaches is that the 3D models are computationally very ex-
pensive. 2D deformable model based approaches [8] over-
come the computational problem. Facial landmark points
are extracted using a 2D AAM and frontal pose points are
computed using a linear regression model. However, such
approaches only work well for expressionless faces.

Asthana et al. [1] proposed a regression-based method
for generating faces at various poses. This method gener-
ated faces at different poses by learning a mapping from
frontal to non-frontal facial landmark points. On similar
lines Rudovic et al. [17] proposed a Gaussian Process Re-
gression (GPR) [14] based HPN approach and also com-
pared different regression techniques. This work was then
extended by coupling shape constraint with GPR (termed
SC-GP) leading to performance improvements. The authors
argued that without any explicit face shape constraints, the
normalised points may not adhere to the face shape.

A top-down approach was proposed by Huang et al. [12],
which learned view-specific facial expression recognition
(FER) models. During the inference step, a head pose esti-
mator was used to select one of the view-specific FER mod-
els. Moore et al. [13] presented an extensive comparison
of texture descriptors for multi-view FER. The proposed

work in the paper is different from other HPN works, e.g.
[12, 13, 17, 15], where the experiments were conducted on
datasets captured in a lab-controlled environment only.

The shortcoming of approaches such as [1, 17] is that
they require landmark points during inference. This is be-
cause robust facial landmark detection itself is an active re-
search problem, particularly when dealing with real-world
images, leading to errors in the results. This is in contrast
to our parts-based approach, which does not require facial
landmark points as input. On the other hand, approaches
such as [13] require head pose information for selecting a
pose-specific FER model. These approaches assume accu-
rate results from the face detection and head pose estimation
steps, which are both non-trivial tasks when working with
real-world images. To remove the prerequisite of head pose
estimation, Hu et al. [12] proposed to learn separate FER
models for each pose. However, this further complicates
the problem as increasing the number of non-frontal poses
would also increase the number of models to be learnt and,
thus, require more training data.

Further, [13] and [12] used hand crafted descriptors such
as histogram of gradients (HOG) and local binary patterns
(LBP). In contrast, part-based filters are learnt discrimina-
tively for localising a particular part. The output from such
filters is in spirit similar to discriminative mid-level repre-
sentations or high-level features, which have been shown
to outperform low-level features [18]. Another limitation
of prior work [16, 17] is that fewer landmark points are
used (39 in [16, 17]). This can be problematic, for exam-
ple, in FACS-based facial action unit recognition such as
AU20 (with no chin information). In contrast, our method
generates a detailed 68-point annotation.

2. Mixture of Pictorial Structures

The MoPS framework [20] represents the parts of an ob-
ject as a graph with n vertices V = {v1, . . . , vn} and a set
of edges E. Here, each edge (vi, vj) ∈ E pair encodes the
spatial relationship between parts i and j. A face is repre-
sented as a tree graph here. Formally speaking, for a given
image I , the MoPS framework computes a score for the
configuration L = {li : i ∈ V } of parts based on two mod-
els: an appearance model and a spatial prior model. These
two models will be discussed now using the tree-based pic-
torial structures formulation similar to Zhu and Ramanan
[20]. In particular, the formulation of [20] is followed.

The Appearance Model scores the confidence of a part-
specific template wp applied to a location li. Here, p is
a view-specific mixture corresponding to a particular head
pose. φ(I, li) is the histogram of oriented gradient descrip-
tor [9] extracted from a location li. Thus, the appearance



model calculates a score for configuration L and image I:

Appp(I, L) =
∑
i∈Vp

wi
p.φ(I, li) (1)

The advantage of the part templates (detectors) in the ap-
pearance model is that less amount of data is required for
training for each part detector. The response maps gener-
ated by these discriminative part detectors are sparse, which
makes their reconstruction in the frontal view (for HPN)
simpler. The Shape Model learns the kinematic constraints
between each pair of parts. The shape model (as in [20]) is
defined as:

Shapep(L) =
∑

ij∈Ep

apijdx
2+ bpijdx+ c

p
ijdy

2+ dpijdy (2)

Here, dx and dy represent the spatial distance between
two parts. a, b, c and d are the parameters corresponding
to the location and rigidity of a spring, respectively. From
Eqs. 1 and 2, the scoring function S is:

Score(I, L, p) = Appp(I, L) + Shapep(L) (3)

During the inference stage, the task is to maximise Eq. 3
over the configuration L and mixture p (which represents
a pose). Therefore, if the pose of the face is known, then
the inference is equivalent to finding the configuration L∗,
which maximises the score for a given pose p:

L∗ = max
L

(Score(I, L, p)) (4)

When the pose is unknown, all models learnt for different
values of p are applied (Eq. 4) and the configuration specific
to the highest scoring mixture is chosen as the facial parts
locations.

3. Points Based Head Pose Normalisation
The points based HPN methods being discussed now are

based on the idea of applying regression [1, 16, 17] over
non-frontal points to obtain frontal points. For an image
I containing a non-frontal face, the fiducial point locations
are computed using the parts-based model discussed in the
previous section. For HPN, a mapping function (regressor)
F : Li

p → Li
f is learnt that maps point locations in the

non-frontal view to locations in the frontal view. Li
p and Li

f

are the 2D coordinates of part i in non-frontal and frontal
pose, respectively. It should be highlighted that Rudovic
et al. [17] also learned a similar mapping; however, during
the test phase, manually defined landmark points were used
as input. In contrast, in the proposed approach (Section 5),
the part locations are computed automatically. Therefore,
the results (Section 6) are closer to a real-world scenario
and account for error due to face detection and facial parts
localisation. Two different variants of points based HPN
methods used in the experiments section (Section 6) are dis-
cussed below.

3.1. Part Wise Points (PWP) Based Normalisation

In PWP based HPN methods, frontal points are gener-
ated by regressing one point at a time using a point specific
regression model. Based on univariate regression, n mod-
els corresponding to each part (2D location) are learnt for
each non-frontal pose. Thus, the total number of models
learnt is n ∗ P , where P is the number of non-frontal poses
in the training data. The mapping function is then the re-
gression function Rl : Lp → Li

f , i.e. the frontal location
Li
f of each part is learnt from its corresponding non-frontal

locations Lp. The major limitation of this method is that
the outputs from different regression models are treated in-
dividually. As pointed out by [15], in such a case, there is
no guarantee that the regressed part locations will adhere to
the anatomical shape constraint of the face. The next model
addresses this limitation.

3.2. All Parts Points (APP) Based Normalisation

The limitation of PWP HPN is overcome by learning a
multi-variate regression model. In APP based HPN, frontal
points are generated by learning a single regression model.
That is, a function Rl : Lp → Lf that maps all parts in the
non-frontal pose to all parts in the frontal pose is learnt. In
the classic GPR framework [14], a multi-variate regression
model is computed by mapping independent input points
to single output dimension models. There is no explicit
constraint modelling the relationship between the output di-
mensions. The model is made more robust by posing the
APP based normalisation as a structured regression prob-
lem and using the twin Gaussian process regression (Twin-
GPR) [5] framework. In the next section, Twin-GPR and its
limitation when used for HPN are discussed.

4. Twin-GPR
The Twin-GPR framework models the relationship be-

tween the input and output variables. It uses Gaussian pro-
cess priors on both covariances and responses, both multi-
variate. The Kullback-Leibler divergence between the in-
put and output data distributions, modelled as a Gaussian
process, is minimised for capturing the correlation between
the output dimensions. Bo et al. [5] proposed this method
for regressing 2D human poses, as a structured regression
problem, where the output dimensions are correlated by the
human body kinematics. Similar to their problem, the in-
tent in this paper is to reconstruct the facial points, where
the points adhere to the anatomical face shape constraint.
See Bo et al. [5] for details of the method.

Twin-GPR assumes that the input and output distribu-
tions are Gaussian. For real-world images, this assumption
may not be satisfied due to the error introduced by the face
alignment step [15]. This drawback is addressed in [15] by
learning shape models based on ASM [7]. Shape parame-



Figure 2. Flow diagram of the proposed Confidence Maps based HPN method (see Section 5.1).

ters are applied during the GPR inference to maintain the
face shape constraint. To calculate the shape parameters,
facial points in the frontal view are required. To synthesise
the constrained shape in the frontal view, the shape parame-
ters are required, which creates a chicken-and-egg problem.
The authors proposed two methods to overcome this situa-
tion: (1) Shape parameters are estimated from frontal view
points synthesised using a normal GPR regression. These
shape parameters are then used in the Shape Constrained
Gaussian Process (SC-GP) regression. (2) GPR regression
is used to synthesise frontal view shape points and shape pa-
rameters together. The regressed shape parameters are then
used to reconstruct the shape. Next, a parameter search is
performed, which reduces the error between the SC-GP out-
put and the shape reconstructed using the parameters.

A limitation of deformable models, such as ASM, is that
they perform very well for subject-dependent data (i.e. the
subject in the training and test images is the same), but their
performance on subject-independent data is not robust. Ide-
ally, for a face analysis problem such as FER, the face align-
ment method should be invariant to the subject’s identity
for making it work in real-world conditions [6]. The ASM
is also sensitive to initialisation, requiring accurate face de-
tection. To overcome this limitation, a Confidence Map
based HPN (CM-HPN) that exploits the advantage of parts
based detectors and performs HPN on the parts detector re-
sponse is proposed. Therefore, facial landmark points are
not required for HPN when it is performed within in the PS
inference framework. This is the main benefit of the pro-
posed method CM-HPN over the prior work [1, 16, 17]. In
the experiments (Section 6), the performance of two CM-
HPN methods (discussed below in Sections 5.1 and 5.2) is
compared with the points-based methods [1, 17].

5. Confidence Map Based HPN

The primary idea in this work is to learn a mapping from
the raw outputs of parts-based detectors – confidence maps
– for non-frontal faces to their frontal counterpart. This step
would normalise the head pose. A confidence map is a 2D
matrix where each element’s value is the detector’s infer-
ence score describing the probability of presence of a part.

Further, a shape constraint is applied by exploiting proper-
ties of parts-based models. The mathematical formulation
for cases with known pose is discussed in Section 5.1 and
later extended to unknown poses (Section 5.2).

5.1. Pose-Specific Confidence Map Based HPN

Recall that Eqs. 1 and 2 are the appearance and shape
components of the overall score (Eq. 3) optimised by the
PS model. Given a non-frontal face image for pose p, part-
specific filters are applied via Eq. 1. This produces part-
specific response maps (denoted by Appp). For simplicity,
the response of the appearance model for a particular part i
is denoted as a function θ, which is defined as:

Cp
i = θ(I, i, p) (5)

The responseCp
i will be a matrix of the size of the image

I . Component (x, y) of this matrix represents the probabil-
ity of part i being present at location (x, y) in the image.
The task is to reconstruct the response map at the frontal
pose for part i, referred to as Cf

i , from its response map Cp
i

at pose p. This is achieved by a structured regression model
(Twin-GPR, Section 4) as discussed below. Cf

i can be con-
sidered as a (synthesised) virtual frontal view response map
for a part i. The motivation for using Twin-GPR is to main-
tain the relationship between neighbouring points being in-
ferred in the frontal view response map.

The response mapsCp
i is divided into blocks and a block-

by-block Twin-GPR regression is learnt. This idea is mo-
tivated by the work of Biderman and Kalocsais [3], who
discuss the importance of maintaining location information
for facial parts when dealing with faces in a holistic man-
ner. Thus, each response map Cp

i is first divided into k
equal sized non-overlapping blocks B = {Bp

1B
p
2 ....B

p
k}

as shown in Figure 2 and a separate regression function
is learnt for mapping each block. Thus, the big problem
of mapping an entire confidence map is transformed into
many smaller problems of mapping individual blocks with
the aim of maintaining a structure. Non-overlapping blocks
are preferred over a scanning window or overlapping blocks
for their computational simplicity. Mathematically, during
training we learn a set of models for each part i, denoted



Algorithm 1: Frontal virtual points reconstruction us-
ing pose-specific confidence map regression

Input: Image I and pose p
Output: Score′ and L∗f

1 for part i ∈ V do
2 Compute part wise confidence maps,

Cp
i = θ(I, i, p) (Eq. 5) ;

3 Divide Cp
i into k blocks B

4 B = {Bp
1B

p
2 ....B

p
k};

5 for a = 1 : k do
6 Reconstruct Bf

a ← Bp
a using corresponding

model fromRi

7 end
8 Rejoin reconstructed blocks

Cf
i ← {B

f
1 , B

f
2 ...B

f
k} ;

9 end
10 FC ∈

∑
i∈V C

f
i ;

11 Compute frontal Shapef (L) (Eq. 2) and maximise
Score′ (Eq. 6)

12 L∗f = maxL(Score
′(I, L, p)

byRi. Each setRi comprises of a regression modelRj
i that

maps block Bp
j to its frontal counterpart denoted Bf

j . We
learn these models independently for each pose.

On a big picture level, the process of reconstructing
frontal maps for each block and concatenating them pro-
duces virtual frontal view response maps for each part i.
Virtual response maps for all parts together shall be referred
to as V irtp, which is generated from Appp and is referred
to as the set of initial response maps at pose p.

Shape Constraint: Further, the shape constraint is ap-
plied to the virtual frontal pose maps V irtp to generate the
virtual frontal shape as shown in Figure 1. This is accom-
plished by jointly maximising a modified score function,
where V irtp is used as appearance response, and the shape
model (denoted as Shapef ) corresponding to the frontal
pose:

Score′(I, L, p) = V irtp(I, L) + Shapef (L) (6)

The intuition behind fixing the shape model to the frontal
pose is to constrain the framework to output (virtual) fidu-
cial point locations in the frontal pose only. The point lo-
cations are then obtained by solving the above optimisation
problem using dynamic programming.

Since the head pose is known a priori, this method is re-
ferred to as the pose-specific confidence map based HPN
CM-HPNPS . Algorithm 1 describes the reconstruction
process in detail. CM-HPNPS is limited in that it requires
head pose information (similar to [1, 2, 17, 16]) and, hence,
in the next section (5.2), a technique to extend CM-HPNPS

for unknown head poses is presented.

5.2. Pose-Invariant Confidence Map Based HPN

As discussed in Section 5.1, when the head pose is un-
known, the configuration L∗ of the highest scoring mixture
p is chosen as the best facial parts location. Based on this
model, CM-HPNPS can be computed in a pose-invariant
manner by simply enumerating over the Score′(I, L, p) of
each pose. Substituting Score′ (from Eq. 6) into Eq. 4 and
maximising over all poses in the training data, the CM-
HPNPI based V irtp based inference maximises:

L∗f = max
p

[max
L

(Score′(I, L, p))] (7)

Here, L∗f is the highest scoring ‘virtual’ frontal head pose
configuration. Basically, Algorithm 1 is computed for all
poses p in the training set and L is the ‘virtual’ frontal head
pose configuration generated with a regression model spe-
cific to a pose p.

6. Experiments
Our experiments on the Multi-PIE [11] dataset employed

the same experimental protocol as Rudovic et al. [17]. This
static facial expression dataset contains images from four
pan angles (0◦, −15◦, −30◦, −45◦), with 200 images per
pose. There are a total of 74 subjects and a five-fold cross
validation over the samples was performed. The regression
based HPN methods [1] and [17] were implemented for per-
formance comparison and are referred to as PWP and APP
(Section 3). The only difference with respect to the original
implementations is that the facial points are located using
the MoPS framework. Application of MoPS gives a perfor-
mance advantage since it offers a better initialisation com-
pared to the methods used in the original implementations
of [1, 17]. [17] showed that the performance of Twin-GPR
is better than GPR and SVM. Hence, Twin-GPR was used
for learning PWP and APP. However for PWP, the output di-
mension is a single variate only (separate models are learnt
for x and y positions).

Implementation details: The face area is located us-
ing the Viola-Jones face detector [19]. The faces are not
aligned as a pre-processing step before the HPN step, as
face alignment is a non-trivial problem for real-world im-
ages. Next, the detected face areas are rescaled to 320×240
pixels for consistency. The parameters for Twin-GPR are
tuned empirically. The range of parameters experimented
for the RBF kernel size is [0.1 − 2] and λ = [1.0e−1 −
1.0e−5]. The MoPS framework [20] is used and all exper-
iments are based on independent models, since these were
reported to be more accurate than shared models [20]. For
the training details of the MoPS, see the original paper [20].

The performance of the points-based (PWP, APP) and
confidence maps based HPN methods (CM-HPNPS , CM-
HPNPI ) was compared on the Multi-PIE database [11] us-
ing the error in the location of the reconstructed landmark



Grid 2× 2 3× 3 4× 4 5× 5

NMSE .081±.007 .076±.006 .061±.006 .059±0.0002

Table 1. NMSE comparison for four grid configurations for CM-
HPNPS . 5× 5 blocks has the smallest error.

points w.r.t. the frontal landmark points in the ground truth.
Zhu and Ramanan [20] normalised the landmark location
using the inter-occular distance and the average of height
and width of faces. Similar to [20], we used the Normalised
Mean Square Error (NMSE), which describes the land-
mark localisation error (the L2-distance between the vir-
tual frontal points and the ground truth) normalised by the
face size. This facilitates a fair comparison of the proposed
methods with others in the future.

As discussed in Section 5, both CM-HPNPS and CM-
HPNPI are computed block-by-block in a grid, whose con-
figuration was chosen empirically. Different grid structures
for non-overlapping blocks: [2×2, 3×3, 4×4, 5×5] were
compared. Table 1 summarises the performance compari-
son in terms of NMSE, showing that the models with 25
blocks performed the best achieving the lowest NMSE. This
supports our hypothesis that dividing the maps into blocks
reduces the complexity of the learnt model by maintaining
a spatial constraint. As the number of blocks increase, the
performance also increases until it saturates. For further
comparison of the confidence maps based methods with the
point-based ones, the highest performing grid configuration
of 5× 5 blocks was used.

Table 2 shows the performance for PWP, APP, CM-
HPNPS and CM-HPNPI . The 5 × 5 blocks (i.e. 25 blocks
in total in a confidence map) grid configuration was cho-
sen for CM-HPNPS and CM-HPNPI . CM-HPNPS has the
smallest NMSE, performing the best. APP and CM-HPNPI

perform on par with each other (even though no prior head
pose information is used in CM-HPNPI ). For the pose an-
gle of 45◦, the NMSE is fairly high for both points-based
methods as compared to the proposed methods. This can
be explained by the argument that as the head pose devi-
ates away from the frontal view, computing facial points on
the occluded side is error prone. We also observe that the
reconstruction error is highest for PWP. This is primarily

Pose 15◦ 30◦ 45◦ Avg.
PWP [1, 17] 0.098 0.089 0.100 0.095

±0.002 ±0.001 ±0.007 ±0.05
APP [15] 0.062 0.087 0.100 0.084

±0.001 ±0.003 ±0.005 ±0.02
CM-HPNPS 0.059 0.058 0.059 0.059

±0.001 ±0.003 ±0.002 ±0.0002
CM-HPNPI 0.076 0.082 0.088 0.082

±0.009 ±0.005 ±0.005 ±0.006
Table 2. NMSE comparison for the four pose normalisation meth-
ods: PWP [1, 17], APP [15], CM-HPNPS , and CM-HPNPI .

Figure 3. Performance comparison of PWP and APP with the two
proposed methods (CM-HPNPS and CM-HPNPI ) across different
facial expressions.

due to the lack of a relationship between the outputs of the
different regressions models.

Ideally, the performance of CM-HPNPS and CM-
HPNPI should be similar. However, CM-HPNPI has a
higher NMSE when the maximum score is achieved by an
incorrect pose. For example, for a face with original head
pose 45◦, CM-HPNPI will apply HPN with all models in
R (for example, 45◦ → 0◦, 30◦ → 0◦). If HPN with 30◦

model scores higher than the 45◦ model, then the method
will assume that the face has a default head pose of 30◦ and
will choose the corresponding incorrect reconstruction.

The expression wise NMSE is shown in Figure 3. For the
Surprise expression, the error is large for all methods except
CM-HPNPS , which performs consistently best across all
expressions. The biggest variation is for the points-based
methods PWP and APP, which are based on [1, 15].

SFEW: To test the performance of CM-HPNPS and
CM-HPNPI on ‘in the wild data’, the SFEW database [10]
containing a set of video frames depicting facial expres-
sions from movies, was used. Qualitative, visual compar-
ison was performed as there is no frontal ground truth for
SFEW unlike for Multi-PIE. We conducted a user survey
(discussed below) for performance comparison on the HPN
images produced by different methods. SFEW images, for
which the pose was roughly similar to the Multi-PIE train-
ing set’s pose range, were chosen manually. In this anal-
ysis, the performance of a HPN method was tested for: a)
images ‘in the wild’, b) unseen pose, and c) unseen expres-
sions. We employed the HPN models that were trained on
the Multi-PIE data for obtaining the virtual fiducial points
for SFEW images. This reflects the power of discriminative
part detectors, which, even with limited amounts of training
data (Multi-PIE), are partially immune to attributes such as
identity and illumination. This enables their use on unseen
‘in the wild data’ (e.g. SFEW).

Figure 4 shows the performance of the proposed meth-
ods on SFEW images. Results of point-based regression



methods are shown in columns 3 and 4, while those for
the confidence maps based regression methods are shown
in columns 5 and 6. It is evident from these images that the
reconstruction of the overall shape for the PWP method is
not as accurate as the other methods and that APP is not able
to reconstruct the mouth correctly in some cases. Among all
four methods, CM-HPNPS generally performs the best, but
is unable to reconstruct eyes clearly in some cases. This
can be addressed by employing denser grids. Note that the
initialisation for the confidence score based methods is done
by the Viola-Jones face detector. If a more accurate face de-
tector such as MoPS itself is used, the reconstruction quality
is expected to improve. It is also interesting to note that the
jaw line of the reconstructed faces for the outputs of CM-
HPNPS and CM-HPNPI shows a high degree of similarity
to the jaw line shape of the subjects in the corresponding
non-frontal images as compared to the output of APP, where
the jaw line seems to be ‘averaged out’.

It is worth noting that [1, 17, 15] either used manually
defined points or AAM. In contrast, the performance of
APP can be attributed to robust landmark detection by the
MoPS framework. As discussed earlier (Section 4), [15]
proposed SC-GP to apply a shape constraint to overcome
the problems arising due to inaccurate facial landmarks de-
tection while regressing using Twin-GPR. Therefore, the
performance of points-based methods can benefit from us-
ing a MoPS model.

In the last row of Figure 4, the reconstruction of the CM-
HPNPI method is not accurate for the eyebrows. On further
investigation, it is found that these errors are due to the er-
ror induced by the regression method, when the score of a
non-frontal model’s frontal reconstruction is higher than the
original non-frontal model’s reconstruction score. This can
be corrected by applying efficient normalisation (for exam-
ple, setting the mean to 0 and variance to 1) to data before
regression. Twin-GPR is a generic structured regression
model, the performance of the framework can be improved
by using the class of structured SVM regression algorithms,
which are problem specific. Further, based on the part shar-
ing formulation, the method can be easily extended to con-
tinuous pose normalisation by sharing regression models
among parts in neighbouring poses.1

A user survey was performed on SFEW, where 15 sub-
jects were asked to rate the expression preserving ability of
HPN for the 4 methods (PWP, APP, CM-HPNPS and CM-
HPNPI ) on a scale of 1 (poor) - 5 (excellent). CM-HPNPS

and CM-HPNPI achieve mean values of 3.2 and 2.7, and
standard deviations of 1.2 and 1.1, respectively. This is bet-
ter than the ratings of PWP and APP, whose mean values
are 1.9 and 2.5, and standard deviations of 1.1 and 1.2), re-
spectively. Performing an ANOVA confirms that the result

1As continuous pose normalisation is not the focus of this paper, it is
only briefly described in the supplementary material.

is statistically significant with p < 0.0001.

7. Conclusions

In this paper, we propose a new HPN method called Con-
fidence Map based HPN. The method is based on confi-
dence maps generated from parts based detectors and is em-
bedded in the mixture of pictorial structure framework. The
proposed method has no explicit dependency on facial parts
location, thus making it suitable for images in real-world
conditions. We also propose the use of a shape prior on
reconstructed maps by applying a facial shape constraint.
Further, enumerating over different poses allows our algo-
rithm to work without any prior head pose information.

The results on the Multi-PIE database show the effec-
tiveness of our methods in comparison to other state-of-the-
art points based methods. We also show the generalisation
capability of our algorithm using qualitative experiments on
an ‘in the wild’ database (SFEW) by using pre-trained mod-
els from the Multi-PIE database. It is important to note that
the images in SFEW are taken in more varied environments
as compared to the laboratory-controlled environment in the
Multi-PIE dataset.

The points-based approaches only provide geometric
features, which are not appropriate for problems such as
micro-expression and facial action unit analysis. Our meth-
ods provide both geometric and texture information (pose
normalised response maps). Therefore, as part of future
work, we will extend and experiment with the texture de-
scriptors obtained as part of HPN.
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