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Abstract

In this paper, we propose that information maximization can pro-
vide a uni�ed framework for understanding saccadic eye move-
ments. In this framework, the mutual information among the cor-
tical representations of the retinal image, the priors constructed
from our long term visual experience, and a dynamic short-term
internal representation constructed from recent saccades provides
a map for guiding eye navigation. By directing the eyes to loca-
tions of maximum complexity in neuronal ensemble responses at
each step, the automatic saccadic eye movement system greedily
collects information about the external world, while modifying the
neural representations in the process. This framework attempts
to connect several psychological phenomena, such as pop-out and
inhibition of return, to long term visual experience and short term
working memory. It also provides an interesting perspective on
contextual computation and formation of neural representation in
the visual system.

1 Introduction

When we look at a painting or a visual scene, our eyes move around rapidly and
constantly to look at di�erent parts of the scene. Are there rules and principles that
govern where the eyes are going to look next at each moment? In this paper, we
sketch a theoretical framework based on information maximization to reason about
the organization of saccadic eye movements.
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Vision is fundamentally a Bayesian inference process. Given the measurement by
the retinas, the brain's memory of eye positions and its prior knowledge of the
world, our brain has to make an inference about what is where in the visual scene.
The retina, unlike a camera, has a peculiar design. It has a small foveal region
dedicated to high-resolution analysis and a large low-resolution peripheral region
for monitoring the rest of the visual �eld. At about 2:5o visual angle away from
the center of the fovea, visual acuity is already reduced by a half. When we `look'
(foveate) at a certain location in the visual scene, we direct our high-resolution
fovea to analyze information in that location, taking a snap shot of the scene using
our retina. Figure 1A-C illustrate what a retina would see at each �xation. It
is immediately obvious that our retinal image is severely limited { it is clear only
in the fovea and is very blurry in the surround, posing a severe constraint on the
information available to our inference system. Yet, in our subjective experience, the
world seems to be stable, coherent and complete in front of us. This is a paradox
that have engaged philosophical and scienti�c debates for ages. To overcome the
constraint of the retinal image, during perception, the brain actively moves the eyes
around to (1) gather information to construct a mental image of the world, and (2)
to make inference about the world based on this mental image. Understanding the
forces that drive saccadic eye movements is important to elucidating the principles
of active perception.

A B C D

Figure 1. A-C: retinal images in three separate �xations. D: a mental mosaic created by
integrating the retinal images from these three and other three �xations.

It is intuitive to think that eye movements are used to gather information. Eye
movements have been suggested to provide a means for measuring the allocation
of attention or the values of each kind of information in a particular context [16].
The basic assumption of our theory is that we move our eyes around to maximize
our information intake from the world, for constructing the mental image and for
making inference of the scene. Therefore, the system should always look for and
attentively �xate at a location in the retinal image that is the most unusual or the
most unexplained { and hence carries the maximum amount of information.

2 Perceptual Representation

How can the brain decide which part of the retinal image is more unusual? First of
all, we know the responses of V1 simple cells, modeled well by the Gabor wavelet
pyramid [3,7], can be used to reconstruct completely the retinal image. It is also
well established that the receptive �elds of these neurons developed in such a way
as to provide a compact code for natural images [8,9,13,14]. The idea of compact
code or sparse code, originally proposed by Barlow [2], is that early visual neurons
capture the statistical correlations in natural scenes so that only a small number



of cells out of a large set will be activated to represent a particular scene at each
moment. Extending this logic, we suggest that the complexity or the entropy of
the neuronal ensemble response of a hypercolumn in V1 is therefore closely related
to the strangeness of the image features being analyzed by the machinery in that
hypercolumn. A frequent event will have a more compact representation in the
neuronal ensemble response. Entropy is an information measure that captures the
complexity or the variability of signals. The entropy of a neuronal ensemble in a
hypercolumn can therefore be used to quantify the strangeness of a particular event.

A hypercolumn in the visual cortex contains roughly 200,000 neurons, dedicated
to analyzing di�erent aspects of the image in its `visual window'. These cells are
tuned to di�erent spatial positions, orientations, spatial frequency, color disparity
and other cues. There might also be a certain degree of redundancy, i.e. a number
of neurons are tuned to the same feature. Thus a hypercolumn forms the funda-
mental computational unit for image analysis within a particular window in visual
space. Each hypercolumn contains cells with receptive �elds of di�erent sizes, many
signi�cantly smaller than the aggregated `visual window' of the hypercolumn. The
entropy of a hypercolumn's ensemble response at a certain time t is the sum of
entropies of all the channels, given by,

H(u(R~x; t)) = �
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where u(R~x; t) denotes the responses of all complex cell channels inside the visual
window R~x of a hypercolumn at time t, computed within a 20 msec time window.
u(~x; �; �; t) is the response of a V1 complex cell channel of a particular scale � and
orientation � at spatial location ~x at t. p(u(R~x; v; �; �; t)) is the probability of cells
in that channel within the visual window R~x of the hypercolumn �ring v number
of spikes. v can be computed as the power modulus of the corresponding simple
cell channels, modeled by Gabor wavelets [see 7].

P
v p(u(R~x; v; �; �; t)) = 1. The

probability p(u(R~x; v; �; �; t)) can be computed at each moment in time because of
the variations in spatial position of the receptive �elds of similar cell within the
hypercolumn { hence the `same' cells in the hypercolumn are analyzing di�erent
image patches, and also because of the redundancy of cells coding similar features.

The neurons' responses in a hypercolumn are subject to contextual modulation from
other hypercolumns, partly in the form of lateral inhibition from cells with similar
tunings. The net observed e�ect is that the later part of V1 neurons' response,
starting at about 80 msec, exhibits di�erential suppression depending on the spatial
extent and the nature of the surround stimulus. The more similar the surround
stimulus is to the center stimuli, and the larger the spatial extent of the `similar
surround', the stronger is the suppressive e�ect [e.g. 6]. Simoncelli and Schwartz
[15] have proposed that the steady state responses of the cells can be modeled by
dividing the response of the cell (i.e. modeled by the wavelet coe�cient or its power
modulus) by a weighted combination of the responses of its spatial neighbors in order
to remove the statistical dependencies between the responses of spatial neighbors.
These weights are found by minimizing a predictive error between the center signal
from the surround signals. In our context, this idea of predictive coding [see also 14]
is captured by the concept of mutual information between the ensemble responses
of the di�erent hypercolumns as given below,
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where u(R~x; t) is the ensemble response of the hypercolumn in question, and u(
~x; t)
is the ensemble response of the surrounding hypercolumns. p(u(R~x; vR; �; �; t)) is the
probability that cells of a channel in the center hypercolumn assumes the response
value vR and p(u(
~x; vR; �; �; t)) the probability that cells of a similar channel in the
surrounding hypercolumns assuming the response value v
. t1 is the delay by which
the surround information exerts its e�ect on the center hypercolumn. The mutual
information I can be computed from the joint probability of ensemble responses of
the center and the surround.

The steady state responses of the V1 neurons, as a result of this contextual modula-
tion, are said to be more correlated to perceptual pop-out than the neurons' initial
responses [5,6]. The complexity of the steady state response in the early visual
cortex is described by the following conditional entropy,

H(u(R~x; t)ju(
~x; t� �t1)) = H(u(R~x; t))� I(u(R~x; t);u(
~x; t� �t1)):

However, the computation in V1 is not limited to the creation of compact repre-
sentation through surround inhibition. In fact, we have suggested that V1 plays
an active role in scene interpretation particularly when such inference involves high
resolution details [6]. Visual tasks such as the inference of contour and surface likely
involve V1 heavily. These computations could further modify the steady state re-
sponses of V1, and hence the control of saccadic eye movements.

3 Mental Mosaic Representation

The perceptual representation provides the basic force for the brain to steer the high
resolution fovea to locations of maximumuncertainty or maximum signal complex-
ity. Foveation captures the maximumamount of available information in a location.
Once a location is examined by the fovea, its information uncertainty is greatly re-
duced. The eyes should move on and not to return to the same spot within a certain
period of time. This is called the `inhibition of return'.

How can we model this reduction of interest? We propose that the mind creates
a mental mosaic of the scene in order to keep track of the information that have
been gathered. By mosaic, we mean that the brain can assemble successive reti-
nal images obtained from multiple �xations into a coherent mental picture of the
scene. Figure 1D provides an example of a mental mosaic created by combining
information from the retinal images from 6 �xations. Whether the brain actually
keeps such a mental mosaic of the scene is currently under debate. McConkie and
Rayner [10] had suggested the idea of an integrative visual bu�er to integrate in-
formation across multiple saccades. However, numerous experiments demonstrated
we actually remember relatively little across saccades [4]. This lead to the idea
that brain may not need an explicit internal representation of the world. Since the
world is always out there, the brain can access whatever information it needs at the
appropriate details by moving the eyes to the appropriate place at the appropriate
time. The subjective feeling of a coherent and a complete world in front of us is a
mere illusion [e.g. 1].

The mental mosaic represented in Figure 1Dmight resemble McConkie and Rayner's
theory super�cially. But the existence of such a detailed high-resolution bu�er with
a large spatial support in the brain is rather biologically implausible. Rather, we
think that the information corresponding to the mental mosaic is stored in an in-

terpreted and semantic form in a mesh of Bayesian belief networks in the brain
(e.g. involving PO, IT and area 46). This distributed semantic representation of



the mental mosaic, however, is capable of generating detailed (sometimes false) im-
agery in early visual cortex using the massive recurrent convergent feedback from
the higher areas to V1. However, because of the limited support provided by V1
machinery, the instantiation of mental imagery in V1 has to be done sequentially
one `retinal image' frame at a time, presumably in conjunction with eye movement,
even when the eyes are closed. This might explain why vivid visual dream is always
accompanied by rapid eye movement in REM sleep. The mental mosaic accumu-
lates information from the retinal images up to the last �xation and can provide
prediction on what the retina will see in the current �xation. For each u(~x; �; �)
cell, there is a corresponding e�ective prediction signal m(~x; �; �) fed back from the
mental mosaic.

This prediction signal can reduce the conditional entropy or complexity of the en-
semble response in the perceptual representation by discounting the mutual infor-
mation between the ensemble response to the retinal image and the mental mosaic
prediction as follow,

H(u(R~x; t)jm(R~x; t� �t2)) = H(u(R~x; t))� I(u(R~x; t);m(R~x; t� �t2))

where �t2 is the transmission delay from the mental mosaic back to V1.

At places where the fovea has visited, the mental mosaic representation has high
resolution information and m(~x; �; �; t� �t2) can explain u(~x; �; �; t) fully. Hence,
the mutual information is high at those hypercolumns and the conditional entropy
H(u(R~x; t)jm(R~x; t � �t2)) is low, with two consequences: (1) the system will not
get the eyes stuck at a particular location; once the information at ~x is updated
to the mental mosaic, the system will lose interest and move on; (2) the system
will exhibit `inhibition of return' as the information in the visited locations are
fully predicted by the mental mosaic. Also, from this standpoint, the `habituation
dynamics' often observed in visual neurons when the same stimulus is presented
multiple times might not be simply due to neuro-chemical fatigue, but might be
understood in terms of mental mosaic being updated and then fed back to explain
the perceptual representation in V1. The mental mosaic is in e�ect our short-term
memory of the scene. It has a forgetting dynamics, and needs to be periodically
updated. Otherwise, it will rapidly fade away.

4 Overall Reactive Saccadic Behaviors

Now, we can combine the in
uence of the two predictive processes to arrive at a
discounted complexity measure of the hypercolumn's ensemble response:

H(u(R~x; t)ju(
~x; t� �t1);m(R~x; t� �t2)) = H(u(R~x; t))

�I(u(R~x; t);u(
~x; t� �t1))

�I(u(R~x; t);m(R~x; t� �t2))

+I(u(
~x; t� �t1);m(R~x; t� �t2))

If we can assume the long range surround priors and the mental mosaic short term
memory are independent processes, we can leave out the last term, I(u(
~x; t �
�t1);m(R~x; t� �t2)), of the equation.

The system, after each saccade, will evaluate the new retinal scene and select the
location where the perceptual representation has the maximumconditional entropy.
To maximize the information gain, the system must constantly search for and make
a saccade to the locations of maximumuncertainty (or complexity) computed from



the hypercolumn ensemble responses in V1 at each �xation. Unless the number of
saccades is severely limited, this locally greedy algorithm, coupled the inhibition
of return mechanism, will likely steer the system to a relatively optimal global
sampling of the world { in the sense that the average information gain per saccade
is maximized, and the mental mosaic's dissonance with the world is minimized.

5 Task-dependent schema Representation

However, human eye movements are not simply controlled by the generic informa-
tion in a bottom-up fashion. Yarbus [16] has shown that, when staring at a face,
subjects' eyes tend to go back to the same locations (eyes, mouth) over and over
again. Further, he showed that when asked di�erent questions, subjects exhibited
di�erent kinds of scan-paths when looking at the same picture. Norton and Stark
[12] also showed that eye movements are not random, but often exhibit repetitive
or even idiosyncratic path patterns.

To capture these ideas, we propose a third representation, called task schema, to
provide the necessary top-down information to bias the eye movement control. It
speci�es the learned or habitual scan-paths for a particular task in a particular
context or assigns weights to di�erent types of information. Given that we arenot
mostly unconscious of the scan-path patterns we are making, these task-sensitive
or context-sensitive habitual scan-patterns might be encoded at the levels of motor
programs, and be downloaded when needed without our conscious control. These
motor programs for scan-paths can be trained from reinforcement learning. For
example, since the eyes and the mouths convey most of the emotional content of
a facial expression, a successful interpretation of another person's emotion could
provide the reward signal to reinforce the motor programs just executed or the �xa-
tions to certain facial features. These unconscious scan-path motor programs could
provide the additional modulation to automatic saccadic eye movement generation.

6 Discussion

In this paper, we propose that informationmaximizationmight provide a theoretical
framework to understand the automatic saccadic eye movement behaviors in human.
In this proposal, each hypercolumn in V1 is considered a fundamental computational
unit. The relative complexity or entropy of the neuronal ensemble response in the
V1 hypercolumns, discounted by the predictive e�ect of the surround, higher order
representations and working memory, creates a force �eld to guide eye navigation.

The framework we sketched here bridge natural scene statistics to eye movement
control via the more established ideas of sparse coding and predictive coding in neu-
ral representation. Information maximization has been suggested to be a possible
explanation for shaping the receptive �elds in the early visual cortex according to
the statistics of natural images [8,9,13,14] to create a minimum-entropy code [2,3].
As a result, a frequent event is represented e�ciently with the response of a few
neurons in a large set, resulting in a lower hypercolumn ensemble entropy, while
unusual events provoke ensemble responses of higher complexity. We suggest that
higher complexity in ensemble responses will arouse attention and draw scrutiny by
the eyes, forcing the neural representation to continue adapting to the statistics of
the natural scenes. The formulation here also suggests that information maximiza-
tion might provide an explanation for the formation of horizontal predictive network
in V1 as well as higher order internal representations, consistent with the ideas of
predictive coding [11, 14, 15]. Our theory hence predicts that the adaptation of the



neural representations to the statistics of natural scenes will lead to the adaptation
of saccadic eye movement behaviors.
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