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Abstract. We describe two learning algorithms for unsupervised and supervised
learning in image data. Both algorithms are distinguished by the use of nonnegative
data and features in the models. In unsupervised learning, the likelihood is maxi-
mized under the appropriate nonnegativity constraints. For supervised learning, the
conditional likelihood is maximized resulting in a constrastive objective function that
directly optimizes discriminative performance. In both cases, multiplicative update
rules are derived that have a simple closed form and interpretation. These update rules
can also be shown to guarantee monotonic improvement in the appropriate objective
functions without any adjustable tuning parameters. We illustrate the application of
these algorithms on images of human faces and handwritten digits.

1 Introduction

In vision, the problem of learning from experience typically appears in two distinct scenarios.
The first scenario arises when the learning algorithm is presented with image data that is un-
labelled. In this “unsupervised” mode, the objective of the learning algorithm is to come up
with some sort of compact description for the aggregate set of images. Methods that perform
this type of unsupervised learning typically involve clustering and/or dimensionality reduc-
tion. Examples of such algorithms include vector quantization [4], self-organized maps [6],
principal components analysis [5], independent components analysis [1], multidimensional
scaling [2], local linear embedding [11], and others.

The second mode of learning occurs when image data is provided with categorical labels.
By learning from these labelled examples, a “supervised” learning algorithm should be able
to provide the correct labelling when presented with a new image. Pattern recognition is a
traditional form of this problem, and specialized supervised learning algorithms have been
developed to address this area of vision. Examples of methods that have been applied to
these problems include backpropagation neural networks [7], radial basis functions [10], and
support vector machines [13].

In these proceedings, we discuss novel learning rules that apply to hidden variable models
for both unsupervised and supervised learning. These models incorporate nonnegativity con-
straints, which allow the derivation of simple multiplicative update rules for the parameters
of the models. The update rules for unsupervised learning maximize the likelihood of the
model, while the update rules for the supervised learning model directly optimize a discrim-
inative objective function in a contrastive manner. Both learning algorithms have the virtue
of guaranteed monotonic convergence to an optimum of the appropriate objective functions,
without the need for any adjustable tuning parameters. We illustrate the application of these
algorithms to learning from various image databases.
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Figure 1: Basis vectors and feature coefficients for face images discovered by nonnegative matrix factorization
(NMF), vector quantization (VQ) and principal components analysis (PCA).

2 Unsupervised Learning

We first describe the use of nonnegativity constraints in an architecture that models the vari-
ability of unlabelled images. A simple way to describe the algorithm is as a matrix factoriza-
tion. A collection of grayscale images can formally be viewed as a largeD �M matrixX
of pixel values. Each of theM images is represented by a column vector ofD pixel values
within the matrix. Given this representation, many unsupervised learning algorithms can be
viewed as an approximate factorization of the data matrixX � BH whereB is aD � N
matrix andH is aN �M matrix. In this factorization, the columns ofB are interpreted as
basis vectors, and the columns ofH as coefficients of features which represent the activations
of hidden variables.

For example, in Figure 1, a database ofM = 2429 facial images each consisting of
D = 19 � 19 pixels, is factorized with two standard unsupervised learning methods as well
as our method. In all three cases, the number of learned bases is equal toN = 49. In
principal components analysis (PCA) [5, 12], the factorization uses an orthogonal basis set.
The PCA representation is able to efficiently capture much of the variability in the images
using cancelling positive and negative linear combinations of the basis images. On the other
hand, vector quantization (VQ), the other standard method shown in Fig. 1, involves a winner-
take-all constraint that limits the representation to a set of prototypes that are individually
replicated to model the image distribution.

In contrast to these standard techniques, nonnegative matrix factorization (NMF) uses
nonnegativity constraints on the elements of the matrix factorsB andH [8]. These con-
straints allow the representation to use additive combinations to model the variability of the
face images. The nonnegativity constraint also forces a majority of the pixels in the basis set
in B as well as the coefficients inH to zero. Thus, the nonnegativity constraint automatically



gives rise to a representation which is sparse and distributed [3].
The NMF algorithm involves iterating the following update rules:
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These rules guarantee that the log likelihoodL =
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which describes the fidelity of the approximationX � BH is monotonically optimized. The
proof of convergence involves construction of an auxiliary function [9], but it is interesting
to note that the update rules can also be viewed as rescaled gradient ascent. The updates
multiply the current estimates for the parametersB andH by a quotient formed by taking
the ratio between the positive and negative terms of the gradient of the objective function
L. When the gradient goes to zero, this multiplicative ratio goes to one indicating that the
fixed point of the algorithm occurs at an optimium of the objective function. Thus, these sim-
ple multiplicative updates are able to efficiently optimize the likelihood while automatically
preserving the nonnegativity constraints.

3 Contrastive Learning

Given a set of labels for images, a supervised learning algorithm should be able to learn an
accurate mapping between the images and the labels. We show how the sparse, nonnegative
features learned in NMF can be exploited by a discriminative mixture model. In this case,
given the nonnegative features of an image,~h, the posterior distribution of the labelsPr[yj~h]
is written as the following form:

Pr[y = ij~h] =

P
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: (1)

The right hand side of this equation defines a valid posterior distribution when the mixture
weightsWij and functions�j(~h) = e

~�j �~h are nonnegative.
Our supervised learning algorithm directly optimizes the performance of Eq. (1) as a

classifier. The objective function for discriminative training is the conditional log likelihood,
LC =

P
k log Pr[ykj~hk] summed over all the training examples. IfYki is the binary matrix

whoseki-th element denotes whether thek-th training example belongs to thei-th class, this
objective function can be written as the difference of two terms,LC = L+ � L�, where:
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The competition between these two terms gives rise to contrastive learning, and distinguishes
the algorithm from other algorithms such as Expectation-Maximization that maximize only
the joint log likelihood.

The update rules for estimating the mixture coefficientsW as well as the exponential
parameters� take the simple multiplicative form:

Wij  Wij

( 
@L+

@Wij

!, 
@L�

@Wij

!)
; (4)

e�j�  e�j�
( 

@L+

@�j�

!, 
@L�

@�j�

!) 1

�

where� = max
n

P
�Hn�: (5)



01-10

11-20

21-30

31-40

41-50

51-60

61-70

71-80

NMF basis vectors pixel image

20 40 60 80
0

5

10
NMF feature vector

Figure 2: Nonnegative basis vectors for handwritten digits discovered by NMF, and the sparse feature vector
for a handwritten “2”.

Again, these updates have the simple intuition of forming a multiplicative ratio based upon
opposing terms of the gradient of the conditional log likelihood. These multiplicative up-
dates automatically enforce the required nonnegativity constraints, and are also guaranteed
to converge monotonically to a maximum ofLC. The rate of convergence for the exponential
parameters� is governed by the exponent1=�, which measures the sparseness of the fea-
tures inH. Thus, using the nonnegative, sparse features discovered by NMF leads to faster
learning in this discriminative model.

We illustrate the application of this algorithm in classifying handwritten digits. As shown
in Fig. 2, we first use NMF to discover a sparse distributed representation of the MNIST data
set of handwritten digits [7]. The data set contains 60000 training and 10000 test examples
that were deslanted and cropped to form20� 20 grayscale pixel images. The left plot shows
theN = 80 basis vectors discovered by NMF, and the right shows the sparseness of the
representation in reconstructing a handwritten “2”.

model EM-PCA40 EM-NMF80 CL-NMF80
K Et Eg Et Eg Et Eg
1 10.2 10.1 15.7 14.7 5.5 5.8
2 8.5 8.3 12.3 10.7 4.0 4.4
4 6.8 6.4 9.3 8.2 2.8 3.5
8 5.3 5.1 7.8 7.0 1.7 3.2
16 4.0 4.4 6.2 5.7 1.0 3.4
32 3.1 3.6 5.0 5.1
64 1.9 3.1 3.9 4.2

Discriminative mixture models were then trained on these NMF features by the mul-
tiplicative updates in Eqs. (4–5). The results are shown in the table above, with baseline
comparisons to mixture models trained using EM on NMF feature vectors as well as on PCA
features. With onlyK = 8 mixture components per digit, the contrastive learning algorithm
(CL-NMF80) achieves a training error of 1.7%, and a test error of 3.2%. This compares very
favorably to comparably sized models trained by EM. The ability to learn a very compact
classifier appears to be the major advantage of the contrastive learning algorithm. A slight



disadvantage is that the resulting classifiers are more susceptible to overtraining, as would be
expected from discriminative training.

4 Discussion

It should be noted that better errors rates on the handwritten digit set have been obtained by
support vector machines (Eg = 1:1%), k-nearest neighbor (Eg = 2:4%), and fully connected
multilayer neural networks (Eg = 1:6%) [7]. However, these methods required storing large
numbers of training examples or training significantly larger models. For example, the neural
network classifier had over 120,000 weights. By contrast, theK = 8 discriminatively trained
mixture model has less than 6500 iteratively adjusted parameters, most of which were learned
in the unsupervised learning step of nonnegative matrix factorization.

The ability to learn such a compact discriminative model depends crucially on having
nonnegative features. The nonnegativity constraints automatically give rise to a sparse, dis-
tributed representation that can be learned using simple update rules. These updates are
guaranteed to converge monotonically to the appropriate objective functions, making the
simplicity of the learning algorithms especially attractive.
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