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Abstract. The computer vision field has advanced to the point that we are now 
able to begin to apply automatic facial expression recognition systems to 
important research questions in behavioral science.  The machine perception lab 
at UC San Diego has developed a system based on machine learning for fully 
automated detection of 30 actions from the facial action coding system (FACS). 
The system, called Computer Expression Recognition Toolbox (CERT), 
operates in real-time and is robust to the video conditions in real applications.  
This paper describes two experiments which are the first applications of this 
system to analyzing spontaneous human behavior: Automated discrimination of 
posed from genuine expressions of pain, and automated detection of driver 
drowsiness. The analysis revealed information about facial behavior during 
these conditions that were previously unknown, including the coupling of 
movements. Automated classifiers were able to differentiate real from fake pain 
significantly better than naïve human subjects, and to detect critical drowsiness 
above 98% accuracy.  Issues for application of machine learning systems to 
facial expression analysis are discussed. 
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1   Introduction 

The computer vision field has advanced to the point that we are now able to begin to 
apply automatic facial expression recognition systems to important research questions 
in behavioral science.  This paper is among the first applications of fully automated 
facial expression measurement to such research questions. It explores two 
applications of a machine learning system for automatic facial expression 
measurement to data mine spontaneous human behavior (1) differentiating fake from 
real expressions of pain, and (2) detecting driver drowsiness.  



 

1.1 The Facial Action Coding System 

The facial action coding system (FACS) (Ekman and Friesen, 1978) is arguably the 
most widely used method for coding facial expressions in the behavioral sciences. 
The system describes facial expressions in terms of 46 component movements, which 
roughly correspond to the individual facial muscle movements. An example is shown 
in Figure 1. FACS provides an objective and comprehensive way to analyze 
expressions into elementary components, analagous to decomposition of speech into 
phonemes. Because it is comprehensive, FACS has proven useful for discovering 
facial movements that are indicative of cognitive and affective states. See Ekman and 
Rosenberg (2005) for a review of facial expression studies using FACS. The primary 
limitation to the widespread use of FACS is the time required to code. FACS was 
developed for coding by hand, using human experts.  It takes over 100 hours of 
training to become proficient in FACS, and it takes approximately 2 hours for human 
experts to code each minute of video. The authors have been developing methods for 
fully automating the facial action coding system (e.g. Donato et al., 1999; Bartlett et 
al., 2006). In this paper we apply a computer vision system trained to automatically 
detect FACS to data mine facial behavior under two conditions:  (1) real versus fake 
pain, and (2) driver fatigue.  

 

 
 

Fig. 1. Example facial action decomposition from the facial action coding system.  A 
prototypical expression of fear is decomposed into 7 component movements. Letters indicate 
intensity.  A fear brow (1+2+4) is illustrated here.  

 
1.2 Spontaneous Expressions 

The machine learning system presented here was trained on spontaneous facial 
expressions. The importance of using spontaneous behavior for developing and 
testing computer vision systems becomes apparent when we examine the neurological 
substrate for facial expression. There are two distinct neural pathways that mediate 
facial expressions, each one originating in a different area of the brain. Volitional 
facial movements originate in the cortical motor strip, whereas spontaneous facial 
expressions originate in the subcortical areas of the brain (see Rinn, 1984, for a 
review). These two pathways have different patterns of innervation on the face, with 
the cortical system  tending to give stronger innervation to certain muscles primarily 



in the lower face, while the subcortical system tends to more strongly innervate 
certain muscles primarily in the upper face (e.g. Morecraft et al., 2001).  
 The facial expressions mediated by these two pathways have differences 
both in which facial muscles are moved and in their dynamics (Ekman, 2001; 
Ekman & Rosenberg, 2005). Subcortically initiated facial expressions (the 
spontaneous group) are characterized by synchronized, smooth, symmetrical, 
consistent, and reflex-like facial muscle movements whereas cortically initiated facial 
expressions (posed expressions) are subject to volitional real-time control and tend to 
be less smooth, with more variable dynamics (Rinn, 1984; Frank, Ekman, & Friesen, 
1993; Schmidt, Cohn & Tian, 2003; Cohn & Schmidt, 2004).   Given the two 
different neural pathways for facial expressions, it is reasonable to expect to find 
differences between genuine and posed expressions of states such as pain or 
drowsiness.  Moreover, it is crucial that the computer vision model for detecting states 
such as genuine pain or driver drowsiness is based on machine learning of expression 
samples when the subject is actually experiencing the state in question.  
 

 
 

Fig. 2.  Overview of the automated facial action recognition system. 

2   The Computer Expression Recognition Toolbox (CERT) 

Here we extend a system for fully automated facial action coding developed previously 
by the authors (Bartlett et. Al, 2006; Littlewort et al., 2006). It is a user independent 
fully automatic system for real time recognition of facial actions from the Facial 
Action Coding System (FACS). The system automatically detects frontal faces in the 
video stream and codes each frame with respect to 20 Action units. In previous work, 
we conducted empirical investigations of machine learning methods applied to the 
related problem of classifying expressions of basic emotions. We compared image 
features (e.g. Donato et al., 1999), classifiers such as AdaBoost, support vector 
machines, and linear discriminant analysis, as well as feature selection techniques 
(Littlewort et al., 2006). Best results were obtained by selecting a subset of Gabor 
filters using AdaBoost and then training Support Vector Machines on the outputs of 
the filters selected by AdaBoost. An overview of the system is shown in Figure 2.  



 

2.1   Real Time Face and Feature Detection 

We employed a real-time face detection system that uses boosting techniques in a 
generative framework (Fasel et al.) and extends work by Viola and Jones (2001).  
Enhancements to Viola and Jones include employing Gentleboost instead of 
AdaBoost, smart feature search, and a novel cascade training procedure, combined in a 
generative framework. Source code for the face detector is freely available at 
http://kolmogorov.sourceforge.net. Accuracy on the CMU-MIT dataset, a standard 
public data set for benchmarking frontal face detection systems (Schneiderman & 
Kanade, 1998), is 90% detections and 1/million false alarms, which is state-of-the-art 
accuracy. The CMU test set has unconstrained lighting and background. With 
controlled lighting and background, such as the facial expression data employed here, 
detection accuracy is much higher. All faces in the training datasets, for example, were 
successfully detected. The system presently operates at 24 frames/second on a 3 GHz 
Pentium IV for 320x240 images. The automatically located faces were rescaled to 
96x96 pixels. The typical distance between the centers of the eyes was roughly 48 
pixels. Automatic eye detection (Fasel et al., 2005) was employed to align the eyes in 
each image. The images were then passed through a bank of Gabor filters 8 
orientations and 9 spatial frequencies (2:32 pixels per cycle at 1/2 octave steps). 
Output magnitudes were then passed to the action unit classifiers.  

2.2 Automated Facial Action Classification 

The approach presented here is a 2-stage system in which first an automated system 
CERT, is developed for detecting action units, and secondly CERT is applied to 
spontaneous examples of a state in question, and machine learning is applied to the 
CERT outputs.  Here we describe the training of the facial action detectors in the first 
stage. The training data for the facial action classifiers came from three posed datasets 
and one dataset of spontaneous expressions. The facial expressions in each dataset 
were FACS coded by certified FACS coders. The first posed dataset was the Cohn-
Kanade DFAT-504 dataset (Kanade, Cohn & Tian, 2000). This dataset consists of 
100 university students who were instructed by an experimenter to perform a series of 
23 facial displays, including expressions of seven basic emotions. The second posed 
dataset consisted of directed facial actions from 24 subjects collected by Ekman and 
Hager. Subjects were instructed by a FACS expert on the display of individual facial 
actions and action combinations, and they practiced with a mirror. The resulting video 
was verified for AU content by two certified FACS coders.  The third posed dataset 
consisted of a subset of 50 videos from 20 subjects from the MMI database (Pantic et 
al., 2005). The spontaneous expression dataset consisted of the FACS-101 dataset 
collected by Mark Frank (Bartlett et. al. 2006). 33 subjects underwent an interview 
about political opinions on which they felt strongly. Two minutes of each subject 
were FACS coded. The total training set consisted of 5500 examples, 2500 from 
posed databases and 3000 from the spontaneous set. 

Twenty linear Support Vector Machines were trained for each of 20 facial actions. 
Separate binary classifiers, one for each action, were trained to detect the presence of 



the action in a one versus all manner.  Positive examples consisted of the apex frame 
for the target AU. Negative examples consisted of all apex frames that did not contain 
the target AU plus neutral images obtained from the first frame of each sequence.   
Eighteen of the detectors were for individual action units, and two of the detectors 
were for specific brow region combinations: fear brow (1+2+4) and distress brow (1 
alone or 1+4).   All other detectors were trained to detect the presence of the target 
action regardless of co-occurring actions.   A list is shown in Table 1A. Thirteen 
additional AU’s were trained for the Driver Fatigue Study. These are shown in Table 
1B. 

 
 

Table 1A. AU detection performance on posed and spontaneous facial actions.  Values are 
Area under the roc (A’) for generalization to novel subjects.  

 
AU Name  Posed Spont 

   1   Inner brow raise .90 .88 
   2   Outer brow raise .94 .81 
   4          Brow Lower   .98 .73 
   5 Upper Lid Raise .98 .80 
   6 Cheek Raise  .85 .89 
   7 Lids tight  .96 .77 
   9 Nose wrinkle  .99 .88 
   10 Upper lip raise .98 .78 
   12 Lip corner pull .97 .92 
   14 Dimpler  .90 .77 
   15 Lip corner Depress .80 .83 
   17 Chin Raise  .92 .80 
   18 Lip Pucker  .87 .70 
   20 Lip stretch  .98 .60 
   23 Lip tighten  .89 .63 
   24 Lip press  .84 .80 
   25 Lips part  .98 .71 
   26 Jaw drop  .98 .71 
   1,1+4 Distress brow  .94 .70 
   1+2+4 Fear brow  .95 .63 
   Mean:    .93 .77 

 



 

Table 1B: Additional 13 AU’s trained for the driver fatigue study. 
 

AU Name 
8 
11 
13 
16 
19 
22 
27 
28 
30 
32 
38 
39 
45 

Lip Toward Each Other 
Nasolabial Furrow Deepener 
Sharp Lip Puller 
Lower Lip Depress 
Tongue Show 
Lip Funneller 
Mouth Stretch 
Lips Suck 
Jaw Sideways 
Bite 
Nostril Dilate 
Nostril Compress 
Blink 

 
The output of the system was a real valued number indicating the distance to the 

separating hyperplane for each classifier.  Previous work showed that the distance to 
the separating hyperplane (the margin) contained information about action unit 
intensity (e.g. Bartlett et al., 2006).  

In this paper, area under the ROC (A’) is used to assess performance rather than 
overall percent correct, since percent correct can be an unreliable measure of 
performance, as it depends on the proportion of targets to non-targets, and also on the 
decision threshold. Similarly, other statistics such as true positive and false positive 
rates depend on decision threshold, which can complicate comparisons across 
systems. A’ is a  measure is derived from signal detection theory and characterizes the 
discriminative capacity of the signal, independent of decision threshold. The ROC 
curve is obtained by plotting true positives against false positives as the decision 
threshold shifts from 0 to 100% detections.  The area under the ROC (A’) ranges from 
0.5 (chance) to 1 (perfect discrimination). A’ can also be interpreted in terms of 
percent correct. A’ is equivalent to the theoretical maximum percent correct 
achievable with the information provided by the system when using a 2-Alternative 
Forced Choice testing paradigm. 

Table 1 shows performance for detecting facial actions in posed and spontaneous 
facial actions.  Generalization to novel subjects was tested using 3-fold cross-
validation on the  images in the training set.  Performance was separated into the 
posed set, which was 2,500 images, and a spontaneous  set, which was 1100 images 
from the FACS-101 database which includes speech. 

The overall CERT system gives a frame-by-frame output with N channels, 
consisting of N facial actions. This system can be applied to data mine human 
behavior. By applying CERT to face video while subjects experience spontaneous 
expressions of a given state, we can learn new things about the facial behaviors 
associated with that state.  Also, by passing the N channel output to a machine 
learning system, we can directly train detectors for the specific state in question. (See 
Figure 3.) In Sections 3 and 4, two implementations of this idea are described.   



 
 
Figure 3. Data mining human behavior. CERT is applied to face videos containing 

spontaneous expressions of states in question.  Machine learning is applied to the outputs of 
CERT to learn a classifier to automatically discriminate state A from State B.  

3   Classification of Real versus Faked Pain Expressions 

An important issue in medicine is the ability to distinguish real pain from faked 
pain, (malingering).  Some studies suggest that malingering rates are as high as 10% 
in chronic pain patients (Fishbain et a., 1999), and much higher in litigation contexts 
(Schmand et al., 1998).  Even more important is to recognize when patients are 
experiencing genuine pain so that their pain is taken seriously. There is presently no 
reliable method for physicians to differentiate faked from real pain (Fishbain, 2006).  
Naïve human subjects are near chance for differentiating real from fake pain from 
observing facial expression (e.g. Hadjistavropoulos et al., 1996). In the absence of 
direct training in facial expressions, clinicians are also poor at assessing pain from the 
face (e.g. Prkachin et al. 2002; Grossman, 1991).   However a number of studies using 
the Facial Action Coding System (FACS) (Ekman & Friesen, 1978) have shown that 
information exists in the face for differentiating real from posed pain (e.g. Hill and 
Craig, 2002; Craig et al., 1991; Prkachin 1992).  

In previous studies using manual FACS coding by human experts, at least 12 facial 
actions showed significant relationships with pain across multiple studies and pain 
modalities. Of these, the ones specifically associated with cold pressor pain were 4, 6, 
7, 9, 10, 12, 25, 26 (Craig & Patrick, 1985; Prkachin, 1992). See Table 1 and Figure 2 
for names and examples of these AU’s.   A previous study compared faked to real 
pain, but in a different pain modality (lower back pain).  This study found that when 
faking subjects tended to display the following AU’s: 4, 6, 7, 10, 12, 25. When faked 
pain expressions were compared to real pain expressions, the faked pain expressions 
contained significantly more brow lower (AU 4), cheek raise (AU 6), and lip corner 
pull (AU 12) (Craig, Hyde & Patrick, 1991).  These studies also reported substantial 
individual differences in the expressions of both real pain and faked pain.  



 

Recent advances in automated facial expression measurement, such as the CERT 
system described above, open up the possibility of automatically differentiating posed 
from real pain using computer vision systems (e.g. Bartlett et al., 2006; Littlewort et 
al., 2006; Cohn & Schmidt, 2004; Pantic et al., 2006).  This section explores the 
application of CERT to this problem.  

3.1   Human subject methods 

Video data was collected of 26 human subjects during real pain, faked pain, and 
baseline conditions.  Human subjects were university students consisting of 6 men 
and 20 women.  The pain condition consisted of cold pressor pain induced by 
immersing the arm in cold water at 50 Celsius.  For the baseline and faked pain 
conditions, the water was 200 Celsius.  Subjects were instructed to immerse their 
forearm into the water up to the elbow, and hold it there for 60 seconds in each of the 
three conditions.  The order of the conditions was baseline, faked pain, and then real 
pain.  For the faked pain condition, subjects were asked to manipulate their facial 
expressions so that an “expert would be convinced they were in actual pain.” 
Participants facial expressions were recorded using a digital video camera during each 
condition. Examples are shown in Figure 4.  

 

 

 
Figure 4. Sample facial behavior and facial action codes from the real and faked pain 
conditions.  
 

A second subject group underwent the conditions in the counterbalanced order, 
with real pain followed by faked pain.  This ordering involves immediate motor 



memory, which is a fundamentally different task.  The present paper therefore 
analyzes only the first subject group. The second group will be analyzed separately in 
a future paper, and compared to the first group.  

After the videos were collected, a set of 170 naïve observers were shown the 
videos and asked to guess whether each video contained faked or real pain.  Subjects 
were undergraduates with no explicit training in facial expression measurement. They 
were primarily Introductory Psychology students at UCSD. Mean accuracy of naïve 
human subjects for discriminating fake from real pain in these videos was at chance at 
49.1% (standard deviation 13.7%).   These observers had no specific training in facial 
expression and were not clinicians.  One might suppose that clinicians would be more 
accurate. However previous studies suggest that clinicians judgments of pain from the 
face are similarly unreliable (e.g. Grossman, 1991).   Facial signals do appear to exist 
however (Hill & Craig, 2002, Craig et al., 1991; Prkachin 1992), and immediate 
corrective feedback has been shown to improve observer accuracy (Hill & Craig, 
2004).  

3.2 Human expert FACS coding 

In order to assess the validity of the automated system, we first obtained FACS 
codes for a portion of the video from a human FACS expert certified in the Facial 
Action Coding System. For each subject, the last 500 frames of the fake pain and real 
pain conditions were FACS coded (about 15 seconds each).  It took 60 man hours to 
collect the human codes, over the course of more than 3 months, since human coders 
can only code up to 2 hours per day before having negative repercussions in accuracy 
and coder burn-out.  

The sum of the frames containing each action unit were collected for each subject 
condition, as well as a weighted sum, multiplied by the intensity of the action on a 1-
5 scale.  To investigate whether any action units successfully differentiated real from 
faked pain, paired t-tests were computed on each individual action unit.  (Tests on 
specific brow region combinations 1+2+4 and 1,1+4 have not yet been conducted.)   
The one action unit that significantly differentiated the two conditions was AU 4, 
brow lower, (p<.01) for both the sum and weighted sum measures. This finding is 
consistent with the analysis of the automated system, which also found action unit 4 
most discriminative.   

3.3   Automated coding  

3.3.1 Characterizing the differences between real and faked pain  

Applying CERT to the pain video data produced a 20 channel output stream, 
consisting of one real value for each learned AU, for each frame of the video. This data 
was further analyzed to predict the difference between baseline and pained faces, and the 
difference between expressions of real pain and fake pain.   

We first examined which facial action detectors were elevated in real pain compared 
to the baseline condition.  Z-scores for each subject and each AU detector were 



 

computed as Z=(x-µ)/σ, where (µ,σ) are the mean and variance for the output of 
frames 100-1100 in the baseline condition (warm water, no faked expressions).  The 
mean difference in Z-score between the baseline and pain conditions was computed 
across the 26 subjects. Table 2 shows the action detectors with the largest difference 
in Z-scores.   We observed that the actions with the largest Z-scores for genuine pain 
were Mouth opening and jaw drop (25 and 26), lip corner puller by zygomatic (12), 
nose wrinkle (9), and to a lesser extent, lip raise (10) and cheek raise (6).  These facial 
actions have been previously associated with cold pressor pain (e.g. Prkachin, 1992; 
Craig & Patrick 1985).  

The Z-score analysis was next repeated for faked versus baseline.  We observed that 
in faked pain there was relatively more facial activity than in real pain. The facial 
action outputs with the highest z-scores for faked pain relative to baseline were brow 
lower (4), distress brow (1 or 1+4), inner brow raise (1), mouth open and jaw drop (25 
and 26), cheek raise (6), lip raise (10), fear brow (1+2+4), nose wrinkle (9), mouth 
stretch (20), and lower lid raise (7).  

Differences between real and faked pain were examined by computing the difference 
of the two z-scores. Differences were observed primarily in the outputs of action unit 
4 (brow lower), as well as distress brow (1 or 1+4) and inner brow raise (1 in any 
combination).  

 
Table 2.  Z-score differences of the three pain conditions, averaged across subjects. FB: 
Fear brow 1+2+4. DB: Distress brow (1,1+4).  

 
A. Real Pain vs baseline: 
Action Unit 25       12      9      26      10       6   
Z-score   1.4      1.4    1.3    1.2    0.9    0.9 
 
B. Faked Pain vs Baseline:  
Action Unit    4    DB   1    25   12    6    26   10   FB    9    20     7 
Z-score          2.7  2.1  1.7  1.5  1.4  1.4  1.3  1.3  1.2   1.1  1.0   0.9  
 
C. Real Pain vs Faked Pain:  
Action Unit  4      DB       1   
Z-score difference   1.8 1.7       1.0      

 
Table 3. Individual subject differences between faked and genuine pain.   Differences greater 
than 2 standard deviations are shown. F>P: Number of subjects in which the output for the 
given AU was greater in faked than genuine pain.  P>F: Number of subjects for which the 
output was greater in genuine than faked pain. FB: Fear brow 1+2+4. DB: Distress brow 
(1,1+4).  

 
AU     1  2  4  5  6  7  9 10 12 14 15 17 18 20 23 24 25 26 FB DB 
F>P    6  4  9  1  7  4  3  6  5   3   5   5   1   4   3   4   4   4   6   5  
P>F    3  3  0  0  4  0  4  4  4   2   3   1   3   1   1   1   2   4   2   0 

 
Individual subject differences between faked and real pain are shown in Table 3.  

Difference-of-Z-scores between the genuine and faked pain conditions were computed 



for each subject and each AU.  There was considerable variation among subjects in the 
difference between their faked and real pain expressions.  However the most consistent 
finding is that 9 of the 26 subjects showed significantly more brow lowering activity 
(AU4) during the faked pain condition, whereas none of the subjects showed 
significantly more AU4 activity during the real pain condition.  Also 7 subjects 
showed more cheek raise (AU6), and 6 subjects showed more inner brow raise (AU1), 
and the fear brow combination (1+2+4).  The next most common differences were to 
show more 12, 15, 17, and distress brow (1 alone or 1+4) during faked pain.  

Paired t-tests were conducted for each AU to assess whether it was a reliable 
indicator of genuine versus faked pain in a within-subjects design.  Of the 20 actions 
tested, the difference was statistically significant for  three actions. It was significant 
for AU 4 at p < .001,  and marginally significant for AU 7 and distress brow at p < 
.05.  

In order to characterize action unit combinations that relate to the difference 
between fake and real pain expressions, principal component analysis was conducted 
on the difference-of-Z-scores.   The first eigenvector had the largest loading on distress 
brow and inner brow raise (AU 1).  The second eigenvector had the largest loading on 
lip corner puller (12) and cheek raise (6) and was lower for fake pain expressions.  The 
third eigenvector had the largest loading on brow lower (AU 4).  Thus when analyzed 
singly, the action unit channel with the most information for discriminating fake 
from real pain was brow lower (AU 4).  However when correlations were assessed 
through PCA, the largest variance was attributed to two combinations, and AU 4 
accounted for the third most variance.    

Overall, the outputs of the automated system showed similar patterns to previous 
studies of real and faked pain using manual FACS coding by human experts. 
Exaggerated activity of the brow lower (AU 4) during faked pain is consistent with 
previous studies in which the real pain condition was exacerbated lower back pain   
(Craig et al. 1991, Hill & Craig, 2002).  Another study performed a FACS analysis 
of fake and real pain expressions with cold pressor pain, but with children ages 8-12 
(LaRochette et al., 2006).   This study observed significant elevation in the following 
AUs for fake pain relative to baseline: 1 4 6 7 10 12 20 23 25 26.  This closely 
matches the AUs with the highest z-scores in the automated system output of the 
present study (Table 2B). LaRochette et al. did not measure AU 9 or the brow 
combinations.  When faked pain expressions were compared with real cold pressor 
pain in children,  LaRochette et al found significant differences in AU’s 1 4 7 10.   
Again the findings of the present study using the automated system are similar, as the 
AU channels with the highest z-scores were 1, 4, and 1+4 (Table 2C), and the t-tests 
were significant for 4, 1+4 and 7.  

3.3.2   Automatic Discrimination of Real from Fake Pain 

The above analysis examined which AU outputs contained information about 
genuine versus faked pain.  We next turned to the problem of discriminating genuine 
from faked pain expressions in a subject-independent manner. If the task were to 



 

simply detect the presence of a red-flag set of facial actions, then differentiating fake 
from real pain expressions would be relatively simple. However, it should be noted 
that subjects display actions such as AU 4, for example, in both real and fake pain, 
and the distinction is in the quantity of AU 4.   Also, there is inter-subject variation 
in expressions of both real and fake pain, there may be combinatorial differences in 
the sets of actions displayed during real and fake pain, and the subjects may cluster. 
We therefore applied machine learning to the task of discriminating real from faked 
pain expressions in a subject-independent manner. 

A second-layer classifier was trained to discriminate genuine pain from faked pain 
based on the 20-channel output stream. For this second-layer classification step, we 
explored SVMs, Adaboost, and linear discriminant analysis.  Nonlinear SVMs with 
radial basis function kernels gave the best performance.  System performance for 
generalization to novel subjects was assessed using leave-one-out cross-validation, in 
which all the data from one subject was reserved for testing on each trial.  

Prior to learning, the system performed an automatic reliability estimate based on 
the smoothness of the eye positions, and those frames with low reliability were 
automatically excluded from training and testing the real pain / fake pain classifier.  
Those frames with abrupt shifts of 2 or more pixels in the returned eye positions were 
automatically detected and labeled unreliable.   This tends to occur during eyeblinks 
with the current eye detector.  However future versions of the eye detector will correct 
that issue.   The reliability filter had a relatively small effect on performance. The 
analysis of Table 2 was repeated under this criterion, and the Z-scores improved by 
about 0.1.   Note also that the reliability filter on the frames is not to be confused 
with dropping the difficult trials since a real pain / fake pain decision was always 
made for each subject.  

The 60 second video from each condition was broken up into 6 overlapping 
segments of 500 frames.  For each segment, the following 5 statistics were measured 
for each of the 20 AU’s: median, maximum, range, first to third quartile difference, 
90 to 100 percentile difference.   Thus the input to the SVM for each segment 
contained 100 dimensions.  Each cross-validation trial contained 300 training samples 
(25 subjects x 2 conditions x 6 segments).  

A nonlinear SVM trained to discriminate posed from real facial expressions of pain 
obtained an area under the ROC of .72 for generalization to novel subjects. This was 
significantly higher than performance of naïve human subjects, who obtained a mean 
accuracy of 49% correct for discriminating faked from real pain on the same set of 
videos.  

3.4   Discussion of pain study 

The field of automatic facial expression analysis has advanced to the point that we 
can begin to apply it to address research questions in behavioral science. Here we 
describe a pioneering effort to apply fully automated facial action coding to the 
problem of differentiating fake from real expressions of pain.  While naïve human 
subjects were only at 49% accuracy for distinguishing fake from real pain, the 
automated system obtained .72 area under the ROC, which is equivalent to 72% 



correct on a 2-alternative forced choice.  Moreover, the pattern of results in terms of 
which facial actions may be involved in real pain, fake pain, and differentiating real 
from fake pain is similar to previous findings in the psychology literature using 
manual FACS coding.  

Here we applied machine learning on a 20-channel output stream of facial action 
detectors.  The machine learning was applied to samples of spontaneous expressions 
during the subject state in question.  Here the state in question was fake versus real 
pain.  The same approach can be applied to learn about other subject states, given a 
set of spontaneous expression samples. Section 4 develops another example in which 
this approach is applied to the detection of driver drowsiness from facial expression. 
 
 

4 Automatic Detection of Driver Fatigue 
 
The US National Highway Traffic Safety Administration estimates that in the US 
alone approximately 100,000 crashes each year are caused primarily by driver 
drowsiness or fatigue (Department of Transportation, 2001). Thus incorporating 
automatic driver fatigue detection mechanism into vehicles may help prevent many 
accidents.  
 One can use a number of different techniques for analyzing driver exhaustion. 
One set of techniques places sensors on standard vehicle components, e.g., steering 
wheel, gas pedal, and analyzes the signals sent by these sensors to detect drowsiness 
(Takei & Furukawa, 2005). It is important for such techniques to be adapted to the 
driver, since Abut and his colleagues note that there are noticeable differences among 
drivers in the way they use the gas pedal (Igarashi, et al., 2005).  
 A second set of techniques focuses on measurement of physiological signals 
such as heart rate, pulse rate, and Electroencephalography (EEG) (e.g. Cobb, 1983). It 
has been reported by re-searchers that as the alertness level decreases EEG power of 
the alpha and theta bands increases (Hung & Chung, 2005). Hence providing 
indicators of drowsiness. However this method has draw-backs in terms of 
practicality since it requires a person to wear an EEG cap while driving.  
 A third set of solutions focuses on computer vision systems that can detect and 
recognize the facial motion and appearance changes occurring during drowsiness (Gu 
& Ji, 2004; Zhang & Zhang, 2006).The advantage of computer vision techniques is 
that they are non-invasive, and thus are more amenable to use by the general public. 
There are some significant previous studies about drowsiness detection using 
computer vision techniques. Most of the published research on computer vision 
approaches to detection of fatigue has focused on the analysis of blinks and head 
movements. However the effect of drowsiness on other facial expressions have not 
been studied thoroughly. Recently Gu & Ji presented one of the first fatigue studies 
that incorporates certain facial expressions other than blinks. Their study feeds action 
unit information as an input to a dynamic Bayesian network. The network was trained 
on subjects posing a state of fatigue (Gu, Zhang & Ji, 2005). The video segments 
were classified into three stages: inattention, yawn, or falling asleep. For predicting 
falling asleep, head nods, blinks, nose wrinkles and eyelid tighteners were used. 
 Previous approaches to drowsiness detection primarily make pre-assumptions 
about the relevant behavior, focusing on blink rate, eye closure, and yawning. Here 



 

we employ machine learning methods to data mine actual human behavior during 
drowsiness episodes. The objective of this study is to discover what facial 
configurations are predictors of fatigue. In this study, facial motion was analyzed 
automatically from video using a fully automated facial expression analysis system 
based on the Facial Action Coding System (FACS) (Ekman & Friesen, 1978). In 
addition to the output of the automatic FACS recognition system we also collected 
head motion data using an accelerometer placed on the subject’s head, as well as 
steering wheel data. 

4.1   Driving task 

Subjects played a driving video game on a windows machine using a steering wheel 
1and an open source multi- platform video game2 (See Figure 5). At random times, a 
wind effect was applied that dragged the car to the right or left, forcing the subject to 
correct the position of the car. This type of manipulation had been found in the past to 
increase fatigue (Orden, Jung & Makeig, 2000). Driving speed was held constant. 
Four subjects performed the driving task over a three hour period beginning at 
midnight. During this time subjects fell asleep multiple times thus crashing their 
vehicles. Episodes in which the car left the road (crash) were recorded. Video of the 
subjects face was recorded using a DV camera for the entire 3 hour session.   

In addition to measuring facial expressions with CERT, head movement was 
measured using an accelerometer that has 3 degrees of freedom. This three 
dimensional accelerometer3has three one dimensional accelerometers mounted at right 
angles measuring accelerations in the range of 5g to +5g where g represents earth 
gravitational force.   

 

 
 

Fig. 5. Driving Simulation Task. 
                                                             

1ThrustmasterRFerrari Racing Wheel 
2The Open Racing Car Simulator (TORCS) 
 



4.2   Facial Actions Associated with Driver Fatigue 

Subject data was partitioned into drowsy (non-alert) and alert states as follows. The 
one minute preceding a sleep episode or a crash was identified as a non-alert state. 
There was a mean of 24 non-alert episodes with a minimum of 9 and a maximum of 
35. Fourteen alert segments for each subject were collected from the first 20 minutes 
of the driving task. 

 
Fig. 6.  Example histograms for blink and Action Unit 2 in alert and non-alert states for one 
subject. A’ is area under the ROC. 
 
 

The output of the facial action detector consisted of a continuous value for each 
facial action and each video frame which was the distance to the separating 
hyperplane, i.e., the margin. Histograms for two of the action units in alert and non-
alert states are shown in Figure 6. The area under the ROC (A’) was computed for the 
outputs of each facial action detector to see to what degree the alert and non-alert 
output distributions were separated.  

In order to understand how each action unit is associated with drowsiness across 
different subjects, Multinomial Logistic Ridge Regression (MLR) was trained on each 
facial action individually. Examination of the A’ for each action unit reveals the 
degree to which each facial movement was able to predict drowsiness in this study. 
The A’s for the drowsy and alert states are shown in Table 4. The five facial actions 
that were the most predictive of drowsiness by increasing in drowsy states were 45, 2 
(outer brow raise), 15 (frown), 17 (chin raise), and 9 (nose wrinkle). The five actions 
that were the most predictive of drowsiness by decreasing in drowsy states were 12 
(smile), 7 (lid tighten), 39 (nostril compress), 4 (brow lower), and 26 (jaw drop). The 
high predictive ability of the blink/eye closure measure was expected. However the 
predictability of the outer brow raise (AU 2) was previously unknown. 

We observed during this study that many subjects raised their eyebrows in an 
attempt to keep their eyes open, and the strong association of the AU 2 detector is 
consistent with that observation. Also of note is that action 26, jaw drop, which occurs 
during yawning, actually occurred less often in the critical 60 seconds prior to a crash. 
This is consistent with the prediction that yawning does not tend to occur in the final 
moments before falling asleep. 



 

Table 4. MLR model for predicting drowsiness across subjects. Predictive performance of each 
facial action individually is shown. 

More when critically drowsy Less when critically drowsy 
AU 
45  
2 
15 
17 
9 
30 
20 
11 
14 
1 
10 
27 
18 
22 
24 
19 

Name 
Blink/Eye Closure 
Outer Brow Raise 
Lip Corner Depressor 
Chin Raiser 
Nose Wrinkle 
Jaw Sideways 
Lip stretch 
Nasolabial Furrow 
Dimpler 
Inner Brow Raise 
Upper Lip Raise 
Mouth Stretch 
Lip Pucker 
Lip funneler 
Lip presser 
Tongue show 

A’ 
0.94 
0.81 
0.80 
0.79 
0.78 
0.76 
0.74 
0.71 
0.71 
0.68 
0.67 
0.66 
0.66 
0.64 
0.64 
0.61  

 
AU 
12 
7 
39 
4 
26 
6 
38 
23 
8 
5 
16 
32 

Name 
Smile 
Lid tighten 
Nostril Compress 
Brow lower 
Jaw Drop 
Cheek Raise 
Nostril Dilate 
Lip tighten 
Lips toward 
Upper lid raise 
Upper lip depress 
Bite 

A’ 
0.87 
0.86 
0.79 
0.79 
0.77 
0.73 
0.72 
0.67 
0.67 
0.65 
0.64 
0.63 

 
 

4.3   Automatic Detection of Driver Fatigue 

The ability to predict drowsiness in novel subjects from the facial action code was 
then tested by running MLR on the full set of facial action outputs. Prediction 
performance was tested by using a leave-one-out cross validation procedure, in which 
one subjects’ data was withheld from the MLR training and retained for testing, and 
the test was repeated for each subject. The data for each subject by facial action was 
first normalized to zero-mean and unit standard deviation. The MLR output for each 
AU feature was summed over a temporal window of 12 seconds (360 frames) before 
computing A’.  

MLR trained on all AU features obtained an A’ of .90 for predicting drowsiness in 
novel subjects. Because prediction accuracy may be enhanced by feature selection, in 
which only the AU’s with the most information for discriminating drowsiness are 
included in the regression, a second MLR was trained by contingent feature selection, 
starting with the most discriminative feature (AU 45), and then iteratively adding the 
next most discriminative feature given the features already selected. These features 
are shown on Table 5. Best performance of .98 was obtained with five features: 45, 2, 
19 (tongue show), 26 (jaw drop), and 15. This five feature model outperformed the 
MLR trained on all features. 

Effect of Temporal Window Length. We next examined the effect of the size of 
the temporal window on performance. The five feature model was employed for this 
analysis. The performances shown in Table 5 employed a temporal window of 12 
seconds.  Here, the MLR output in the 5 feature model was summed over windows of 
N seconds, where N ranged from 0.5 to 60 seconds. Figure 7 shows the area under the 



ROC for drowsiness detection in novel subjects over time periods. Performance 
saturates at about 0.99 as the window size exceeds 30 seconds. In other words, given 
a 30 second video segment the system can discriminate sleepy versus non-sleepy 
segments with 0.99 accuracy across subjects. 

Table 5. Drowsiness detection performance for novel subjects, using an MLR classifier with 
different feature combinations. The weighted features are summed over 12 seconds before 
computing A’. 

Feature A’ 
 
AU45,AU2,AU19,AU26,AU15 
All AU features 
 

 
.9792 
.8954 

 
 

 
Fig. 7. Performance for drowsiness detection in novel subjects over  temporal  window sizes. 
Red point indicates the priorly obtained performace for a temporal window of  12 seconds. 

4.4   Coupling of Behaviors 

Coupling of steering and head motion. Observation of the subjects during drowsy 
and nondrowsy states indicated that the subjects head motion differed substantially 
when alert versus when the driver was about to fall asleep. Surprisingly, head motion 
increased as the driver became drowsy, with large roll motion coupled with the 
steering motion as the driver became drowsy. Just before falling asleep, the head 
would become still. 

We also investigated the coupling of the head and arm motions. Correlations 
between head motion as measured by the roll dimension of the accelerometer output 
and the steering wheel motion are shown in Figure 8. For this subject (subject 2), the 
correlation between head motion and steering increased from 0.33 in the alert state to 
0.71 in the non-alert state. For subject 1, the correlation between head motion and 
steering similarly increased from 0.24 in the alert state to 0.43 in the non-alert state. 
The other two subjects showed a smaller coupling effect. Future work includes 
combining the head motion measures and steering correlations with the facial 
movement measures in the predictive model. 



 

Coupling of eye openness and eyebrow raise. We observed that for some of the 
subjects coupling between eye brow up’s and eye openness increased in the drowsy 
state.  In other words subjects tried to open their eyes using their eyebrows in an 
attempt to keep awake. See Figure 9.  
 

 
 
Fig. 8. Head motion (blue/gray)  and steering position (red/black) for 60 seconds in an alert 
state (left) and 60 seconds prior to a crash (right). Head motion is the output of the roll 
dimension of the accelerometer. 
 

 
Fig. 9. Eye Openness (red/black) and Eye Brow Raises (AU2) (Blue/gray) for 10 seconds in an 
alert state (left) and 10 seconds prior to a crash (right).  

4.4   Conclusions of Driver Fatigue Study 

This chapter presented a system for automatic detection of driver drowsiness from 
video. Previous approaches focused on assumptions about behaviors that might be 
predictive of drowsiness. Here, a system for automatically measuring facial 
expressions was employed to data mine spontaneous behavior during real drowsiness 
episodes. This is the first work to our knowledge to reveal significant associations 
between facial expression and fatigue beyond eyeblinks. The project also revealed a 



potential association between head roll and driver drowsiness, and the coupling of 
head roll with steering motion during drowsiness. Of note is that a behavior that is 
often assumed to be predictive of drowsiness, yawn, was in fact a negative predictor 
of the 60-second window prior to a crash. It appears that in the moments before 
falling asleep, drivers yawn less, not more, often. This highlights the importance of 
using examples of fatigue and drowsiness conditions in which subjects actually fall 
sleep. 

The computer vision field has advanced to the point that we are now able to begin 
to apply automatic facial expression recognition systems to important research 
questions in behavioral science.  This chapter explored two such applications, in 
which the automated measurement system revealed information about facial 
expression that was previously unknown.  While the accuracy of individual facial 
action detectors is still below that of human experts, automated systems can be 
applied to large quantities of video data.  Statistical pattern recognition on this large 
quantity of data can reveal emergent behavioral patterns that previously would have 
required hundreds of coding hours by human experts, and would be unattainable by 
the non-expert. Moreover, automated facial expression analysis will enable 
investigations into facial expression dynamics that were previously intractable by 
human coding because of the time required to code intensity changes.  Future work 
will explore facial expression dynamics.  
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