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Abstract— We present the Computer Expression Recognition
Toolbox (CERT), a software tool for fully automatic real-time
facial expression recognition, and officially release it for free
academic use. CERT can automatically code the intensity of
19 different facial actions from the Facial Action Unit Coding
System (FACS) and 6 different protoypical facial expressions.
It also estimates the locations of 10 facial features as well
as the 3-D orientation (yaw, pitch, roll) of the head. On a
database of posed facial expressions, Extended Cohn-Kanade
(CK+ [1]), CERT achieves an average recognition performance
(probability of correctness on a two-alternative forced choice
(2AFC) task between one positive and one negative example) of
90.1% when analyzing facial actions. On a spontaneous facial
expression dataset, CERT achieves an accuracy of nearly 80%.
In a standard dual core laptop, CERT can process 320 × 240
video images in real time at approximately 10 frames per
second.

I. INTRODUCTION
Facial expressions provide a wealth of information about

a person’s emotions, intentions, and other internal states
[2]. The ability to recognize a person’s facial expressions
automatically and in real-time could give rise to a wide range
of applications that we are only beginning to imagine.

The last decade has seen substantial progress in the field
of automatic facial expression recognition systems (e.g., [3],
[4], [1], [5], [6]). Such systems can operate reasonably
accurately on novel subjects, exhibiting both spontaneous
and posed facial expressions. This progress has been mainly
enabled by the adoption of modern machine learning meth-
ods, and by the gathering of high-quality databases of facial
expression necessary for using these methods (e.g., Cohn-
Kanade [7], Extended Cohn-Kanade [8], MMI [9]). Systems
for automatic expression recognition can interpret facial
expression at the level of basic emotions [10] (happiness,
sadness, anger, disgust, surprise, or fear), or they can analyze
them at the level of individual muscle movements (facial
“action units”) of the face, in the manner of the Facial Action
Coding System (FACS) [10].

To date, no fully automatic real-time system that rec-
ognizes FACS Action Units with state-of-the-art accuracy
has been publicly available. In this paper, we present one
such tool – the Computer Expression Recognition Toolbox
(CERT). CERT is a fully automatic, real-time software tool
that estimates facial expression both in terms of 19 FACS
Action Units, as well as the 6 universal emotions. While the

technology continues to advance, at this time CERT provides
sufficiently accurate estimates of facial expression to enable
real-world applications such as driver fatigue detection [11]
and emotional reactivity such as pain reactions [12].

The objective of this paper is to announce the release
of CERT to the research community, to provide a descrip-
tion of the technical components of CERT, and to provide
benchmark performance data as a resource to accompany
the Toolbox. The development of the various components
of CERT has been published in previous papers. Here we
provide a coherent description of CERT in a single paper
with updated benchmarks.

Outline: We briefly describe the Facial Action Coding
System in Section I-A, which defines the Action Units that
CERT endeavors to recognize. We then present the software
features offered by CERT in Section II and describe the
system architecture. In Section IV-A we evaluate CERT’s
accuracy on several expression recognition datasets. In Sec-
tion V we describe higher-level applications based on CERT
that have recently emerged.

A. Facial Action Coding System (FACS)

In order to objectively capture the richness and complexity
of facial expressions, behavioral scientists found it necessary
to develop objective coding standards. The Facial Action
Coding System (FACS) [10] is one of the most widely used
expression coding system in the behavioral sciences. FACS
was developed by Ekman and Friesen as a comprehensive
method to objectively code facial expressions. Trained FACS
coders decompose facial expressions in terms of the appar-
ent intensity of 46 component movements, which roughly
correspond to individual facial muscles. These elementary
movements are called action units (AUs) and can be regarded
as the “phonemes” of facial expressions. Figure 1 illustrates
the FACS coding of a facial expression. The numbers identify
the action unit, and the letters identify the level of activation.
FACS provides an objective and comprehensive language for
describing facial expressions and relating them back to what
is known about their meaning from the behavioral science
literature. Because it is comprehensive, FACS also allows
for the discovery of new patterns related to emotional or
situational states.



II. COMPUTER EXPRESSION RECOGNITION
TOOLBOX (CERT)

The Computer Expression Recognition Toolbox (CERT) is
a software tool for real-time fully automated coding of facial
expression. It can process live video using a standard Web
camera, video files, and individual images. CERT provides
estimates of facial action unit intensities for 19 AUs, as
well as probability estimates for the 6 prototypical emotions
(happiness, sadness, surprise, anger, disgust, and fear). It also
estimates the intensity of posed smiles, the 3-D head orienta-
tion (yaw, pitch, and roll), and the (x, y) locations of 10 facial
feature points. All CERT outputs can be displayed within
the GUI (see Figure 1) and can be written to a file (updated
in real-time so as to enable secondary processing). For real
time interactive applications CERT provides a sockets-based
interface.

CERT’s processing pipeline, from video to expression
intensity estimates, is given in Figure 2. In the subsections
below we describe each stage.

A. Face Detection
The CERT face detector was trained using an extension of

the Viola-Jones approach [13], [14]. It employs GentleBoost
[15] as the boosting algorithm and WaldBoost [16] for
automatic cascade threshold selection. On the CMU+MIT
dataset, CERT’s face detector achieves a hit rate of 80.6%
with 58 false alarms. At run-time, the face detector is applied
to each video frame, and only the largest found face is
segmented for further processing. The output of the face
detector is shown in blue in Figure 1.

B. Facial Feature Detection
After the initial face segmentation, a set of 10 facial fea-

tures, consisting of inner and outer eye corners, eye centers,
tip of the nose, inner and outer mouth corners, and center of
the mouth, are detected within the face region using feature-
specific detectors (see [17]). Each facial feature detector,
trained using GentleBoost, outputs the log-likelihood ratio of
that feature being present at a location (x, y) within the face,
to being not present at that location. This likelihood term is
combined with a feature-specific prior over (x, y) locations
within the face to estimate the posterior probability of each
feature being present at (x, y) given the image pixels.

Given the initial constellation of the (x, y) locations of the
10 facial features, the location estimates are refined using
linear regression. The regressor was trained on the GENKI
dataset [18], which was labeled by human coders for the
positions of all facial features. The outputs of the facial
feature detectors are shown in small red boxes (except the
eye centers, which are blue) within the face in Figure 1.

C. Face Registration
Given the set of 10 facial feature positions, the face patch

is re-estimated at a canonical size of 96x96 pixels using an
affine warp. The warp parameters are computed to minimize
the L2 norm between the warped facial feature positions of
the input face and a set of canonical feature point positions
computed over the GENKI datset. The pixels of this face
patch are then extracted into a 2-D array and are used for
further processing. In Figure 1 the re-estimated face box is
shown in green.

D. Feature Extraction
The cropped 96x96-pixel face patch is then convolved

(using a Fast Fourier Transform) with a filter bank of 72
complex-valued Gabor filters of 8 orientations and 9 spatial
frequencies (2:32 pixels per cycle at 1/2 octave steps). The
magnitudes of the complex filter outputs are concatenated
into a single feature vector.

E. Action Unit Recognition
The feature vector computed in the previous stage is input

to a separate linear support vector machine (SVM) for each
AU. The SVM outputs can be interpreted as estimates of the
AU intensities (see Section II-F).

The action unit SVMs were trained from a compilation
of several databases: Cohn-Kanade [7], Ekman-Hager [19],
M3 [20], Man-Machine Interaction (MMI) [9], and two non-
public datasets collected by the United States government
which are similar in nature to M3. Cohn-Kanade and Ekman-
Hager are databases of posed facial expression, whereas the
M3 and the two government datasets contained spontaneous
expressions. From the MMI dataset, only posed expressions
were used for training. For AUs 1, 2, 4, 5, 9, 10, 12, 14, 15,
17, and 20, all of the databases listed above were used for
training. For AUs 6, 7, 18, 23, 24, 25, and 26, only Cohn-
Kanade, Ekman-Hager, and M3 were used. The number
of positive training examples for each AU is given by the
column “Np train” in Table I.

F. Expression Intensity and Dynamics
For each AU, CERT outputs a continuous value for each

frame of video, consisting of the distance of the input
feature vector to the SVM’s separating hyperplane for that
action unit. Empirically it was found that CERT outputs
are significantly correlated with the intensities of the facial
actions, as measured by FACS expert intensity codes [5].
Thus the frame-by-frame intensities provide information on
the dynamics of facial expression at temporal resolutions
that were previously impractical via manual coding. There is
also preliminary evidence of concurrent validity with EMG.
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Fig. 1. (a) Example of comprehensive Facial Action Coding System (FACS) coding of a facial expression. The numbers identify the action unit, which
approximately corresponds to one facial muscle; the letter identifies the level of activation. (b) Screenshot of CERT.
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These two pathways appear to correspond to the
distinction between biologically driven versus socially
learned facial behavior. Researchers agree, for the most
part, that most types of facial expressions are learned
like language, displayed under conscious control, and
have culturally specific meanings that rely on context for
proper interpretation (e.g. [13]). Thus, the same lowered
eyebrow expression that would convey ”uncertainty” in
North America might convey ”no” in Borneo [9]. On the
other hand, there are a limited number of distinct facial
expressions of emotion that appear to be biologically
wired, produced involuntarily, and whose meanings are
similar across all cultures; for example, anger, contempt,
disgust, fear, happiness, sadness, and surprise [13]. A
number of studies have documented the relationship be-
tween these facial expressions of emotion and the phys-
iology of the emotional response (e.g. [19], [20].) There
are also spontaneous facial movements that accompany
speech. These movements are smooth and ballistic, and
are more typical of the subcortical system associated
with spontaneous expressions (e.g. [40]). There is some
evidence that arm-reaching movements transfer from one
motor system when they require planning to another when
they become automatic, with different dynamic charac-
teristics between the two [12]. It is unknown whether
the same thing happens with learned facial expressions.
An automated system would enable exploration of such
research questions.

C. The need for spontaneous facial expression databases
The machine perception community is in critical need

of standard video databases to train and evaluate systems
for automatic recognition of facial expressions. An im-
portant lesson learned from speech recognition research
is the need for large, shared databases for training, testing,
and evaluation, without which it is extremely difficult
to compare different systems and to evaluate progress.
Moreover, these databases need to be typical of real world
environments in order to train data-driven approaches and
for evaluating robustness of algorithms. An important step
forward was the release of the Cohn-Kanade database
of FACS coded facial expressions [28], which enabled
development and comparison of numerous algorithms.
Two more recent databases also make a major contribution
to the field: The MMI database which enables greater
temporal analysis as well as profile views [38], as well
as the Lin database which contains 3D range data for
prototypical expressions at a variety of intensities [30].
However, all of these databases consist of posed facial
expressions. It is essential for the progress of the field to
be able to evaluate systems on databases of spontaneous
expressions. As described above, spontaneous expressions
differ from posed expressions in both which muscles
are moved, and in the dynamics of those movements.
Development of these databases is a priority that requires
joint effort from the computer vision, machine learning,
and psychology communities. A database of spontaneous
facial expressions collected at UT Dallas [34] was a

Figure 2. Overview of fully automated facial action coding system.

significant contribution in this regard. The UT Dallas
database elicited facial expressions using film clips, and
there needs to be some concurrent measure of expression
content beyond the stimulus category since subjects often
do not experience the intended emotion and sometimes
experience another one (e.g. disgust or annoyance instead
of humor). FACS coding of this database would be
extremely useful for the computer vision community. We
present here a database of spontaneous facial expressions
that has been FACS coded using the Facial Action Coding
System.

D. System overview
Here we describe progress on a system for fully

automated facial action coding, and show preliminary
results when applied to spontaneous expressions. This was
the first system for fully automated expression coding,
presented initially in [3], and it extends a line of research
developed in collaboration with Paul Ekman and Terry
Sejnowski [11]. It is a user independent fully automatic
system for real time recognition of facial actions from
the Facial Action Coding System (FACS). The system
automatically detects frontal faces in the video stream
and codes each frame with respect to 20 Action units. In
previous work, we conducted empirical investigations of
machine learning methods applied to the related problem
of classifying expressions of basic emotions [31]. We
compared AdaBoost, support vector machines, and linear
discriminant analysis, as well as feature selection tech-
niques. Best results were obtained by selecting a subset
of Gabor filters using AdaBoost and then training Support
Vector Machines on the outputs of the filters selected
by AdaBoost. An overview of the system is shown in
Figure 2. Here we apply this system to the problem of
detecting facial actions in spontaneous expressions.

E. Relation to other work
There have been major advances in the computer vision

literature for facial expression recognition over the past
15 years. See [22], [36] for reviews. Much of the early
work on computer vision applied to facial expressions
focused on recognizing a few prototypical expressions
of emotion produced on command (e.g., ”smile”). Some
systems describe facial expressions in terms of component
movements, most notably coding standard developed for
MPEG4 which focuses on automatic coding of a set of
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Fig. 2. Processing pipeline of the Computer Expression Recognition Toolbox (CERT) from video to expression intensity estimates.

CERT outputs significantly correlated with EMG measures
of zygomatic and corrugator activity despite the visibility of
the electrodes in the video [21].

III. EXTENSION MODULES

The CERT architecture allows for extension modules that
can intercept the processing pipeline at several possible
points, including just after the face registration stage, and

after all AUs have been recognized (the endpoint). This
allows for the implementation of three particular modules
that are part of CERT – a detector of posed smiles, a 3-D
head pose estimator, and a basic emotion recognizer. These
are described below. Other secondary processing applications
of CERT’s AU outputs will be discussed in Section V.



A. Smile Detection
Since smiles play such an important role in social inter-

action, CERT provides multiple ways of encoding them. In
addition to AU 12 (lip corner puller, present in all smiles),
CERT is also equipped with a smile detector that was
trained on a subset of 20,000 images from the GENKI
dataset [18]. These were images of faces obtained from
the Web representing a wide variety of imaging conditions
and geographical locations. The smile detector utilizes the
same processing pipeline as the AU detectors up through
the face registration stage. Instead of using Gabor filters
(as for action unit recognition), the smile detector extracts
Haar-like box filter features, and then uses GentleBoost to
classify the resulting feature vector into {Smile, NonSmile}.
Smile detection accuracy (2AFC) on a subset of GENKI not
used for training was 97.9%. In addition, the smile detector
outputs were found to be significantly correlated with human
judgments of smile intensity (Pearson r = 0.894) [22]. Com-
parisons of Haar+GentleBoost versus Gabor+SVMs showed
that the former approach is faster and yields slightly higher
accuracy for the smile detection problem [22].

B. Pose Estimation
CERT also outputs estimates of the 3-D head orientation.

After the face-registration stage, the patch of face pixels are
passed through an array of pose range classifiers that are
trained to distinguish between different ranges of yaw, pitch,
and roll (see [23]). Two types of such classifiers are used: 1-
versus-1 classifiers that distinguish between two disjoint pose
ranges (e.g., [6, 18)◦, [18, 30)◦); and 1-versus-all classifiers
that distinguish between one pose range and all other pose
ranges. The pose range discriminators were trained using
GentleBoost on Haar-like box features and output the log
probability ratio of the face belonging to one pose range class
compared to another. These detectors’ outputs are combined
with the (x, y) coordinates of all 10 facial feature detectors
(Section II-D) and then passed through a linear regressor to
estimate the real-valued angle of each of the yaw, pitch, and
roll parameters.

Accuracy of the pose detectors was measured on the
GENKI 4K dataset (not used for training) [24]; see Figure 3
for Root Mean Square Error (RMSE) of pose estimation as
a function of human-labeled pose.

C. Basic Emotion Recognition
Since CERT exports a real-time stream of estimated AU

intensities, these values can then be utilized by second-layer
recognition systems in a variety of application domains. One
such application is the recognition of basic emotions. CERT
implements a set of 6 basic emotion detectors, plus neutral

expression, by feeding the final AU estimates into a mul-
tivariate logistic regression (MLR) classifier. The classifier
was trained on the AU intensities, as estimated by CERT, on
the Cohn-Kanade dataset and its corresponding ground-truth
emotion labels. MLR outputs the posterior probability of
each emotion given the AU intensities as inputs. Performance
of the basic emotion detectors is discussed in Section IV-A.

IV. EXPERIMENTAL EVALUATION
We evaluated CERT’s AU recognition performance on two

high-quality databases of facial expression: the Extended
Cohn-Kanade Dataset, containing posed facial expressions,
and the M3 Dataset, containing spontaneous facial expres-
sions. We measure accuracy as the probability of correct-
ness in discriminating between a randomly drawn positive
example (in which a particular AU is present) and a random
negative example (in which the AU is not present) based
on the real-valued classifier output. We call this accuracy
statistic the 2AFC Score (two alternative forced choice).
Under mild conditions it is mathematically equivalent to
the area under the Receiver Operating Characteristics curve,
which is sometimes called the the A� statistic (e.g., [8]). An
estimate of the standard error associated with estimating the
2AFC value can be computed as

�se =

�
p(1− p)

min{Np, Nn}

where p is the 2AFC value and Np and Nn are the number
of positive and negative examples, respectively, for each
particular AU [22].

A. Extended Cohn-Kanade Dataset (CK+)
We evaluated CERT on the Extended Cohn-Kanade

Dataset (CK+) [8]. Since CK+ is a superset of the original
Cohn-Kanade Dataset (CK) [7], and since CERT was trained
partially on CK, we restricted our performance evaluation to
only those subjects of CK+ not included in CK. These were
subject numbers: 5, 28, 29, 90, 126, 128, 129, 139, 147, 148,
149, 151, 154, 155, 156, 157, 158, 160, 501, 502, 503, 504,
505, 506, 895, and 999.

Our evaluation procedure was as follows: For each video
session of each of the 26 subjects listed above, we used
CERT to estimate the AU intensity for the first frame
(containing a neutral expression) and the last frame (con-
taining the expression at peak intensity). The first frames
constituted negative examples for all AUs, while the last
frame constituted positive examples for those AUs labeled
in CK+ as present and negative examples for all other AUs.
From the real-valued AU intensity estimates output by CERT,
we then calculated for each AU the 2AFC statistic and
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Fig. 3. Smoothed root-mean-square errors (RMSE), as a function of human-labeled pose, for both the automatic pose tracker and the individual human
labelers. RMSE for the automatic pose tracker was estimated over GENKI-4K using the average human labeler’s pose as ground-truth. RMSE for humans
was measured on a different subset of GENKI comprising 671 images on which at least 4 different humans had labeled pose.

Performance on CK+
AU Np train Np test 2AFC(%)± �se
1 2186 14 97.5± 4.1
2 1848 9 87.1± 11.2
4 1032 23 97.4± 3.3
5 436 14 87.0± 9.0
6 278 6 80.2± 16.3
7 403 9 89.1± 10.4
9 116 5 100.0± 0.0
10 541 2 86.8± 23.9
12 1794 8 92.4± 9.4
14 909 22 91.0± 6.1
15 505 14 91.0± 7.6
17 1370 31 89.0± 5.6
18 121 1 93.0± 25.4
20 275 6 91.1± 11.6
23 57 9 81.3± 13.0
24 49 3 96.8± 10.2
25 376 11 90.7± 8.7
26 86 7 69.5± 17.4

Avg 90.1

TABLE I
CERT’S AU RECOGNITION ACCURACY ON THE 26 SUBJECTS OF THE

EXTENDED COHN-KANADE DATASET (CK+) NOT INCLUDED IN THE

ORIGINAL COHN-KANADE DATASET (CK).

standard error. An average 2AFC over all AUs, weighted
by the number of positive examples for each AU, was also
calculated. Results are shown in Table I.

We also assessed the accuracy of CERT’s prototypical
emotion recognition module (Section III-C) on the same
26 subjects in CK+ not in CK. We measured accuracy
in two different ways: (a) using the 2AFC statistic when

Emotion Classification Confusion Matrix
An Di Fe Ha Sa Su Ne

An 36.4 9.1 0.0 0.0 0.0 0.0 54.5
Di 0.0 100.0 0.0 0.0 0.0 0.0 0.0
Fe 0.0 0.0 60.0 0.0 0.0 40.0 0.0
Ha 0.0 0.0 0.0 100.0 0.0 0.0 0.0
Sa 0.0 0.0 0.0 0.0 60.0 0.0 40.0
Su 0.0 0.0 0.0 0.0 0.0 100.0 0.0
Ne 0.0 0.0 0.0 0.0 0.0 0.0 100.0

TABLE II
SEVEN-ALTERNATIVE FORCED CHOICE EMOTION CLASSIFICATION OF

THE 26 SUBJECTS OF THE CK+ DATASET NOT IN CK.

discriminating images of each emotion i from images of all
other emotions {1, . . . , 7}\{i}, and (b) as the percent-correct
classification of each image on a seven-alternative forced
choice (among all 7 emotions). The test set consisted of 86
frames – all the first (neutral) and last (apex) frames from
each of the 26 subjects whose emotion was one of happiness,
sadness, anger, fear, surprise, disgust, or neutral. For (a),
the individual 2AFC scores were 93.5, 100.0, 100.0, 100.0,
100.0, 100.0, and 97.94 for the emotions as listed above;
the average 2AFC was 98.8%. For (b), a confusion table is
given in Table II. The row labels are ground-truth, and the
column labels are the automated classification results. The
seven-alternative forced choice performance was 87.21%.

B. M3 Dataset
The M3 [20] is a database of spontaneous facial behav-

ior that was FACS coded by certified FACS experts. The
dataset consists of 100 subjects participating in a “false
opinion” paradigm. In this paradigm, subjects first fill out



a questionnaire regarding their opinions about a social or
political issue. Subjects are then asked to either tell the truth
or take the opposite opinion on an issue on which they
rated strong feelings, and convince an interviewer they are
telling the truth. This paradigm has been shown to elicit
a wide range of emotional expressions as well as speech-
related facial expressions [25]. The dataset was collected
from four synchronized Dragonfly video cameras from Point
Grey. M3 can be considered a particularly challenging dataset
due to the typically lower intensity of spontaneous compared
to posed expressions, the presence of speech-related mouth
movements, and the out-of-plane head rotations that tend to
be present during discourse.

In earlier work [5], we trained a FACS recognition sys-
tem on databases of posed expressions and measured its
accuracy on the frontal video stream of M3. In contrast,
here we present results based on training data with both
posed and spontaneous facial expressions. The evaluation
procedure was as follows: M3 subjects were divided into
three disjoint validation folds. When testing on each fold i,
the corresponding subjects from fold i were removed from
the CERT training set described in Section II-E. The re-
trained CERT was then evaluated on each video frame on all
subjects of fold i. 2AFC statistics and corresponding standard
errors for each AU, along with the total number of positive
examples (defined as the number of onset-apex-offset action
unit events in video) of each AU occurring in the entire M3
dataset (over all folds), are shown in Table III. The average
over all AUs, weighted by the number of positive examples
for each AU (as in [8]), was also calculated.

V. APPLICATIONS
The adoption of and continued improvement to real-time

expression recognition systems such as CERT will make
possible a broad range of applications whose scope we are
only beginning to imagine. As described in Section II-F
CERT’s real-time outputs enable the study of facial expres-
sion dynamics. Below we describe two example projects
utilizing CERT as the back-end system for two different
application domains.

A. Automated Detection of Driver Fatigue
It is estimated that driver drowsiness causes more fatal

crashes in the United States than drunk driving [26]. Hence
an automated system that could detect drowsiness and alert
the driver or truck dispatcher could potentially save many
lives. Previous approaches to drowsiness detection by com-
puter make assumptions about the relevant behavior, focusing
on blink rate, eye closure, yawning, and head nods [27].
While there is considerable empirical evidence that blink

Performance on M3
AU Np test 2AFC(%)± �se
1 169 82.3± 0.8
2 153 81.2± 2.8
4 32 75.6± 3.9
5 36 82.8± 2.8
6 50 95.5± 1.4
7 46 77.3± 3.3
9 2 86.5± 6.1
10 38 73.1± 3.6
12 3 90.1± 1.8
14 119 74.4± 0.5
15 87 83.1± 4.1
17 77 84.0± 2.4
18 121 78.0± 4.9
20 12 64.5± 5.0
23 24 74.0± 5.2
24 68 83.0± 2.0
25 200 76.8± 5.3
26 144 80.1± 6.9

Avg 79.9

TABLE III
CERT’S AU RECOGNITION ACCURACY ON THE M3 DATASET OF

SPONTANEOUS FACIAL EXPRESSIONS, USING 3-FOLD

CROSS-VALIDATION (SEE SECTION IV-B). Np REFERS TO NUMBER OF

AU EVENTS IN THE VIDEO, NOT NUMBER OF VIDEO FRAMES.

rate can predict falling asleep, it was unknown whether there
were other facial behaviors that could predict sleep episodes.
Vural, et. al [11] employ a machine learning architecture to
recognizing drowsiness in real human behavior.

In this study, four subjects participated in a driving sim-
ulation task over a 3 hour period between midnight and
3AM. Videos of the subjects faces, accelerometer readings of
the head, and crash events were recorded in synchrony. The
subjects’ data were partitioned into drowsy and alert states as
follows: The one minute preceding a crash was labeled as a
drowsy state. A set of “alert” video segments was identified
from the first 20 minutes of the task in which there were no
crashes by any subject. This resulted in a mean of 14 alert
segments and 24 crash segments per subject. The subjects’
videos were analyzed frame-by-frame for AU intensity using
CERT.

In order to understand how each action unit is associated
with drowsiness across different subjects, a Multinomial
Logistic Ridge Regressor (MLR) was trained on each facial
action individually. The five most predictive facial actions
whose intensities increased in drowsy states were blink, outer
brow raise, frown, chin raise, and nose wrinkle. The five
most predictive actions that decreased in intensity in drowsy
states were smile, lid tighten, nostril compress, brow lower,
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a      b 

 
c      d 
Figure 6. Changes in movement coupling with drowsiniess. a,b: Eye Openness (red) and Eye 
Brow Raise (AU2) (Blue) for 10 seconds in an alert state (a) and 10 seconds prior to a crash (b), 
for one subject. c,d: Head motion (blue) and steering position (red) for 60 seconds in an alert 
state (c) and 60 seconds prior to a crash (d) for one subject. Head motion is the output of the roll 
dimension of the accelerometer. (In grayscale, gray=blue, red=black.) (Reprinted from Bartlett et 
al., 2008, © 2008 Springer.) 

Fig. 4. Changes in movement coupling with drowsiniess. a,b: Eye Openness
(red) and Eye Brow Raise (AU2) (Blue) for 10 seconds in an alert state (a)
and 10 seconds prior to a crash (b), for one subject.

and jaw drop. The high predictive ability of the blink/eye
closure measure was expected. However the predictability
of the outer brow raise was previously unknown. It was
observed during this study that many subjects raised their
eyebrows in an attempt to keep their eyes open. Also of
note is that AU 26, jaw drop, which occurs during yawning,
actually occurred less often in the critical 60 seconds prior
to a crash.

A fatigue detector that combines multiple AUs was then
developed. An MLR classifier was trained using contin-
gent feature selection, starting with the most discriminative
feature (blink), and then iteratively adding the next most
discriminative feature given the features already selected.
MLR outputs were then temporally integrated over a 12
second window. Best performance of 98% (2AFC) was
obtained with five features.

Changes were also observed in the coupling of behaviours
with drowsiness. For some of the subjects, coupling between
brow raise and eye openness increased in the drowsy state
(Figure 4 a,b). Subjects appear to have pulled up their
eyebrows in an attempt to keep their eyes open. This is the
first work to our knowledge to reveal significant associations
between facial expression and fatigue beyond eyeblinks. Of
note is that a behavior that is often assumed to be predictive
of drowsiness, yawn, was in fact a negative predictor of
the 60-second window prior to a crash. It appears that in
the moments just before falling asleep, drivers may yawn
less often, not more often. This highlights the importance
of designing a system around real, not posed, examples of
examples of fatigue and drowsiness.

B. Automated Teaching Systems
There has been a growing thrust to develop tutoring

systems and agents that respond to students’ emotional and

cognitive state and interact with them in a social manner
(e.g., [28], [29]). Whitehill, et al. [30] conducted a pilot
experiment in which expression was used to estimate the
student’s preferred viewing speed of the videos, and the
level of difficulty, as perceived by the individual student,
of the lecture at each moment of time. This study took first
steps towards developing methods for closed loop teaching
policies, i.e., systems that have access to real time estimates
of cognitive and emotional states of the students and act
accordingly.

In this study, 8 subjects separately watched a video lecture
composed of several short clips on mathematics, physics,
psychology, and other topics. The playback speed of the
video was controlled by the subject using a keypress. The
subjects were instructed to watch the video as quickly as
possible (so as to be efficient with their time) while still
retaining accurate knowledge of the video’s content, since
they would be quizzed afterwards.

While watching the lecture, the student’s facial expressions
were measured in real-time by CERT. After watching the
video and taking the quiz, each subject then watched the
lecture video again at a fixed speed of 1.0x. During this
second viewing, subjects specified how easy or difficult they
found the lecture to be at each moment in time using the
keyboard.

For each subject, a regression analysis was performed to
predict perceived difficulty and preferred viewing speed from
the facial expression measures. The expression intensities,
as well as their first temporal derivatives (measuring the
instantaneous change in intensity), were the independent
variables in a standard linear regression. The facial expres-
sion measures were significantly predictive of both perceived
difficulty (r = .75) and preferred viewing speed (r = .51).
The correlations on validation data were 0.42 and 0.29,
respectively. The specific facial expressions that were cor-
related with difficulty and speed varied highly from subject
to subject. The most consistently correlated expression was
AU 45 (“blink”), where subjects blinked less during the more
difficult sections of video. This is consistent with previous
work associating decreases in blink rate with increases in
cognitive load [31].

Overall, this study provided proof of principle that fully
automated facial expression recognition at the present state
of the art can be used to provide real-time feedback in
automated tutoring systems. The recognition system was
able to extract a signal from the face video in real-time
that provided information about internal states relevant to
teaching and learning.



VI. DIRECTIONS FOR FURTHER RESEARCH
While state-of-the-art expression classifiers such as CERT

are already finding practical applications, as described above,
much room for improvement remains. Some of the most
pressing issues are generalizing to non-frontal head poses,
providing good performance across a broader range of eth-
nicities, and the development of learning algorithms that can
benefit from unlabeled or weakly labeled datasets.

A. Obtaining a Free Academic License
CERT is available to the research community. Distribution

is being managed by Machine Perception Technologies, Inc.
CERT is being released under the name AFECT (Automatic
Facial Expression Coding Tool). The software is available for
free for academic use. Information about obtaining a copy is
available at http://mpt4u.com/AFECT.
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