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ABSTRACT 

The advance of computing technology has provided the 
means for building intelligent vehicle systems. Drowsy driver 
detection system is one of the potential applications of in- 
telligent vehicle systems. Previous approaches to drowsi- 
ness detection primarily make pre-assumptions about the 
relevant behavior, focusing on blink rate, eye closure, and 
yawning. Here we employ machine learning to datamine 
actual human behavior during drowsiness episodes. Auto- 
matic classifiers for 30 facial actions from the Facial Ac- 
tion Coding system were developed using machine learning 
on a separate database of spontaneous expressions. These 
facial actions include blinking and yawn motions, as well 
as a number of other facial movements. In addition, head 
motion was collected through automatic eye tracking and 
an accelerometer. These measures were passed to learning- 
based classifiers such as Adaboost and multinomial ridge 
regression. The system was able to predict sleep and crash 
episodes during a driving computer game with 96% accu- 
racy within subjects and above 90% accuracy across sub- 
jects. This is the highest prediction rate reported to date for 
detecting real drowsiness. Moreover, the analysis revealed 
new information about human behavior during drowsy driv- 
ing. 

 

1. INTRODUCTION 
 
In recent years, there has been growing interest in intelli- 
gent vehicles. A notable initiative on intelligent vehicles 
was created by the U.S. Department of Transportation with 
the mission of prevention of highway crashes [1]. The on- 
going intelligent vehicle research will revolutionize the way 
vehicles and drivers interact in the future. 

The US National Highway Traffic Safety Administra- 
tion estimates that in the US alone approximately 100,000 
crashes each year are caused primarily by driver drowsiness 
or fatigue [2]. Thus incorporating automatic driver fatigue 
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detection mechanism into vehicles may help prevent many 
accidents. 

One can use a number of different techniques for ana- 
lyzing driver exhaustion. One set of techniques places sen- 
sors on standard vehicle components, e.g., steering wheel, 
gas pedal, and analyzes the signals sent by these sensors to 
detect drowsiness [3]. It is important for such techniques 
to be adapted to the driver, since Abut and his colleagues 
note that there are noticeable differences among drivers in 
the way they use the gas pedal [4]. 

A second set of techniques focuses on measurement of 
physiological signals such as heart rate, pulse rate, and Elec- 
troencephalography (EEG) [5]. It has been reported by re- 
searchers that as the alertness level decreases EEG power 
of the alpha and theta bands increases [6]. Hence providing 
indicators of drowsiness. However this method has draw- 
backs in terms of practicality since it requires a person to 
wear an EEG cap while driving. 

A third set of solutions focuses on computer vision sys- 
tems that can detect and recognize the facial motion and 
appearance changes occurring during drowsiness [7] [8]. 
The advantage of computer vision techniques is that they 
are non-invasive, and thus are more amenable to use by the 
general public. There are some significant previous stud- 
ies about drowsiness detection using computer vision tech- 
niques . Most of the published research on computer vision 
approaches to detection of fatigue has focused on the anal- 
ysis of blinks and head movements. However the effect of 
drowsiness on other facial expressions have not been stud- 
ied thoroughly. Recently Gu & Ji presented one of the first 
fatigue studies that incorporates certain facial expressions 
other than blinks. Their study feeds action unit information 
as an input to a dynamic bayesian network. The network 
was trained on subjects posing a state of fatigue [9]. The 
video segments were classified into three stages: inatten- 
tion, yawn, or falling asleep. For predicting falling-asleep, 
head nods, blinks, nose wrinkles and eyelid tighteners were 
used. 

Previous approaches to drowsiness detection primarily 
make pre-assumptions about the relevant behavior, focus- 
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Fig. 1. Driving simulation task. 

 
 
ing on blink rate, eye closure, and yawning. Here we em- 
ploy machine learning methods to datamine actual human 
behavior during drowsiness episodes. The objective of this 
study is to discover what facial configurations are predic- 
tors of fatigue. In this study, facial motion was analyzed 
automatically from video using a fully automated facial ex- 
pression analysis system based on the Facial Action Coding 
System (FACS) [10]. In addition to the output of the au- 
tomatic FACS recognition system we also collected head 
motion data using an accelerometer placed on the subject’s 
head, as well as steering wheel data. 

 
 

2. METHODS 
 

2.1. Driving task 
 
Subjects played a driving video game on a windows ma- 
chine using a steering wheel1and an open source multi- 
platform video game2(See Figure 1). The windows ver- 
sion of the video game was maintained such that at random 
times, a wind effect was applied that dragged the car to the 
right or left, forcing the subject to correct the position of the 
car. This type of manipulation had been found in the past 
to increase fatigue [11]. Driving speed was held constant. 
Four subjects performed the driving task over a three hour 
period beginning at midnight. During this time subjects fell 
asleep multiple times thus crashing their vehicles. Episodes 
in which the car left the road (crash) were recorded. Video 
of the subjects face was recorded using a DV camera for the 
entire 3 hour session. 

 
1ThrustmasterRFerrari Racing Wheel 
2The Open Racing Car Simulator(TORCS) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Example facial action decomposition from the Facial 
Action Coding System. 
 
 
2.2. Head movement measures 

Head movement was measured using an accelerometer that 
has 3 degrees of freedom. This three dimensional accelerom- 
eter3has three one dimensional accelerometers mounted at 
right angles measuring accelerations in the range of 5g to 
+5g where g represents earth gravitational force. 
 
 
2.3. Facial Action Classifiers 
 
The facial action coding system (FACS) [12] is arguably the 
most widely used method for coding facial expressions in 
the behavioral sciences. The system describes facial expres- 
sions in terms of 46 component movements, which roughly 
correspond to the individual facial muscle movements. An 
example is shown in Figure 2. FACS provides an objective 
and comprehensive way to analyze expressions into elemen- 
tary components, analagous to decomposition of speech into 
phonemes. Because it is comprehensive, FACS has proven 
useful for discovering facial movements that are indicative 
of cognitive and affective states. In this paper we investigate 
whether there are Action units (AUs) such as chin raises 
(AU17), nasolabial furrow deepeners(AU11), outer(AU2) 
and inner brow raises (AU1) that are predictive of the levels 
of drowsiness observed prior to the subjects falling sleep 

In previous work we presented a system, named CERT, 
for fully automated detection of facial actions from the fa- 
cial action coding system [10]. The workflow of the sys- 
tem is based is summarized in Figure 3. We previously re- 
ported detection of 20 facial action units, with a mean of 
93% correct detection under controlled posed conditions, 
and 75% correct for less controlled spontaneous expressions 
with head movements and speech. 

 
3VernierR 
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For this project we used an improved version of CERT 
which was retrained on a larger dataset of spontaneous as 
well as posed examples. In addition, the system was trained 
to detect an additional 11 facial actions for a total of 31 (See 
Table 1). The facial action set includes blink (action unit 
45), as well as facial actions involved in yawning (action 
units 26 and 27). The selection of this set of 31 out of 46 
total facial actions was based on the availability of labeled 
training data. 

 
AU Name 
1 Inner Brow Raise 
2 Outer Brow Raise 
4 Brow Lowerer 
5 Upper Lid Raise 
6 Cheek Raise 
7 Lids Tight 
8 Lip Toward 
9 Nose Wrinkle 
10 Upper Lip Raiser 
11 Nasolabial Furrow Deepener 
12 Lip Corner Puller 
13 Sharp Lip Puller 
14 Dimpler 
15 Lip Corner Depressor 
16 Lower Lip Depress 
17 Chin Raise 
18 Lip Pucker 
19 Tongue show 
20 Lip Stretch 
22 Lip Funneller 
23 Lip Tightener 
24 Lip Presser 
25 Lips Part 
26 Jaw Drop 
27 Mouth Stretch 
28 Lips Suck 
30 Jaw Sideways 
32 Bite 
38 Nostril Dilate 
39 Nostril Compress 
45 Blink 

 
 
Table 1. Full set of action units used for predicting drowsi- 
ness 

 
The facial action detection system was designed as fol- 

lows: First faces and eyes are detected in real time using 
a system that employs boosting techniques in a generative 
framework [13]. The automatically detected faces are aligned 
based on the detected eye positions, cropped and scaled to 
a size of 96 × 96 pixels and then passed through a bank 
of Gabor filters. The system employs 72 Gabor spanning 9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Overview of fully automated facial action coding 
system. 
 
 
spatial scales and 8 orientations. The outputs of these fil- 
ters are normalized and then passed to a standard classifier. 
For this paper we employed support vector machines. One 
SVM was trained for each of the 31 facial actions, and it 
was trained to detect the facial action regardless of whether 
it occurred alone or in combination with other facial actions. 
The system output consists of a continuous value which is 
the distance to the separating hyperplane for each test frame 
of video. The system operates at about 6 frames per second 
on a Mac G5 dual processor with 2.5 ghz processing speed. 

Facial expression training data The training data for 
the facial action classifiers came from two posed datasets 
and one dataset of spontaneous expressions. The facial ex- 
pressions in each dataset were FACS coded by certified FACS 
coders. The first posed datasets was the Cohn-Kanade DFAT- 
504 dataset [14]. This dataset consists of 100 university stu- 
dents who were instructed by an experimenter to perform a 
series of 23 facial displays, including expressions of seven 
basic emotions. The second posed dataset consisted of di- 
rected facial actions from 24 subjects collected by Ekman 
and Hager. Subjects were instructed by a FACS expert on 
the display of individual facial actions and action combina- 
tions, and they practiced with a mirror. The resulting video 
was verified for AU content by two certified FACS coders. 
The spontaneous expression dataset consisted of a set of 
33 subjects collected by Mark Frank at Rutgers University. 
These subjects underwent an interview about political opin- 
ions on which they felt strongly. Two minutes of each sub- 
ject were FACS coded. The total training set consisted of 
6000 examples, 2000 from posed databases and 4000 from 
the spontaneous set. 

 

3. RESULTS 
 
Subject data was partitioned into drowsy (non-alert) and 
alert states as follows. The one minute preceding a sleep 
episode or a crash was identified as a non-alert state. There 
was a mean of 24 non-alert episodes with a minimum of 9 
and a maximum of 35. Fourteen alert segments for each 
subject were collected from the first 20 minutes of the driv- 
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ing task.4Our initial analysis focused on drowsiness pre- 
diction within-subjects. 
 
 
3.1. Facial action signals 
 
The output of the facial action detector consisted of a con- 
tinuous value for each frame which was the distance to the 
separating hyperplane, i.e., the margin. Histograms for two 
of the action units in alert and non-alert states are shown in 
Figure 4. The area under the ROC (A’) was computed for 
the outputs of each facial action detector to see to what de- 
gree the alert and non-alert output distributions were sep- 
arated. The A’ measure is derived from signal detection 
theory and characterizes the discriminative capacity of the 
signal, independent of decision threshold. A’ can be in- 
terpreted as equivalent to the theoretical maximum percent 
correct achievable with the information provided by the sys- 
tem when using a 2-Alternative Forced Choice testing paradigm. 
Table 2 shows the actions with the highest A’ for each sub- 
ject. As expected, the blink/eye closure measure was over- 
all the most discriminative for most subjects. However note 
that for Subject 2, the outer brow raise (Action Unit 2) was 
the most discriminative. 

 
AU Name 

Subj1 45 Blink 
17 Chin Raise 
30 Jaw sideways 

 
A’ 
.94 
.85 
.84 

7 Lid tighten .81 
39 Nostril compress .79 

Subj2 2 Outer brow raise .91 Fig. 4. Histograms for blink and Action Unit 2 in alert and 
45 Blink 
17 Chin Raise 

.80 

.76 
non-alert states. A’ is area under the ROC. 

15 Lip corner depress .76 
11 Nasolabial furrow .76 

Subj3 45 Blink .86 

 

3.2. Drowsiness prediction 

9 Nose wrinkle .78 The facial action outputs were passed to a classifier for pre- 
25 Lips part .78 dicting drowsiness based on the automatically detected fa- 
1 Inner brow raise .74 cial behavior. We compared two learning-based classifiers, 
20 Lip stretch 

Subj4 45 Blink 
.73 
.90 

Adaboost and multinomial ridge regression. Both within- 
subject prediction of drowsinss and across-subject (subject 

4 Brow lower .81 independent) prediction of drowsiness were tested. 
15 Lip corner depress .81 For the within-subject prediction, 80% of the alert and 
7 Lid tighten .80 non-alert episodes were used for training and the other 20% 
39 Nostril Compress .74 

 
 
Table 2. The top 5 most discriminant action units for dis- 
criminating alert from non-alert states for each of the four 
subjects. A’ is area under the ROC curve. 

 
 
4Several of the drivers became drowsy very quickly which prevented 

extraction of more alert segments. 

were reserved for testing. This resulted in a mean of 19 non- 
alert and 11 alert episodes for training, and 5 non-alert and 
3 alert episodes for testing per subject. 

The weak learners for the Adaboost classifier consisted 
of each of the 30 Facial Action detectors. The classifier 
was trained to predict alert or non-alert from each frame of 
video. There was a mean of 43,200 training samples, (24 + 
11) ×60 × 30, and 1440 testing samples, (5 + 3) × 60 × 30, 
for each subject. On each training iteration, Adaboost se- 
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Classifier Percent Correct Hit Rate False Alarm Rate 

 
 
 

More when critically drowsy 
Adaboost 
MLR 

.92 ±.03 

.94 ±.02 
.92±.01 
.98±.02 

.06±.1 
.13±.02 

AU Name 
45 Blink/eye closure 
2 Outer Brow Raise 

A’ 
0.94 
0.81 

 
Table 3. Performance for drowsiness prediction, within 

15 Lip Corner Depressor 0.80 
17 Chin Raiser 0.79 

subjects. Means and standard devisions are shown across 
subjects. 
 
 
lected the facial action detector that minimized prediction 
error given the previously selected detectors. Adaboost ob- 
tained 92% correct accuracy for predicting driver drowsi- 
ness based on the facial behavior. 

Classification with Adaboost was compared to that us- 
ing multinomial ridge regression (MLR). Performance with 
MLR was similar, obtaining 94% correct prediction of drowsy 
states. The facial actions that were most highly weighted by 
MLR also tended to be the facial actions selected by Ad- 

9 Nose wrinkle 
30 Jaw sideways 
20 Lip stretch 
11 Nasolabial furrow 
14 Dimpler 
1 Inner brow raise 
10 Upper Lip Raise 
27 Mouth Stretch 
18 Lip Pucker 
22 Lip funneler 
24 Lip presser 
19 Tongue show 

0.78 
0.76 
0.74 
0.71 
0.71 
0.68 
0.67 
0.66 
0.66 
0.64 
0.64 
0.61 

aboost. 85% of the top ten facial actions as weighted by Less when critically drowsy 
MLR were among the first 10 facial actions to be selected 
by Adaboost. 

AU Name 
12 Smile 

A’ 
0.87 

The ability to predict drowsiness in novel subjects was 7 Lid tighten 0.86 
next tested by using a leave-one-out cross validation pro- 39 Nostril Compress 0.79 
cedure. The data for each subject was first normalized to 4 Brow lower 0.79 
zero-mean and unit standard deviation before training the 26 Jaw Drop 0.77 
classifier. MLR was trained to predict drowsiness from the 6 Cheek raise 0.73 
AU outputs several ways. Performance was evaluated in 
terms of area under the ROC. For all of the the novel sub- 

38 Nostril Dilate 
23 Lip tighten 

0.72 
0.67 

ject analysis, the MLR output for each feature was summed 
over a temporal window of 12 seconds (360 frames) before 

8 
5 

Lips toward 
Upper lid raise 

0.67 
0.65 

computing A’. MLR trained on all features obtained an A’ 16 Lower lip depress 0.64 
of .90 for predicting drowsiness in novel subjects. 

First, MLR was trained on each facial action individu- 
ally. Examination of the A’ for each action unit reveals the 

32 Bite 0.63 

degree to which each facial movement is associated with 
drowsiness in this study. The A’s for the drowsy and alert 
states are shown in Table 4. The five facial actions that were 
the most predictive of drowsiness by increasing in drowsy 
states were 45, 2 (outer brow raise), 15 (frown), 17 (chin 
raise), and 9 (nose wrinkle). The five actions that were 
the most predictive of drowsiness by decreasing in drowsy 
states were 12 (smile), 7 (lid tighten), 39 (nostril compress), 
4 (brow lower), and 26 (jaw drop). The high predictive abil- 
ity of the blink/eye closure measure was expected. However 
the predictibility of the outer brow raise (AU 2) was previ- 
ously unknown. We observed during this study that many 
subjects raised their eyebrows in an attempt to keep their 
eyes open, and the strong association of the AU 2 detec- 
tor is consistent with that observation. Also of note is that 
action 26, jaw drop, which occurs during yawning, actually 
occurred less often in the critical 60 seconds prior to a crash. 
This is consistent with the prediction that yawning does not 
tend to occur in the final moments before falling asleep. 

Table 4. MLR model for predicting drowsiness across sub- 
jects. Predictive performance of each facial action individ- 
ually is shown. 
 

Second, MLR is computed using all features. MLR trained 
on all features obtained an A’ of .90 for  predicting 
drowsiness in novel subjects. Moreover, a new MLR classifier 
was trained by contingent feature selection, starting with the 
most discriminative feature (AU 45), and then iteratively 
adding the next most discriminative feature given the fea- 
tures already selected. These features are shown at the bot- 
tom of Table 5. Best performance of .98 was obtained with 
five features: 45, 2, 19 (tongue show), 26 (jaw drop), and 
15. This five feature model outperformed the MLR trained 
on all features. 

We next examined the effect of the size of the temporal  
window on performance. The five feature model was em- 
ployed for this analysis. The performances shown to this  
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Feature      A’ 
AU45 
AU45,AU2 
AU45,AU2,AU19 
AU45,AU2,AU19,AU26 
AU45,AU2,AU19,AU26,AU15 
all the features 

.9468 

.9614 

.9693 

.9776 

.9792 

.8954 

 
       Table 5. Drowsiness detection performance for novel  
       subjects, using and MLR classifier with different feature  
       combinations. The weighted features are summed over 
       12 seconds before computing A’. 
    
 
      point in the paper were for temporal windows of one frame,  
      with the exception of the novel subject analysis (Tables 4  
      and 5),  which employed a temporal window of 12 seconds.  

 The MLR output in the 5 feature model was summed over         
windows of N seconds, where N ranged from 0.5 to 60 sec- 
onds. Figure 5 shows the area under the ROC for drowsiness 
detection in novel subjects over time periods. Performance 
saturates at about 0.99 as the window size exceeds 30 sec- 
onds. In other words, given a 30 second video segment the 
system can discriminate sleepy versus non-sleepy segments  
with 0.99 accuracy across subjects. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Fig. 5. Performance for drowsiness detection in novel sub- 
     jects over temporal window sizes. 
 
 
3.3. Coupling of Steering and Head Motion 
 
Observation of the subjects during drowsy and nondrowsy 
states indicated that the subjects head motion differed sub- 
stantially when alert versus when the driver was about to fall 
asleep. Surprisingly, head motion increased as the driver be- 
came drowsy, with large roll motion coupled with the steer- 
 
 

 
 
 
 
 

 
 
 
ing motion as the driver became drowsy. Just before falling 
asleep, the head would become still. 

We also investigated the coupling of the head and arm 
motions. Correlations between head motion as measured 
by the roll dimension of the accelerometer output and the 
steering wheel motion are shown in Figure 6. For this sub- 
ject (subject 2), the correlation between head motion and 
steering increased from 0.33 in the alert state to 0.71 in 
the non-alert state. For subject 1, the correlation between 
head motion and steering similarly increased from 0.24 in 
the alert state to 0.43 in the non-alert state. The other two 
subjects showed a smaller coupling effect. Future work in- 
cludes combining the head motion measures and steering 
correlations with the facial movement measures in the pre- 
dictive model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

Fig. 6. Head motion and steering position for 60 seconds 
   in an alert state (top) and 60 seconds prior to a crash. Head 
   motion is the output of the roll dimension of the accelerom- 
   eter.  
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4. CONCLUSION 

 
This paper presented a system for automatic detection of 
driver drowsiness from video. Previous approaches focused 
on assumptions about behaviors that might be predictive of 
drowsiness. Here, a system for automatically measuring 
facial expressions was employed to datamine spontaneous 
behavior during real drowsiness episodes. This is the first 
work to our knowledge to reveal significant associations be- 
tween facial expression and fatigue beyond eyeblinks. The 
project also revealed a potential association between head 
roll and driver drowsiness, and the coupling of head roll 
with steering motion during drowsiness. Of note is that a 
behavior that is often assumed to be predictive of drowsi- 

       ness, yawn, was in fact a negative predictor of the 60-second 
       window prior to a crash. It appears that in the moments be- 
       fore falling asleep, drivers yawn less, not more, often. This 
       highlights the importance of using examples of fatigue and 
       drowsiness conditions in which subjects actually fall sleep. 
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