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Abstract—We explore how CERT [15], a computer expression
recognition toolbox trained on a large dataset of spontaneous
facial expressions (FFD07), generalizes to a new, previously
unseen dataset (FERA). The experiment was unique in that the
authors had no access to the test labels, which were guarded as
part of the FERA challenge. We show that without any training
or special adaptation to the new database, CERT performs better
than a baseline method trained exclusively on that database. Best
results are achieved by retraining CERT with a combination of
old and new data. We also found that the FERA dataset may
be too small and idiosyncratic to generalize to other datasets.
Training on FERA alone produced good results on FERA but
very poor results on FFD07. We reflect on the importance
of challenges like this for the future of the field, and discuss
suggestions for standardization of future challenges.

I. INTRODUCTION

Thanks to the use of machine learning methods, the field
of automated facial expression recognition is rapidly advanc-
ing. Technologies like smile detection have already become
commonplace on electronic appliances such as digital cameras
[25]. Yet generalizing expression recognition beyond a few
prototypical expressions like smiles remains unsolved. One
popular approach to recognizing arbitrary facial expressions
focuses on automating the Facial Action Coding System
(FACS) [9]. FACS is a system to taxonomize facial expressions
as a combination of 57 elementary components including 8
types of head pose and 6 types of eye movements. These
elementary expressions, known as Action Units (AUs), roughly
correspond to the contraction of an individual muscle groups.
They can be understood as the phonemes of facial expressions:
words are combinations of phonemes and facial expressions
are combinations of AUs. An advantage of the FACS taxon-
omy is that it reduces the general facial expression recognition
task into 57 binary classification problems.

Machine learning approaches train expression detector from
image datasets. These datasets need to capture critical sources
of variability, such as lightening conditions, image capture
instruments, ethnicity, gender, age, and use of facial artifacts
such as glasses. An additional challenge is the manner in
which expressions are elicited: for example, the timing and
morphology of facial expressions changes dramatically when
they are produced spontaneously rather than posed.

In recent years FACS coded datasets of facial expression,
such as CK+[13] and MMI[18] have been released to the
research community. They have made a major contribution
to advancing the field; yet these datasets are still small: they
contain a small number of subjects doing a predefined task,
in a specific setting. For simple prototypical cases such as
smile detection, we found that performance kept improving

as we increased the size of the dataset, until about 20,000
examples of different people collected from the Web [25].
Datasets like CK+ and MMI are still in the low hundreds
of subjects, rendered in restricted illumination conditions and
contexts in which the expressions were elicited.

Due to the small size and idiosyncrasies of each database,
maximizing facial expression performance on a single database
is unlikely to provide a realistic estimate of performance
in novel environments. A problem is that research teams
implicitly or explicitly optimize their algorithms to perform
well on a given dataset. Algorithmic variations (e.g., regular-
ization constants, number of features, kernel widths) are tried
and optimized with respect to cross validation performance,
which eventually overfits a single database and no longer
provide realistic estimates of performance. Thus the field
is in critical need for challenges that allow comparison of
different approaches on datasets different from the ones used
for training. It is also critical for the research teams to be
blind to the evaluation data. This acts as a safeguard against
teams implicitly or explicitly over-fitting their models to the
new data, and provides more realistic performance estimates.

Other fields in computer vision, like face recognition and
pedestrian detection, have recognized the importance of stan-
dardized blind test datasets ([20], [19], [6]) to compare across
algorithms and to prevent over-fitting. It is clear that similar
standardization is necessary for the facial expression recogni-
tion field.

To help address this need, the Social Signal Processing
Network (SSPNET) proposed and hosted the Facial Expression
Recognition and Analysis (FERA) challenge [23]. The chal-
lenge consists of recognizing 12 Action Units (AUs) in three
previously seen subjects and three previously unseen subjects.
A baseline algorithm is provided for reference purpose.

In this competition, we examine performance of a previ-
ously developed FACS recognition system, named Computer
Expression Recognition Toolbox (CERT)[3], [2], [15] on the
FERA database and efforts to adapt our system to the new
dataset.

II. SYSTEM BUILDING BLOCKS

Figure 1 describes the pipeline of a typical expression
recognition system. Both the baseline system provided by the
organizers and CERT are special cases of the pipeline. In
this section, we examine the various designs of the building
blocks: their properties, common failure modes and our efforts
to optimize. In particular, we focus on the comparison of the
implementation used in the baseline system and CERT.
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Fig. 1. The basic processing pipeline for approaches in this paper. Both the baseline method (◦) and CERT(?) are special cases of the pipeline.

A. Datasets

FERA- The focus of the FERA (AU) challenge is the
GEMEP-FERA [1] dataset. This dataset consists of recordings
of 10 actors displaying a range of expressions, while uttering a
meaningless phrase, or the word ‘Aaah’. There are 7 subjects
in the training data, and 6 subjects in the test set, 3 of which
are not present in the training set. The authors of this paper
never had access to the labels of the test set. We had access
to the test images themselves but we chose not to label them
in any way to estimate our performance on the test set.

FFD07- The original training set for CERT, here named
FFD07, is a combination of the following databases: Ekman-
Hager [7], Cohn-Kanade [13], MMI [18], M3 [10], and two
non-public datasets collected by the United States government
which are similar in nature to M3. The faces were prepared
and cropped into 96× 96 pixel patches using the CERT face
detector prior to the competition. Therefore, any optimizations
prior to the stage of face cropping did not apply to this dataset.

B. Training Frame Selection

Taking every image in the data for training may not be a
good idea. For example a large sequence of nearly identical
frames may result on excessive weight given to a particular
rendering of an expression. It is also possible that training on
the onset/offset points, when the intensity of the expression is
very low, may be counterproductive.

Here we tried three different frame selection schemes: no
frame selection, i.e. use all frames (NoFS); unique combina-
tions among the 12 trained AUs + AU 50 (FS12), and unique
combinations among all labeled AUs (FS50).

C. Face Detection and Registration

The CERT face detector [8] is of the Viola and Jones
approach [24] that uses GentleBoost [11] and instead of using
cascades it makes feature-by-feature decisions as to whether a
face is detected. It was trained on a dataset of 30,000 images
[22]. The CERT facial feature detectors operate similarly
except they discriminate patches within the face and they
combine image information with a prior distribution on face
feature location given a face detection [8]. The faces are
registered using affine warp with eye corners, nose and mouse
corners.

The baseline algorithm provided by the challenge orga-
nizers used the OpenCV face and eye detectors for face
registration. Cropped faces were obtained using the similarity
transform based on the location of eyes. We tested the different
versions of face detectors and eye detectors currently in

(a) poor registration (b) corrected registration

Fig. 2. Two video sequences. (a) An example of a face registration error in
the FERA dataset caused by poor face and facial feature detection. (b): An
example of a corrected face registration using the multiple-rotation algorithm
described in Section II-C.

OpenCV and compared it to the performance of the CERT
detector. Overall it appeared that the CERT detector worked
significantly better on this dataset a (See Fig. 3). To further
improve face detection performance we applied the CERT
face detector to the original images plus 6 rotated versions
R = {−45,−30,−15,+15,+30,+45}◦. For each frame we
used the rotation with the highest “likelihood” value, as
estimated by the CERT detector itself.

D. Gabor Energy vs. LBP

Gabor energy filters are spatial filters that simulate the
behavior of complex cell in striate cortex. They are quite
popular in the computer vision community and they are the
representation used for the CERT system. In particular CERT
convolves each image with a bank of 72 Gabor filters, (9
frequencies, 8 orientations). For specific parameters of the
bank please see the prior literature on CERT [3], [2], [15].

Uniform Local Binary Pattern (ULBP) [21] are another
popular alternative for representing image texture in computer
vision applications. The baseline algorithm provided by the
FERA organizers used an ULBP image representation: his-
tograms of the 59 radius-1 uniform local binary pattern values
in 20× 20 non-overlapping pixel blocks of the cropped face.
A cropped face image (200 × 200) was split into top- and
bottom-half blocks, so that there are 5 × 10 blocks in each
half.

There are surprising similarities between Gabor filters and
ULBP filters. Both approaches are spatially local oriented
edge detectors with some robustness to translation. Figure 4
shows visualizations of both features, which highlights their
similarity. ULBPs achieve robustness to translation when their
histograms are pooled over local blocks. Gabor energy filters
achieve it by implicit spatial Gaussian smoothing and phase
invariance. ULBPs detects different type of local neighborhood
(center surround, edge, or corner) by having different binary
codes. Gabor energy filters characterize local neighborhoods
by combining filters of multiple frequency and orientations.



Fig. 3. Randomly selected face cropings and rotations for five methods. The
face detector weight is “haarcascade frontalface alt2.xml”.
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Fig. 4. The 58 Uniform LBPs (left) can be thought of as illumination-robust
oriented edge detectors [17], with many similar properties to Gabor filters
(right), which are based on properties of the human visual system.

Both methods can identify edges of different spatial extent
by adjusting their radius/scale. However, ULBPs are typical
implemented with single fixed radius.

E. Support Vector Machine Training

Support vector machines [4] were used to map the image
representations (Gabor, or ULBPs) into action unit categories.
One of the main challenges we encountered was how to

best combine FFD07, the prior data that had been used
for training CERT, with the new FERA training set. The
most straightforward way to adapt CERT to FERA dataset
is to add FERA and FFD07 into the mix and retrain on the
combined dataset. However, this method has some potential
disadvantages: The FFD07 dataset may introduce informa-
tion that is counterproductive for the FERA challenge. For
example, the Asian and African-American faces in FFD07
may deteriorate performance on the FERA dataset, which is
all Caucasians. Moreover the FERA database is quite small
(FS12: 627 images) after frame selection. Thus it could be
easily overwhelmed by FFD07 (8000+ instances). To address
this problem we developed a custom version of SVM with
data weights that can be individually adjusted for each training
frame. Given training data {xi}, and labels {yi}, the primal
formulation of the data-weight SVM is

min
w,b

1
2
wTw + C

∑
i

ciξi (1)

s.t. yi(wTxi − b) ≥ 1− ξi (2)
ξi ≥ 0

where (w, b) defines the hyperplane to be learned, and ξi are
the slack variables. C is the master data fitness parameter;the
added ci’s are the data weight, controlling the fitness to each
data instance. The data-weight SVM reduces to standard SVM
when ci = 1 for all data instances. Nonlinear radial basis func-
tion kernel (K(xi,xj) = e−γ||xi−xj ||2 ) was used. Therefore,
the hyperparameters are the regularization parameter (C) and
inverse kernel width (γ).

For each AU, a binary SVM is trained while all the selected
frames using the optimal hyperparameter selected for the AU.
Typically the parameters are selected from grid points by
cross-validation accuracy [5]. However, our targeted perfor-
mance measure is F1 which has very different properties from
other performance measures such as 2AFC (see Sec.II-G).
We decided to try and optimize three different performance
measures: accuracy, 2AFC and F1-score.

F. Simple Context Adaptation

The SVM classifiers were trained to solve the subject-
independent frame-by-frame classification problem. No sub-
ject or temporal information were used. This section explores
how long time scale features, both across the entirety of
one clip and all clips containing a particular subject, can
improve the performance. There were two motivations for this
exploration: whether the performance of the frame-by-frame
classifiers could be improved by

1) subject bias - We found that for some subjects the
output of specific AU detectors have different baseline
activations, i.e. activation to a neutral face. The mean
activation of an AU detector over all clips containing
that subject could serve as an estimate of this unknown
baseline activation.

2) temporal coherence - Frames that are in the onset phase
of an AU may receive lower classifier outputs, but if one



knows that the mean activation of the classifier over the
entire clip is quite high, then the system may be able to
infer the correct label of the onset frame.

To test the hypothesis that long time scale statistics improve
performance, we created a logistic regression model for each
AU with the following features: the corresponding frame-by-
frame AU detector, the mean and standard deviation of that
detector over the clip, and the mean and standard deviation
of the detector output over all clips containing the particular
subject. In total we tried two types of models

1) clip context - only the clip-specific features were used.
This model was subject neutral, and thus could be used
for subject independent applications.

2) clip&subj context - use both the subject and clip
statistics.

The result are reported in Sec. IV-C.

G. Performance Measures

Many expression recognition systems provide real-valued
scores that represent the evidence for the observed data be-
longing to a particular expression category. The sensitivity of
the classifier depends exclusively on the statistical properties
of these scores.

However many applications require making binary deci-
sions. For example, the smile shutter in some digital cameras
needs to decide whether or not to take a picture based on
the evidence that a person is smiling. In such cases the
performance is a function of both the sensitivity of the analog
scores, and of judicious threshold choice for converting those
scores into binary outputs. A system with good sensitivity may
appear to perform poorly for a specific problem if the threshold
is not properly chosen.

In psychophysics, a popular method to measure the sen-
sitivity of observers independently of their threshold is the
two alternative forced choice (2AFC) task. The observer is
presented with all possible pairs of positive and negative
examples and has to decide which of the two is the positive
one. The 2AFC score is the probability of being correct on a
randomly selected trial. Under mild conditions the 2AFC score
equals the area under the receiver operating curve (ROC), a
popular measure of performance in the pattern recognition
community [12]. An advantage of the 2AFC score is that it is
invariant to the prior probabilities of the different categories,
thus making it easy to compare scores across datasets and
categories with different priors.

Another performance measure popular in the document
retrieval community, is the F1 score. It evaluates the perfor-
mance of a binary classifier. Its value is a function of the
sensitivity of the system, the prior probabilities of the different
categories, and the threshold used to make such decisions. A
common misconception about the F1 score is that it favors low
false alarm rates. This is not necessarily the case. For example,
if the system has low sensitivity (e.g. the random baseline in
Table I), the F1 score is maximized by having a large false
alarm rate, which may be undesirable in some applications.
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Fig. 5. Effects of various parameter on subject independent double cross
validation: (a) frame selection method (b) face cropping ratio (c) radius of
ULBP (d) feature.

Finally, another popular measure of performance is the
accuracy (the proportion of expressions correctly classified).
This is also a function of the sensitivity of the system, the
prior probabilities of the different categories, and the chosen
threshold.

III. DOUBLE CROSS VALIDATION EXPERIMENTS

The blind test set was only available to the teams for the last
week of the challenge. In addition the rules only allowed two
submissions per method. In order to evaluate the effectiveness
of a given method without wasting time and submissions
we used a double cross validation approach: parameters (like
SVM weights) were trained using a subset of the training set,
hyperparameters (like regularization constants) were evaluated
with respect to a cross validation set, and final performance
was evaluated with respect to a double cross validation set.
Multiple folds were used to get better estimates of performance
and expected variability in performance. We used this ap-
proach to test different variations of frame selection methods,
face cropping, methods, feature parameters, and feature types.
The results of these experiments are presented in Fig.5 and
are explained in the next sections.

A. Frame Selection

We tried six different combinations of frame selection meth-
ods, and feature representations (see pipeline representation
below)

FERA−

{
NoFS
FS12
FS50

}
−
{

OpenCV-ULBP
CERT-Gabor

}
− SVM(2AFC)− F1

In both the Gabor and the ULBP pipelines no significant
performance difference were found between the different
frame selection methods. However, frame selection reduces
the size of the FERA dataset from 5264 (NoFS) images
into 627 (FS12) and 934 (FS50). Having less training frames
significantly speeds up the training process. Therefore, we use
the FS12/FS50 approaches in the rest of the paper.

B. Face Cropping Factor

FERA−FS12−
{

CERT FaceCrop 75%
CERT FaceCrop 100%

}
−ULBP−SVM(Acc)−F1



By default CERT crops the face to the size so that the ears
are typically discarded (75% of face detected patch). Here we
also tried a wider crop(100% of the face detected patch). The
results were slightly worse. Therefore the default crop ratio
(75%) was used in the rest of the experiments.

C. Gabor Energy Vs. ULBP

ULBP and Gabor features are compared using the following
pipeline:

FERA−FS50−CERT−
{

ULBP(radii=1,4,16)
Gabor

}
−SVM(Acc)−F1

We tried to find the best radii for LBP feature by a coarse grid
search over radius space to see if any improvements could be
gained with larger LBPs. Among radii 1,4,16, radius 1 was
the best as shown in Fig.5(c).

Next, the best ULBP feature is compared to Gabor energy.
For curiosity, the concatenation of Gabor and ULBP features
were also tested. Figure 5(d) shows that Gabor Features out-
performed ULBP feature, though the gap was within standard
error. Direct concatenation of the Gabor and ULBP methods
did not seem to help. It should be said that we have much more
experience working with Gabor features than with ULBP, so
it is not unlikely that using different ULBP implementations
the performance may improve. More sophisticated methods
of combination maybe necessary to take advantage of both
features, such as applying LBP encoding on Gabor filtered
images [16].

D. Fitting Hyperparameters

The target of the competition was to optimize F1 score
in a generalization set. Hyperparameters (e.g., kernel width,
regularization constant) can then be optimized with respect
to another performance measure. One question of interest was
whether if in order to optimize the F1 score in a generalization
set it is better to optimize hyperparameters with respect to the
F1 score or with respect to another measure of performance.

To this end we compared the F1 generalization performance
when the SVM hyperparameters were optimized with respect
to F1, 2AFC, and Accuracy. For the Gabor pipeline the
generalization was tested using double cross-validation. For
the ULBP pipeline, it was tested on the FERA test set.

FERA− FS50− CERT−
{

Gabor
ULBP

}
−

{
SVM(F1)

SVM(Acc)
SVM(2AFC)

}
− F1

For the Gabor pipeline we found that optimizing 2AFC
resulted in better F1 generalization than optimizing F1 (See
Fig. 6(a). Further investigation revealed why in this case, the
F1-score was not a good parameter selection criterion. As Fig.
6(b) shows, the performance landscape for F1 is multi-modal
thus making hyperparameter selection difficult and suggesting
greater expected variability in generalization tests. In addition
to the typical “good parameter region” for SVMs [14], the
F1 score has additional peaks for small C parameters (large
regularization). This leads to underfitted SVMs that predict
everything is positive. This may be due to the fact that for

TABLE I
REPORTED PERFORMANCE ON THE FERA BLIND TEST SET

Method F1 Score 2AFC
ind dep all ind dep all

Official random .531 .471 .512 .500 .500 .500
Official LBP baseline .453 .423 .451 .631 .611 .628
ULBP Baseline F1-opt .506 .460 .499 .655 .651 .656
ULBP Baseline Acc-opt .473 .442 .471 .670 .653 .665
CERT (raw) .569 .514 .550 .746 .692 .723
CERT+clip+subj context .583 .536 .570 .685 .700 .679
CERT+clip context .598 n/a n/a .741 .702 .725
CERT+Post AU SMLR .563 .518 .555 n/a n/a n/a
CERT retrained on FERA .604 .539 .583 .759 .753 .758

ind: test on new subjects not in the training set
dep: test on new videos of subjects seen in the training set
all: test on mixture of both “indep” and “dep” cases
n/a: result not submitted due to submission limit

random random classifier always predicts “yes”

low sensitive systems, F1 is optimized by using a threshold
that makes all response positive. The other two performance
measures, 2AFC and accuracy, don’t seem to suffer from
this issue. In our submissions, 2AFC was used to optimize
hyperparameters.

However, as explained below, the results we obtained with
the Gabor pipeline, were not replicated with the ULBP
pipeline. We don’t have a good explanation for why this was
the case. Overall the jury is still out on this issue.

IV. BLIND TEST RESULTS

Table I presents official random, baseline results, and our
submissions. The official results includes the top two rows: (1)
The random result is from a zero-sensitivity classifier which
says “yes” for all frames. (2) The official baseline results
provided by the FERA challenge organizers.

A. Reproducing the ULBP Baseline

The baseline algorithm provided by the FERA organizers
was as follows:

1) Select key-frames using FS12/FS50 approaches and get
face cropping using OpenCV method, discarding no face
cropings by manual inspection. Then extract the block
ULBP features from the cropped face images.

2) For AUs 1, 2, 4, 6, & 7, use the data from the top half
of the face. For AUs 10, 12, 15, 17, 18, 25, & 26, use
the data from the bottom half of the face. For AUs 25
& 26, use only frames when the subject is not talking.

3) Use principle components analysis (PCA) to reduce the
dimensionality while retaining 98% of the total variance.

4) Train SVMs on the PCA values with SVM parameters
selected using leave-one-subject out cross-validation on
the training set. Then train with optimal SVM regular-
ization parameters on the whole training set.

5) Repeat the cropping in for all frames in the test set. Do
no verification for good cropping. For frames with no
faces found, give labels of all zeros.

6) For all frames with found faces, give labels according
to the SVM default classification threshold (zero).
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TABLE II
CROSS DATABASE COMPARISON OF 2AFC “OVERALL” SCORES.

AU CERT on
M3 CV

CERT on
FERA

CERT+FERA
on FERA

Baseline
on FERA

1 .823 .747 .805 .790
2 .812 .745 .866 .768
4 .756 .719 .776 .526
6 .955 .835 .862 .657
7 .773 .701 .707 .555

10 .731 .681 .718 .597
12 .901 .815 .869 .724
15 .831 .643 .585 .563
17 .840 .639 .761 .646
18 .780 .649 .779 .610
25 .768 .760 .720 .593
26 .801 .691 .650 .500

Avg .814 .719 .758 .628
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Fig. 7. CERT performance on the M3 vs the FERA dataset for different
AUs. The trend is linear except for AU 15, 17, and possibly 18

We submitted two entries with SVM parameters optimized
using F1 (F1-opt) and accuracy (Acc-opt). The difference
between the two is minor, but the F1-optimized version seemed
to get better F1 testing score while the accuracy-optimized one
gets better 2AFC score.

B. Raw CERT Outputs

First we applied CERT directly on the FERA dataset without
any training or adjustment. In every evaluation category, the
CERT generalization performance was handily better than all
of our approaches trained only on the FERA database, without

having seen a single FERA image. Table II displays the per-
AU 2AFC scores, which includes previously published results
on the M3 dataset and the scores obtained on the entire FERA
dataset. The M3 results were obtained using (single) cross-
validation methods, and thus they represent generalization
within a dataset, while the FERA results represent expected
generalization to a new dataset. CERT took an average perfor-
mance hit of only 9.1 %. This is remarkable considering the
very different nature of the FERA dataset when compared to
the M3 dataset and considering the fact that the two datasets
where labeled by different coders. Figure 7 shows a scatter
plot of the AU by AU performance of CERT on the M3 vs
the FERA datasets. The trend would be clearly linear were it
not for 3 outliers: AU15, AU17 and AU18. We hypothesize
that the AU coding criteria utilized in the FERA and the M3
datasets may have been particularly different for these three
AUs.

C. Simple Context Adaptation

For each AU we constructed simple logistic regression
models that combined the raw output of CERT for that
particular AU plus the average AU output for that channel on
the corresponding channel (temporal coherence). In addition,
when available we also provide the average output of that
channel across all the clips from the subject being tested
(subject coherence).

Table I (“clip/subj context” rows) shows the performance
after adding the context features. The F1-score were nearly as
high as our best submission (last row), suggesting that methods
trained on a variety of databases are inherently flexible and can
adapt to new contexts based only on simple statistics of the
current context. However, the 2AFC score did not improve by
context adaptation.

We examined the learned logistic regression weights across
7-fold leave one subject out cross validation in order to get a
sense of what features the model was using to increase per-
formance. We found that especially for the upper face action
units, the weights given to clip context features were almost
always positive. This indicates that the model capitalized on
the fact that frames that were embedded within clips with
higher overall activations of CERT as well as as more varied
activations of CERT were more likely to be positives.



D. Post AU Level Retraining

We investigated whether the performance of CERT could
be improved by combining the outputs of all the CERT
AU outputs to predict the AU scores on the FERA dataset.
Feature selection was performed using Sequential Multinomial
Logistic Regression (SMLR). Other popular feature selection
approaches such as GentleBoost can be seen as approximations
to SMLR. In this procedure we first choose the feature that best
predict (single) cross-validation performance and kept adding
features until the cross-validation performance decreases with
respect to a robust variation of F1. We tried sequential feature
selection for two cases: subjects independent, and subject
dependent. For the dependent subjects case a different model
was trained for each of the subjects that appeared in the train
set and test set. The average F1 for the subject independent
was 0.56, for the subject dependent it was 0.52, basically
no different from the results obtained with raw CERT. Most
importantly, due to the fact that we did not use double-cross
validation in our feature selection procedure, our estimates
of the expected performance turned out to be too optimistic.
The testing result was too bad to be included. This painfully
reminded us again of the importance of using double cross-
validation methods to estimate generalization performance.
Post-competition we retried sequential feature selection using
single and double cross validation (see Fig. 8(c)). Single cross-
validation fooled us into thinking that adding more features
would result into better performance. Double cross validation
would have predicted the correct results: adding more features
does not improve performance.

E. Retraining CERT on FERA

We used three different schemes for retraining CERT using
FERA data: (1) Retrain on FERA only. (2) Retrain giving
equal weight to FERA and FFD07. (3) Retrain giving 10 times
more weight to FERA than FFD07.

weighting scheme ci for FERA ci for FFD07
FFD07 0 1
FERA+FFD07? 1 1
10*FERA+FFD07 10 1
FERA 1 0

Double cross validation (See Fig. 8(a)(b)), indicated that best
performance was obtained by retraining CERT on FERA and
FFD07 with equal weights and thus our final submission
was based on that approach. However the expected gains
were marginal and similar performance could have probably
obtained by retraining CERT on FERA alone. Both the overall
(Table I) and per-AU performance for our final submission
are shown in TableII and Table III). For subject independent
tasks, the performance gains of adding FERA were found in
AUs that were particularly abundant, such as AU1, AU2 and
AU4. For the subject dependent case, the gain was particularly
noticeable on the poor performing AUs. One explanation is
that these AUs are of few training data, thus they benefits more
from combined dataset. However the overall performance im-
provements were marginally better. Very similar performance
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Fig. 8. (a)(b) inner and outer cross-validation accuracy in a double
cross-validation session during sequential forward feature selection (c) The
F1 scores during sequential forward feature selection using double cross
validation. Both inner loop (inner-CV) for parameter selection and outer loops
(outer-CV) for generalization performance estimation are shown.

TABLE III
OFFICIAL TEST SCORE OF CERT+FERA METHOD

CERT CERT+FERA
AU indep dep all indep dep all
1 .496 .521 .503 .765 .399 .634
2 .689 .394 .564 .736 .485 .636
4 .596 .593 .595 .608 .590 .602
6 .804 .704 .777 .788 .683 .759
7 .579 .632 .601 .563 .660 .604
10 .502 .574 .528 .545 .598 .565
12 .832 .691 .781 .857 .789 .832
15 .188 .129 .161 .160 .246 .193
17 .542 .256 .456 .570 .328 .499
18 .203 .229 .214 .353 .334 .345
25 .836 .856 .844 .809 .821 .815
26 .565 .587 .575 .499 .533 .515

Avg .569 .514 .550 .604 .539 .583

results could have probably been obtained by retraining CERT
on FERA alone.

Better performance may have been possible by performing
context adaptation on the system retrained on FERA and
FFD07 combined. However, this test was not performed due
to time constraints.

V. CONCLUSIONS

The FERA challenge was a very useful experience and an
important first step for the field. We learned some important
lessons: (1) On a completely new dataset and without any
training the CERT system achieved quite promising perfor-
mance. The good cross-dataset generalization of CERT is
likely due to the fact that it was trained on what is currently
the largest dataset of FACS coded video of spontaneous
facial expressions (FFD07). (2) The most successful way to
adapt CERT to the new dataset required retraining it using
a combination of the FFD07 data and FERA data. However
the advantage of adding FFD07 to the mix was marginal.
(3) Standard (single) cross-validation methods provided in-
flated estimates of generalization performance. Double cross-
validation methods did provide much more realistic estimates.



Other than blind competitions like this, we believe double
cross-validation should become a standard in the literature.
(4) We found some preliminary evidence that the F1 statistic
may have more local maxima than other measures such as
the 2AFC score thus making parameter selection potentially
harder.

While the FERA challenge was a breakthrough for the field
it is important to learn from its limitations: (1) The dataset was
very small and lacked diversity. As a consequence, the capacity
of a system to work well under a wide range of conditions was
not evaluated. For example, when training on FFD07 alone we
obtained good generalization to FERA (2AFC about 75%).
However when training on FERA alone we obtained good
generalization to FERA but poor generalization to FFD07
(2AFC about 64%). This indicates that the FERA dataset
may be too idiosyncratic for generalization to new settings.
Future challenges would benefit from testing performance
across multiple datasets. (2) It was not clear what the reliability
of the manually coded AU labels was. It would have been
useful, for example to compute the F1 score that a second
certified AU coder would obtain on the test set. (3) Using
the F1 score alone, made it impossible to tell to what extent
the performance of a submission was due to sensitivity or to
threshold selection. The FERA baseline algorithm provides
a good illustration of this problem. With respect to F1 the
algorithm performs below chance. However its 2AFC score is
well above chance (63%). This suggests that the poor results
on F1 were probably due to poor threshold selection, not to
lack of sensitivity.

Overall we found the FERA challenge to be a very use-
ful experience and an important step forward for the field.
We wish to thank the organizers, and the SSPNET for this
important contribution to the field of automatic expression
recognition.
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