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Abstract. Recently, different models of the statistical structure of natural images have
been proposed. Maximizing sparseness, or alternatively temporal coherence of linear
filter outputs leads to the emergence of simple cell properties. Taking account of the
basic dependencies of linear filter outputs enables modelling of complex cell and topo-
graphic properties as well. In this paper, | propose a unifying framework for all these
statistical properties, based on the concept of spatio-temporal activity bubbles.

Natural images are not white noise; they have some robust regularities. Previous research
has built statistical models of natural images, and utilized them either for modelling the recep-
tive fields of neurons in the visual cortex, or for developing new image processing methods.
The following three properties seem to be the most important found so far: sparseness, tem-
poral coherence, and topographic dependencies.

This paper proposes a new framework for modelling the statistical structure of natural
image sequences. This framework combines the above-mentioned three properties. It leads
to models where the activation of the units (linear filters or simple cells) takes the form of
“bubbles”, which are regions of activity that are localized both in time and in space (space
meaning the cortical surface or some other topographic grid).

1 Threeproperties of natural images
11 Sparseness

Recently, a lot of attention has been paid to one particular statistical property of natural
images: sparseness, alternatively called supergaussianity or leptokurtosis [1, 8]. Sparseness
means that the random variable takes very small (absolute) values or very large values more
often than a gaussian random variable would; to compensate, it takes values in between rel-
atively more rarely. Thus the random variable is activated, i.e. significantly non-zero, only
rarely. This is illustrated in Fig. 1.

The probability density of the absolute value of a sparse random variable is often mod-
elled as an exponential density, which has a higher peak at zero than a gaussian density. The
exponential density is compared with the density of the absolute value of a gaussian variable
in Fig. 2.

Sparseness is not dependent on the variance (scale) of the random variable. To measure
the sparseness of a random variable s; with zero mean, let us first normalize its scale so that
the variance E{s?} equals some given constant. Then the sparseness can be measured as the
expectation E{G(s?)} of a suitable nonlinear function of the square. Typically, G is chosen
to be convex, i.e. its second derivative is positive, e.g. G(s?) = (s?)%. Convexity implies that
this expectation is large when s? typically takes values that are either very close to 0 or very
large, i.e. when s; is sparse.
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Figure 2: lllustration of a sparse probability den-
sity. Vertical axis: probability density. Horizontal
axis, (absolute) value of random variable s;. The
sparse exponential density function is given by the
solid curve. For comparison, the density of the ab-
solute value of a gaussian random variable is given
by the dash-dotted curve.

Figure 1: Illustration of sparseness. Random sam-
ples of a gaussian variable (top) and a sparse vari-
able (bottom). The sparse variable is practically
zero most of the time, occasionally taking very
large values.

1.2 Temporal coherence

An alternative to sparseness is given by temporal coherence [2, 9]. When the input consists of
natural image sequences, i.e. video data, the simple cell receptive fields optimize this criterion
as well. Temporal coherence as defined in [4] is a nonlinear form of correlation. It can be
defined, for example, as the temporal correlation of the squared outputs.

It must be noted that ordinary linear correlation is not able to produce well-defined filters.
This is because the autocovariance (for a given time lag) of the sum a;s; + a;s; of two inde-
pendent signals is the sum of the autocovariances: a7 autocov(s;) + aZautocov(s;). Consider a
case where the signals are uncorrelated, and have equal variances and autocovariances. Then,
if the mixing coefficients fulfill a7 + o = 1, the mixture has the same variance and auto-
covariance as the original signals. Thus, maximization of autocorrelation does not properly
define linear filters, and we have to use nonlinear autocorrelations [4].

1.3 Topographic dependencies

When using sparseness or temporal coherence, the outputs of linear filters are assumed inde-
pendent. To go beyond this basic framework, we need to model their statistical dependencies.
Consider a number of representational components s;,7 = 1, ...n, such as outputs of simple
cells. Here, we analyze the pair-wise mutual informations (s;, s;), assuming that the joint
distribution of the s; is dictated by the natural image input. Note that again, we must consider
nonlinear correlations such as those illustrated in Fig. 3; linear correlations do not provide
enough information.

The dependencies of simple cell outputs have the important property of begin topo-
graphic. Let us assume that the s; are arranged on a two-dimensional grid or lattice as is
typical in topographic models. Topography is basically a property of the dependencies or
pair-wise mutual informations. We say that the joint distribution of the s; is topographic if
the components s; can be arranged on a topographic grid so that the neighbourhood function
on that grid approximates the dependencies. The dependencies found in natural images can
be used to model the cortical topography [5].



Figure 3: The dominant form of nonlinear depen-
dency in linear filter outputs is energy correlation,
illustrated here. The two signals in the figure are
uncorrelated but they are not independent. In par-
ticular, their energies (squares) are correlated. The
signals have thus strong simultaneous activation.

2 Linear models of natural images

The statistical properties discussed in the preceding section are usually utilized in the frame-
work of a generative model. Denote by I(z, y,t) the observed data whose components are
pixel gray-scale values (point luminances) in an image patch at time point ¢. The models that
we consider here expresses a monochrome image patch as a linear superposition of some
features or basis vectors a;:

n

I(z,y,t) = Zai(x,y)si(t). (1)

=1

The s;(t) are stochastic coefficients, different from patch to patch. In a cortical interpretation,
the s; model the responses of (signed) simple cells, and the a; are closely related to their
classical receptive fields (CRF’s). For simplicity, we consider only spatial receptive fields in
this paper. Estimation of the model consists of determining the values of both s; and a; for all
1, given a sufficient number of observed patches 1.

In the most basic models, the s; are assumed to be statistically independent, i.e. the value
of s; cannot be used to predict s; for ¢ # j. Then we can use either sparseness or temporal
coherence to estimate the receptive fields. If sparseness is used [8], the temporal structure of
the data is ignored; indeed, the data does not need ot have any temporal structure in the first
place. The resulting model is called independent component analysis (ICA) [7], and it can
be considered a nongaussian version of factor analysis. Temporal coherence leads to quite
similar receptive fields [4]. In that case, the sparseness structure of the data is not utilized in
the estimation.

When using topography, the s; are not assumed to be independent anymore. Instead, they
have topographic dependencies as defined in Section 1.3. This leads to the topographic ICA
model [5, 6], which precisely combines the properties of sparse components and topographic
dependencies in a single model. When topographic ICA is estimated from natural image data
[5], the emerging topography is qualitatively very similar to the one observed in V1, and
creates complex cell response properties as well.

3 Activity bubbles as a unifying framework

The idea in bubble coding is to combine the three properties discussed above: sparseness,
topography, temporal coherence. Combination of sparseness and topography means that each
input activates a limited number of spatially limited “blobs” on the topographic grid. If these



regions are temporally coherent, they resemble activity bubbles as found in many earlier
neural network models.

An activity bubble thus means the activation of a spatially and temporally limited region.
This is illustrated in Fig. 4 for a one-dimensional map. Such an activity bubble corresponds
to a basic element of visual input: A short (moving) luminance contour that is of a given
orientation and frequency and inside a small spatiotemporal window. It is not quite the same
as the spatial RF of a complex cell because the bubble has temporal characteristics.

Based on earlier work [5, 4], we can formulate generative models based on activity
bubbles. Each simple cell is modelled as linear filter with adaptable weights, w;. The out-
put of the simple cell with index 7, when input with an image patch I;, is thus given by
i (t) = <wi: It> = Zz,y wy (.T, y)I(LE, Y, t)

As in [5], simple cell outputs are rectified by taking squares (energies), and these are fed
to complex cells. To fix the pooling weights from simple cells to complex cells, we make here
the assumption that complex cells only pool outputs of simple cells that are near-by on the
topographic grid. Thus, the complex cell outputs are given by the locally pooled activations.
The local activation at a position ¢ on the grid for stimulus 7;, means a weighted sum of
the energies of simple cells that are near-by in space. The pooling process into complex
cell outputs can be expressed using a neighbourhood function A(z, j) that is often used in
topographic models. Basically, A (i, j) tells how close to each other the filters : and j are on
the topography, typically ranging from 0 to 1.

Here, however, we consider temporal pooling as well. We need to complement the neigh-
bourhood function to obtain a spatio-temporal neighbourhood function as:

h(i, j,7) = h(i, j)(7) @

where ¢ is a temporal smoothing kernel, for example, the gaussian kernel (1) = exp(—72/2).
Thus, we define the output of a “bubble detector” at grid point 7 and time point ¢ as

bie =YY h(i,j,m){ws, L) ©)

T j=1

As an analogue to topographic ICA, we now define the likelihood of our model as:

T n
log L(Iy,... I wy, ... ,w,) = ZZG(bit)' 4)

t=1 =1

The bubble pooling given by &(i, j, 7) is considered fixed, and only the first-layer weights
w; are estimated, so this likelihood is a function of the w; only. The function G is typically
convex to enforce sparseness of bubbles [5]. Note that alternatively, we could formulate a
bubble model based on the autoregressive introduced model in [3].

4 Conclusion

We have proposed a new framework for the low-level statistical structure of natural image
sequences. This is based on the notion of spatio-temporal activity bubbles. This combines
the properties of sparseness (the bubbles being sparse), topography (which corresponds to
the spatial continuity of the bubbles), and temporal coherence (which corresponds to the
temporal continuity of the bubbles).
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Figure 4: The four types of representation. The plots show activities of filters as a function of time and the
position of the filter on the topographic grid. For simplicity, the topography is here one-dimensional. In the
basic sparse representation, the filters are independent. In the topographic representation, the activations of the
filters are also spatially grouped. In the representation that has temporal coherence, they are temporally grouped.
The bubble representation combines all these aspects, leading to spatio-temporal activity bubbles. Note that the
two latter representation more or less require that the data has a temporal structure, unlike basic sparse coding.
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