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Abstract 
 

This perspective paper explores principles of unsupervised learning and how they relate to face 
recognition. Dependency coding and information maximization appear to be central principles in 
neural coding early in the visual system. These principles may be relevant to how we think about 
higher visual processes such as face recognition as well. The paper first reviews examples of 
dependency learning in biological vision, along with principles of optimal information transfer 
and information maximization.  Next, we examine algorithms for face recognition by computer 
from a perspective of information maximization. The eigenface approach can be considered  an 
unsupervised system that learns the first and second-order dependencies among face image 
pixels. Eigenfaces maximizes information transfer only in the case where the input distributions 
are Gaussian. Independent component analysis (ICA) learns high-order dependencies in addition 
to first and second-order relations, and maximizes information transfer for a more general set of 
input distributions. Face representations based on ICA gave better recognition performance than 
eigenfaces, supporting the theory that information maximization is a good strategy for high level 
visual functions such as face recognition. Finally, we review perceptual studies suggesting that 
dependency learning is relevant to human face perception as well, and present an information 
maximization account of perceptual effects such as the atypicality bias, and face adaptation 
aftereffects. 
 
 
1. Introduction 
 
A line of research lead by Attneave and Barlow [1, 3, 7] argues that statistical dependencies in the 
sensory input contain structural information about the environment, and that a general strategy for 
sensory systems is to learn the expected dependencies. Figure 1 illustrates the idea that the 
percept of structure is driven by the dependencies in the sensory input. The set of points in 1c was 
randomly selected from a Gaussian distribution. In 1d, half of the points were generated from a 
Gaussian distribution and the other half were generated by rotating those points 5 degrees about 
the centroid of the distribution. The dependence between pairs of dots gives the image in 1d a 
percept of structure. 
 

a b 
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Figure 1. Example of visual structure from statistical depencencies, based on [5]. a. A set of 200 
points randomly selected from a Gaussian distribution. b. The points in a, rotated by 5 degrees. c. 
400 randomly selected points.  D. The union of the points in a with the points in b.  
 
 
Examples of dependency learning in the visual system. Adaptation mechanisms are examples 
of encoding dependencies in early visual processing. As pointed out in [7], a first order 
redundancy is mean luminance. Adaptation mechanisms take advantage of this redundancy by 
expressing lightness values relative to the mean. Figure 2 illustrates this idea.  The two squares in 
the top row have the same grayvalue, but they are embedded in regions with different mean 
luminance. The square on the left has higher luminance than the local mean, and is perceived to 
be brighter than the square on the right. A second order redundancy is luminance variance, which 
is a measure of contrast. Contrast gain control mechanisms express contrast relative to the 
expected contrast. The bottom row of Figure 2 illustrates the dependence of perceived contrast on 
the local mean contrast. The two inner squares have the same physical contrast, but the one on the 
right is perceived to have higher contrast when it is embedded in a region of low mean contrast. 
 

 
 

Figure 2. First and second-order redundancies in the luminance signal. Top: The inner squares 
have the same grayvalue. The percept of brightness is relative to the mean brightness in the 
region. Bottom: The inner squares have the same contrast. The percept of contrast is relative to 
the mean contrast in the region. 

 
Information maximization in neural codes. A more comprehensive way to encode the 
redundancy in the input signal, instead of just learning the means, is to learn the probability 
distribution of signals in the environment. Learning the redundancy means learning which values 



 3 

occur most frequently. Neurons with a limited dynamic range can increase the information that 
the response gives about the signal by placing the more steeply sloped portions of the transfer 
function in the regions of highest density, and shallower slopes at regions of low density. What 
we know from information theory is that the optimal response function for maximizing 
information transfer is to match the transfer function to the cumulative probability density of the 
input signal. When the transfer function matches the cumulative probability density of the input, 
the output distribution is uniform. See Figure 3. The probability distribution of the output is 
determined by the probability distribution of the input signal and the slope of the transfer 
function. Specifically, for monotonically increasing transfer functions, the probability of the 
output is obtained by dividing the probability of the input by the slope of the transfer function 
[56]. 
 

 
 

Figure 3. When the transfer function matches the cumulative probability density of the input, the 
output distribution is uniform, which maximizes information transfer in the case of limited 
response range.  The output distribution is the probability distribution of different response levels 
of the neuron.   
 
Laughlin [37] was one of the first papers to explore this issue in neural response functions.  
Laughlin measured the contrasts in the environment of the blowfly, and estimated a probability 
density from these measures.  He next estimated the response function of the LMC cells in the 
blowfly compound eye by measuring the response at a range of contrasts. As shown in Figure 4, 
the LMC responses were a close fit to the cumulative probability density of contrast in the fly’s 
environment, which is the response function that is predicted if the fly’s visual system is 
performing information maximization under conditions of limited dynamic range.   

 

 
 
Figure 4. Information maximization in blowfly compound eye, reprinted from [37]. a. “The 
coding strategy for maximizing a neurons information capacity by ensuring that all response 
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levels are used with equal frequency. Upper curve: - probability density function for stimulus 
intensities. Lower curve: - the intensity-response function that implements the strategy. In this 
example the neuron has 10 response states, corresponding to 10 “ just noticeable differences” in 
response. The intensity-response function insures that the interval between each response level 
encompasses an equal area under the intensity distribution, so that each state is used with equal 
frequency. In the limit where the states are vanishingly small this intensity-response function 
corresponds to the cumulative probability function for stimulus intensities.  b. The contrast-
response function of light adapted fly LMC’s [large monopolar cells] compared to the cumulative 
probability function for natural contrasts…” Reprinted with permission from Verlag Z. 
Naturforsch.  
 
 
There are numerous other examples of information maximization in neural codes (See [64] for a 
review). For example, Atick and Redlich [2] showed that contrast sensitivity functions increase 
information transfer for low and middle spatial frequencies in natural scenes. They showed that 
when contrast sensitivity functions are multiplied by 1/f, which is the amplitude observed for 
natural scenes at frequency f, the output amplitude spectrum is flat through about 3 cycles per 
degree.  This whitening of the retinal ganglion cell amplitude spectrum can be interpreted as 
reducing the second-order dependencies at low spatial frequencies, since the amplitude spectrum 
is a measure of second-order statistics.  The relationship between redundancy reduction and 
information maximization is discussed in more detail below. Information maximization principles 
have also been demonstrated in the temporal frequency response in cat LGN [23], and primary 
visual cortex [70].  Von der Twer and Macleod [71] have shown that related principles apply to 
spectral sensitivities in the primate color opponent system. We will return to von der Twer and 
Macleod’s model in the discussion. It has also been shown that short-term adaptation reduces 
dependencies between neurons both physiologically (e.g. [18]) and using psychophysics (e.g. 
[77]).   
 
Overview. Dependency coding and information maximization appear to be central principles in 
neural coding early in the visual system. This paper describes how these principles may be 
relevant to how we think about higher visual processes  such as face recognition as well. Section 
2 reviews some concepts from information theory.  Section 3 describes how information 
maximization is achieved in two unsupervised learning rules, Hebbian learning and independent 
component analysis.  
 
Section 4 examines algorithms for face recognition by computer from a perspective of 
information maximization. Principal component solutions can be learned in neural networks with 
simple Hebbian learning rules [52]. Hence the Eigenface approach can be considered a form of 
Hebbian learning model, which performs information maximization under restricted conditions.  
Independent component analysis performs information maximization under more general 
conditions.  The learning rule contains a Hebbian learning term, but it is between the input and 
the gradient of the output. Face representations derived from ICA gave better recognition 
performance than face representations based on PCA. This suggests that information 
maximization in early processing is an effective strategy for face recognition by computer.  
 
Section 5 presents an information maximization account of perceptual effects including other-
race effects and typicality effects, and shows how face adaptation aftereffects (e.g. [35, 50, 78]) 
are consistent with information maximization on short time scales.  Two models of information 
maximization in adaptation are presented, one in which the visual system learns a high-order 
transfer functions that  match the curves in the cumulative probability density, and another in 
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which the cumulative probability density is approximated with the closest fitting sigmoid. These 
two models give different predictions for sensitivity post-adaptation. 
 
2. Some concepts from information theory 
 
Here we review some basic concepts from information theory that are behind the information 
maximization principle.  Shannon [63] defined the information I in a message x as inversely 
proportional to its probability. 
 

I(x) = -log2(P(x)) (1) 
 
The formula is based on the number of bits used to transmit a message x in a digital system, 
where I(x) is the length of the code in bits. Shannon’s optimal coding theorem states that the code 
length defined in Equation 1 has the smallest expected length over the full set of messages.  The 
intuition is that we should use shorter length codes to represent commonly occurring signal 
elements, and it shows the fundamental relationship between information theory and the principle 
of minimum description length [59].  
 
In Shannon’s formulation, the code length for event x under the optimal coding scheme (Eq.1) 
provides a measure of the information provided by event x.  Information is the amount of 
surprise, where low probability events contain more information than high probability events.  An 
intuitive example of the inverse relationship between information and probability is the professor 
who told the TA he spoke to a student in the class who was 20 years old. In this case age gave 
very little information about which student it was, but had the age been 43 it would have provided 
much more information about who it was.   
 
The expected value of the information over the whole probability distribution is the entropy, H.  
 

H(x) = E[I(x)]  (2) 
 

Entropy is a measure of the uncertainty of the distribution.  Highly peaked distributions have low 
uncertainty – the same outcome is observed almost all of the time, whereas spread-out 
distributions have high uncertainty.  In the case of limited dynamic range, entropy is maximized 
by a uniform distribution across that dynamic range.  Thus histogram equalization is a form of 
entropy maximization.  
 
The mutual information I(x,y) between two signals x and y is the relative entropy between the 
joint distribution and the marginal distributions: I(x,y) = H(x) + H(y) – H(x,y). If we consider a 
function y=f(x), then I(x,y) is the mutual information between the input and the output of this 
function. The entropy of the output, H(y), is the sum of the uncertainty in y that is explained by x, 
I(x,y), and the uncertainty in y that isn’ t explained by x, H(y|x).  Thus I(x,y) can also be 
expressed as follows [22].  
 

I(x,y) = H(y) – H(y|x)  (3) 
 
Equation 3 is the Shannon information transfer rate. The term H(y|x) is noise, since it is the 
information in the output that is not accounted for by the input, and it does not depend on the 
transfer function f. Therefore, finding a function y=f(x) that maximizes I(x,y) is equivalent to 
finding a function that maximizes H(y) [43]. In other words, maximizing the entropy of the 
output also maximizes information transfer. 
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3. Information maximization and unsupervised learning rules 
 
Hebbian learning.  These concepts relate to learning at the neuron level. Hebbian learning is a 
model for long-term potentiation in neurons, in which weights are adjusted in proportion to the 
input and output activities. The weight update rule is typically formulated as the product of the 
input and the output activations. Because simultaneously active inputs cooperate to produce 
activity in an output unit, Hebbian learning finds the correlational structure in the input. See [13] 
for a review.  
 
For a single output unit with a Gaussian distribution, Hebbian learning maximizes the information 
transfer between the input and the output  [43].  The explanation is outlined as follows.  It can be 
shown that Hebbian learning maximizes the activity variance of the output subject to saturation 
bounds. For a single output unit with a Gaussian distribution, the Shannon information transfer 
rate (Equation 3) is maximized by maximizing the variance of the output.  This is because 
maximizing the variance of a Gaussian distribution maximizes its entropy, and as seen above, 
maximizing the entropy of the output maximizes I(x,y) since H(y|x) is noise.   
  
Hence long-term potentiation is related to information maximization. Linsker [43] argued for 
maximum information preservation as an organizational principle for a layered perceptual system. 
For a code that spans multiple output units, however, Hebbian learning doesn’ t maximize 
information transfer except in the special case where all of the signal distributions are Gaussian.  
Many types of natural signals have been shown to have non-Gaussian distributions, in which the 
distributions are much more steeply peaked  [24, 26, 32, 40]. 
 
Independent component analysis. The independent component analysis learning rule developed 
by Bell & Sejnowski [16]  is a generalization of Linsker’s information maximization principle to 
the multiple unit case, X=(x1 … xn), Y = (y1 … yn).  In this case, the information transfer between 
the input X and output Y is maximized by maximizing the joint entropy of the output, H(Y).  As 
discussed above (Equation 3), finding a function Y=f(X) that maximizes I(X,Y) is equivalent to 
maximizing H(Y), since H(Y|X) is noise.  
 
The information maximization learning rule presented in [16] maximizes H(Y) with respect to a 
weight matrix W, where yi = g(W*xi), and g is a logistic transfer function.  The resulting learning 
rule shown in Equation 4 has a Hebbian learning term, but instead of being a straight product 
between the input and the output activations, the Hebbian learning is between the input and the 
gradient of the output:  
 

∆W = α [(WT) -1+ y′xT)  (4) 
 
where α is the learning rate.1  
 

                                                 
1 Another version of this learning rule employs the natural gradient, which is the gradient 
multiplied by WTW, which regularizes the metric in the weight space [15].  Here the Hebbian 
learning term is between the input and the natural gradient of the output.  
 

 ∆W = α (I + y′xT WT)W. 
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The way information maximization reduces statistical dependence can be understood as follows: 
The equation for the joint entropy of the output Y is the sum of the individual entropies minus the 
mutual information between them [22]: 
 

H(Y) = H(y1) +…+ H(yn)  –I(y1 … yn). (5) 
 
Inspection of equation Equation 5 shows that maximizing H(Y) encourages I(y1 … yn) to be 
small. Thus, maximizing the joint entropy of the output encourages the individual outputs to 
move towards statistical independence.  The mutual information is guaranteed to reach a 
minimum when the nonlinear transfer function g matches the cumulative distributions of the 
independent signals responsible for the data in X, up to a scaling and translation (Nadal & Parga, 
1994).  In most circumstances these distributions are unknown. However, for mixtures of super-
Gaussian signals (meaning the probability distribution is more steeply peaked than a Gaussian), 
the logistic transfer function has been found sufficient to separate the signals into independent 
components [16]. As mentioned above, many natural signals including sound sources and 
measures of visual contrast have been shown to have a super-Gaussian distribution. 
 
Sparse codes.  Sharply peaked distributions are called sparse, since the vast majority of the 
responses are at or near zero, with rare responses at high values. There is a close relationship 
between independent component analysis and sparse codes.  Refer again to Equation 5.  If we 
hold the left hand side constant, and then minimize I(y1 … yn), this will also minimize H(y1) … 
H(yn). Thus minimizing the mutual information without loss of entropy in the joint distribution 
also minimizes the entropy of the marginal distributions. A minimum entropy distribution is a 
sharply peaked, sparse, distribution.  
 
Barlow [7] advocated minimum entropy coding for this reason. When the individual neurons have 
minimum entropy, or sparse distributions, the redundancy between them is reduced. Olshausen 
and Field [54] presented a learning rule for image coding which explicitly implemented Barlow’s 
concept of minimum entropy coding, in which the sparseness of the marginal distributions was 
maximized while minimizing the mean squared error of the reconstructed image. This learning 
rule can be related to Equation 5, where we hold H(Y) constant (no information loss), and this 
time minimize H(y1) … H(yn), which in turn minimizes I(y1 … , y2). 
 
Indeed, it has been observed that when ICA is applied to natural signals, although the algorithm 
attempts to maximize the joint entropy, the marginal distributions become quite sparse [9, 15]. 
Thus there is a difference in the shape of the optimal response distribution, depending on whether 
information transfer is maximized for an individual neural response or for a population code. For 
maximizing information transfer in an individual output (e.g. within the response of a single 
neuron) the optimal output distribution is a maximum entropy distribution, which in the case of 
limited dynamic range is a uniform distribution. In contrast, for maximizing information transfer 
in a population code, the response distributions of the individual neurons would tend to be sparse. 
Some researchers have reported a trend for neural responses to become more sparse higher in the 
visual system (e.g. [70] [60, 61]. Thus one might investigate whether neurons early in the visual 
system maximize information within a neural response, whereas neurons higher in the visual 
system maximize information in population codes.   

 
Relationships of ICA to V1 receptive fields. A number of relationships have been shown 
between independent component analysis and the response properties of visual cortical neurons. 
For example, Olshaussen & Field [53] showed that when the sparseness objective function 
described above was applied to natural images, the weights were local, spatially opponent edge 
filters similar to the receptive fields of V1 simple cells.  In a related study,  applying ICA to a set 
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of natural images also produced V1-like receptive fields [15].  Conversely, Gabor filter responses 
to natural scenes have sparse distributions [26] and passing a set of natural scenes through a bank 
of Gabor filters followed by divisive normalization reduces dependencies [73]. When ICA is 
applied to chromatic natural scenes, the set of weights segments into color-opponent and 
broadband filters, where the color-opponent filters code for red-green and blue-yellow 
dimensions [72]. Moreover, a two-layer ICA model learned translation invariant receptive fields 
related to complex cell responses [33].  
 
4. Application to face recognition by computer 
 
These learning principles have been applied to face images for face recognition [21, 67].  
Eigenfaces is essentially an unsupervised learning strategy that learns the second-order 
dependencies among the image pixels. It applies principal component analysis (PCA) to a set of 
face images. (See Figure 5). Principal component solutions can be learned in neural networks 
with simple Hebbian learning rules (e.g. [52]). Hence one way to interpret Eigenfaces, albeit not 
the way it is usually presented in the computer vision literature, is that it applies a Hebbian 
learning rule to a set of image pixels. 

 

a b  
 
Figure 5.  Eigenfaces. a. Each image is a point in a high dimensional space defined by the 
grayvalue taken at each of the pixel locations.  Principal component analysis rotates the axes to 
point in the directions of maximum covariance of the data. The axes are the eigenvectors of the 
pixelwise covariance matrix and are depicted by dashed lines. The faces are recoded by their 
coordinates with respect to the new axes.  b. The eigenvectors are themselves images, since they 
are vectors in pixel space, and form a set of basis images where each face is a weighted 
combination of the basis images. The weights ai are the coordinates with respect to each 
eigenvector, and they form a representation, or feature vector, on which identity classification is 
performed.  
 
This approach, when it was first presented in the early 1990’s performed considerably better than 
contemporary approaches that focused on measuring specific facial features and the geometric 
relationships between them.  The eigenface approach lead to new research activity in the 
computer vision field focused on statistical learning in large populations of face images. The 
success of the eigenface approach may have been related to the fundamental coding strategy of 
learning the dependencies in a population of face images.   
 
PCA is an effective signal decomposition method which is widely used in part for its efficiency, 
as it does not require iterative optimization.  Here we investigate face recognition performance 
when we take the information maximization concept a step further. Principal component analysis 
learns the second-order dependencies among the pixels but does not explicitly encode high order 
dependencies.  Second-order dependencies are pair-wise relationships between the pixels in the 
image database such as covariance, whereas high-order dependencies include functions of 3 or 
more pixels.  Second-order dependencies are adequate to characterize Gaussian probability 
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models, and PCA models maximize information transfer in the case where the input distributions 
are Gaussian. However, the preponderance of the statistical properties of natural images that have 
been measured are strikingly non-Gaussian [24, 26, 32, 40].  ICA models maximize information 
transfer under a much wider range of input distributions. PCA and ICA can be derived as 
generative models of the data, where PCA uses Gaussian sources, and ICA typically uses sparse 
sources. It has been shown that for many natural signals, ICA is a better model in that it assigns 
higher likelihood to the data than PCA [41].   
 
Bartlett, Movellan, & Sejnowski [9] developed a representation for face recognition based on 
independent component analysis. Independent component analysis learns the high order 
dependencies in addition to the first and second-order dependencies. This work compared ICA 
face representations to PCA to investigate whether explicitly encoding more of the dependencies 
would result in better recognition performance. 
 
Bartlett, Movellan, & Sejnowski described two ways to apply ICA to face images. One approach 
is to treat each image as a variable and each pixel an observation. This approach, Architecture I, 
is illustrated in Figure 7a.  Each pixel is plotted according to the grayvalue it assumes over a set 
of face images.  This architecture has been employed in applications of ICA to analysis of fMRI 
[47]. In Architecture II, the images are treated as observations and the pixels as the variables 
(Figure 7b). This architecture is more directly analogous to the PCA model illustrated in Figure 5.  
Each image is a point in a high dimensional space in which the dimensions are the pixels.  The 
distinction between the two architectures is achieved by transposing the image matrix X during 
learning. The ICA algorithm treats the rows of X as a set of random variables, and the columns of 
X as the observations. Hence when the images are in the rows of X, the images are the variables 
and the pixels are the observations. When we transpose X, the pixels are treated as the random 
variables, and each face image is an observation.   
 
 

a  b  
 
Figure 6. Applying ICA to face images. a. Architecture I. b. Architecture II. Reprinted with 
permission from [9]. © 2002 IEEE. 
 
The ICA model shown in Figure 7 decomposes the images as X=AS where A is an unknown 
mixing matrix and S is an unknown matrix of independent sources.  The ICA learning rule 
(Equation 4) is applied to recover S by estimating W=A-1.  In both architectures, each face image 
is defined as a linear combination of a set of basis images. In Architecture I, S contains the basis 
images, and A contains the coefficients, whereas in Architecture II, S contains the coefficients 
and A contains the basis images. These two image synthesis models are a direct consequence of 
transposing the input matrix. In Architecture I, the face images are in the rows of X, the rows of S 
are in image space, and the coefficients for reconstructing each row of X from the rows in S are in 
the rows of the mixing-matrix A. In Architecture II, XT=AS.  The face images are in the columns 
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of X, the rows of A are in image space, and the coefficients for reconstructing each row of X 
from the rows in A are in the columns of S.  Example basis images learned by the two 
architectures are shown in Figure 7.  The basis images learned in Architecture I are spatially 
local, whereas the basis images learned in Architecture II are global, or configural. 
 

 
 

Figure 7.  Image synthesis model for the two architectures. The ICA model decomposes images 
as X=AS, where A is a mixing matrix and S is a matrix of independent sources. In Architecture I 
(top), the independent sources S are basis images and A contains the coefficients, whereas in 
Architecture II (bottom) the independent sources S are face codes (the coefficients) and A 
contains the basis images. 

 
Bartlett, Movellan and Sejnowski compared face recognition performance of ICA to PCA on a set 
of  FERET face images.  This image set contained 425 individuals with up to four images each: 
Same day with a change of expression, a different day up to 2 years later, and a different day with 
a change of expression. Recognition was done by nearest neighbor using cosines as the similarity 
measure. The results are shown in Figure 8. Both ICA face representations outperformed PCA for 
the pictures taken on a different day. The robust recognition over time is particularly encouraging, 
since most applications of automated face recognition require recognizing face images collected 
at a different time point from the sample images, and is generally the more challenging condition 
for automated systems. ICA representations are in some ways better optimized for transmitting 
information in the presence of noise than PCA [8], and thus they may be more robust to 
variations such as lighting conditions, changes in hair, make-up, and facial expression which can 
be considered forms of noise with respect to the main source of information in our face database: 
the person's identity.   
. 
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Figure 8. Face recognition performance on the FERET database. ICA architctures I and II are 
compared to PCA (eigenfaces). Gray bars show improvement in performance following class-
specific subselection of basis dimensions. Reprinted with permission from [9]. © 2002 IEEE. 

 
 
When subsets of bases are selected, ICA and PCA define different subspaces. Bartlett, Movellan, 
& Sejnowski examined face recognition performance following subspace selection with both ICA 
and PCA. Dimensions were selected by class discriminability, which we defined as the ratio of 
the variance within faces to the variance between faces. The gray extensions in Figure 8 show the 
improvement by subspace selection. ICA defined subspaces encoded more information about 
facial identity than PCA-defined subspaces.  We also explored subselection of PCA bases ordered 
by eigenvalue. ICA continued to outperform PCA. Moreover, combining the outputs of the two 
ICA representations gave better performance then either one alone. The two representations 
appeared to capture different information about the face images. 
 
These findings suggest that information maximization principles are an effective coding strategy 
for face recognition by computer. Namely, the more dependencies that were encoded, the better 
the recognition performance.  Here the focus was on representation. Both ICA and PCA as well 
as raw image pixels can provide the input to a variety of classifiers that employ supervised 
learning, including Fishers linear discriminant [14], and support vector machines [58].   Indeed, 
class specific projections of the ICA face codes using Fisher’s linear discriminant was recently 
shown to be effective for face recognition [36].   
 
 
Local representations versus factorial codes. Draper and colleagues [25] conducted a 
comparison of ICA and PCA on a substantially larger set of FERET face images consisting of 
1196 individuals, and included a change in lighting condition which we had not previously tested. 
This study supported the finding that ICA outperformed PCA over time, as well as over changes 
in expression.  ICA was also more robust to changes in lighting. ICA with architecture II obtained 
51% accuracy on 192 probes with changes in lighting, compared to the best PCA performance of 
40% correct. 
 
An interesting finding to emerge from the Draper study is that the ICA representation with 
Architecture II outperformed Architecture I for identity recognition. See Figure 9. According to 
arguments by Barlow [7] and Field [26] the sparse, factorial properties of the representation in 
Architecture II should be more optimal for face coding.  Architecture II provides a factorial face 
code, in that each element of the feature vector is independent of the others (i.e. the coefficients 
are independent).  The term factorial comes from the fact that when the marginal distributions are 
independent, the joint probability can be calculated as the product of the marginal probabilities. 
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The representation in Architecture I is not factorial since it learns independent basis images, 
rather than independent coefficients [9].  Although the previous study showed no significant 
difference in recognition performance for the two architectures, there may have been insufficient 
training data for a difference to emerge.  Architecture II had fewer training samples to estimate 
the same number of free parameters as Architecture I due to the difference in the way the input 
data was defined.  With a substaintially larger set of training images in the Draper study, the 
factorial representation of Architecture II emerged as more effective for identity recognition.   
 
When the task was changed to recognition of facial expressions, however, Draper et al. found that 
the ICA representation from Architecture I outperformed the ICA representation from 
Architecture II. The advantage for Architecture I only emerged following 
subspace selection using class variability ratios. The task was to recognize 6 facial actions, which 
are individual facial movements approximately corresponding to individual facial muscles. 
Draper et al attributed their pattern of results to differences in local versus global processing 
requirements of the two tasks. Architecture I defines local face features whereas Architecture II 
defines more configural face features.  A large body of literature in human face processing points 
to the importance of configural information for identity recognition, whereas the facial expression 
recognition task in this study may have greater emphasis on local information. This speaks to the 
issue of separate basis sets for expression and identity. There is evidence in functional  
neuroscience for separate processing of identity and expression in the brain (e.g. [31].)  
Here we obtain better recognition performance when we define different basis sets for identity 
versus expression. In the two basis sets we switch what is treated as an observation versus what is 
treated as an independent variable for the purposes of information maximization. 
 

 
Figure 9.  Face recognition performance (percent correct) on a larger image set, based on Draper 
et al. (2003).   
 
5 Dependency learning and face perception 
 
A number of perceptual studies support the relevance of dependency encoding to human face 
perception. A large body of work showed that unsupervised learning of 2nd order dependencies 
successfully models a number of aspects of human face perception including similarity, 
typicality, recognition accuracy, and other-race effects (e.g. [20, 30, 51]). Moreover, one study 
found that ICA better accounts for human judgments of facial similarity than PCA, supporting the 
idea that the more dependencies are encoded, the better the model of human perception for some 
tasks [29]. There is also support from neurophysiology for information maximization principles 
in face coding. The response distributions of IT face cells are sparse and there is very little 
redundancy between cells [60, 61].   
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Perceptual effects such as other-race effects are consistent with information maximization coding. 
For example, face discrimination is superior for same-race than other-race faces [74], which is 
consistent with a perceptual transfer function that is steeper for face properties in the high-density 
portion of the distribution in an individual's perceptual experience (ie. same-race faces). See 
Figure 10.  Moreover, a morph stimulus that is half-way on a physical continuum between a 
same-race face and an other-race face is typically perceived as more similar to the other-race face 
[35]. This is also consistent with the shape of the optimal transfer function, as illustrated in Figure 
10. A perceptual discrimination study by Parraga, Troscianko, and Tollhurst [57] supports 
information maximization in object perception. Sensitivity to small perturbations due to morphing 
was highest for pictures with natural second-order statistics, and degraded as the second order 
statistics were made less natural.  This is consistent with a transfer function with steeper slope 
where the probability density is highest in the environment.   
 

 
       a                         b 

 
         c                         d 
 
Figure 10. a-b: Information maximization account of the other-race effect. a. Example probability 
distribution for a face property such as eye shape, in which there is a higher probability density 
near the same-race than the other-race face. In cases of moderate exposure to other-race faces, 
probability distributions may be better characterized as multimodal. See Figure 12 for a treatment 
of multimodal distributions.  b.  Perceptual transfer function predicted by information 
maximization (the cumulative density of the distribution on the left).  The slope of the transfer 
function is steeper near the same-race face, giving greater sensitivity.  The percept of a physical 
50% morph is mapped closer to the other-race than the same-race face because of the slope of the 
transfer function. c-d: The same information maximization model accounts for the atypicality bias 
in the perception of morphed faces. a.  Example probability distribution for a face property for 
which there is a higher probability density near the typical face than the atypical face. d. The 
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percept of the 50% morph is mapped closer to the atypical face because of the shape of the 
transfer function.   
 
 
Tanaka and colleagues [66] showed a related effect with typical and atypical faces. This study 
showed  that morphs between typical and atypical parents appear to be more similar to the 
atypical parent. Figure 10 shows an example 50/50 morph between typical and atypical faces. In a 
2-alternative forced choice, subjects chose the atypical parent as more similar about 60% of the 
time.  
 
    Typical     50% morph           Atypical 

 
 
Figure 11. Sample morph between typical and atypical parent faces, based on Tanaka [66]. 

 
Tanaka et al suggested an attractor network account for this effect, where the atypical parent has a 
larger basin of attraction than the typical parent. Bartlett & Tanaka [11] implemented an attractor 
network model of face perception, and indeed showed that atypical faces have larger basins of 
attraction.  Inspection of this model provides further insights about the potential role of 
redundancy reduction in face perception.  In this model, a decorrelation step was necessary in 
order to encode highly similar patterns in a Hopfield attractor network [34]. Decorrelation was 
necessary in order for each face to assume a distinct pattern of sustained activity. The atypicality 
bias in the model arose from this decorrelation process inherent to producing separate internal 
representations for correlated faces.  
 
An alternative account of the atypicality bias is provided by information maximization and 
redundancy reduction. This account is compatible with the attractor network hypothesis but more 
parsimonious. Figure 10c shows the probability distribution of a physical face property X such as 
aspect ratio. A typical face has a value near the mean for this property, and an atypical face has a 
value that is in the tail. Figure 10d shows the transfer function between the value of property X 
and the percept. Let us suppose it is adapted to match the cumulative probability density so that it 
performs information maximization. In this case, typical faces fall on a highly sloping region of 
the transfer function, whereas atypical faces fall on a flatter region. The 50% morph is mapped 
closer to the atypical face because of the shape of the transfer function. The infomax account 
makes an additional prediction. Although it is well known that faces rated as ‘atypical’  tend to 
also be easier to recognize, this model predicts that subjects will be less sensitive to small 
perturbations in the physical properties of atypical faces. 
 
Information maximization account of adaptation aftereffects.  Face adaptation studies (e.g. 
[35, 39, 50, 78]) are consistent with information maximization on short time scales. For example, 
after adapting to a distorted face, a neutral face appears distorted in the opposite direction [78]. 
Similar effects have been shown for race, gender, and facial expressions [35]. Hence it appears 
that faces may be coded according to expected values along these dimensions. Adaptation to a 
nondistorted face does not make distorted faces appear more distorted [78], which is consistent 
with an infomax account in which the estimated probability density is altered very little by 
exposure to a stimulus with high likelihood. 
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A number of researchers have proposed models of adaptation based on learning the statistics of 
recent visual inputs [6, 73, 76].  Adaptation aftereffects operate on a much shorter time scale than 
perceptual learning in the environment. The neural mechanisms may differ, but the information 
maximization principle may apply to both cases.  Consider Figure 12a, in which the adapting face 
is a distorted face in the tail of the face distribution for face feature X such as aspect ratio. 
Adaptation could alter the estimated probability density of feature X in the immediate 
environment, as shown by the dashed curve. Figure 12b shows the transfer functions predicted by 
information maximization on both the pre- and post-adaptation probability densities.  Note that 
after adaptation, the neutral face is mapped to a distortion in the opposite direction of the adapting 
stimulus, which matches the psychophysical findings (e.g. [78]). The increased slope near the 
adapting stimulus also predicts increased sensitivity near the adapting stimulus.  
 

 
An alternative possibility is that neural mechanisms do not implement unconstrained optimization 
of multimodal distributions such as Figure 12b, but that they do constrained optimization the with 
a family of functions such as a sigmoid. This possibility is illustrated in Figure 12c. Here a 
sigmoid was fitted to the cumulative probability density of the adaptation distribution using 
logistic regression.  Like the previous model, this model also predicts repulsion of the neutral face 
away from the adapting stimulus. These two models, however, give differing predictions on 
sensitivity changes, shown in Figure 12d. Sensitivity predictions were obtained by taking the first 
derivative of the transfer function. Unconstrained information maximization predicts increases in 
sensitivity near the adapting stimulus. The sigmoid fit to the optimal transfer function predicts a 
much smaller increase in sensitivity near the adapting stimulus, plus an overall shift in the 
sensitivity curve towards the adapting stimulus.   
 

a    b  
 

           c              d  
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Figure 12. a. Example probability density of a physical face property such as aspect ratio before 
and after adaptation. Adaptation to a face with high aspect ratio changes the short-term 
probability density of aspect ratio. Extra density is added near the adapting stimulus, and density 
decreases elsewhere since it must sum to one. b.  Perceptual transfer function predicted by 
information maximization (the cumulative probability density).  c.  Constrained optimization 
model in which the optimal transfer function following adaptation is approximated by a sigmoid.  
d. Sensitivity functions predicted by the two transfer functions shown in b and c. Sensitivity 
predictions were obtained by taking the first derivative of the transfer function.  Information 
maximization (red --) predicts increased sensitivity near the adapting stimulus. Alternatively, a 
sigmoid fit to the optimal transfer function (green -.-) predicts a much smaller increase at the 
adapting stimulus, but an overall shift in the sensitivity curve towards the adapting stimulus.   
 
 
Support for the information maximization model of adaptation comes from evidence that short-
term adaptation reduces dependencies between neurons. This has been shown both 
physiologically [18] and using psychophysics [77].  Also, a V1 model that reduces dependencies 
between neurons by divisive normalization predicts numerous psychophysical and physiological 
adaptation effects [73]. Evidence for increases in sensitivity near the adapting stimulus has been 
mixed.  In the case of light adaptation, sensitivity clearly increases near the adapting light level 
[79]. Spectral sensitivity also increases near the adapting color [45, 48].  There is also evidence 
that motion adaptation can improve both speed and direction discrimination [17, 19, 62]. 
However, whether similar improvements in pattern discrimination occur following adaptation to 
patterns  remains controversial, and when these are reported, they seem somewhat weak [76].  
The constrained optimization model of Figure 12c may help reconcile these findings since it 
predicts a much smaller increase in sensitivity near the adapting stimulus. The model also 
predicts an overall shift in the sensitivity curve, which may be more easily detectable. Hence the 
model suggests that sensitivity should be measured at a range of stimulus values to look for such 
shifts.  
 

 
6. Discussion 
 
Dependency coding and information maximization appear to be central principles in neural 
coding early in the visual system. Neural systems with limited dynamic range can increase the 
information that the response gives about the signal by placing the more steeply sloped portions 
of the transfer function in the regions of highest density, and shallower slopes at regions of low 
density.  The function that maximizes information transfer is the one that matches the cumulative 
probability density of the input.  There is a large body of evidence that neural codes in vision and 
other sensory modalities match the statistical structure of the environment, and hence maximize 
information about environmental signals to a degree. See [64] for a review. This paper described 
how these principles may be relevant to how we think about higher visual processes  such as face 
recognition as well. 
 
Here we examined algorithms for face recognition by computer from a perspective of information 
maximization. Principal component solutions can be learned in neural networks with simple 
Hebbian learning rules [52]. Hence the Eigenface approach can be considered a form of Hebbian 
learning model, which performs information maximization under restricted conditions.  In 
particular, PCA maximizes information transfer in the case where all of the signal distributions 
are Gaussian. Independent component analysis performs information maximization for a more 
general set of input distributions.  The ICA learning algorithm employed here was developed 
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from the principle of optimal information transfer in neurons with sigmoidal transfer functions. 
The learning rule contains a Hebbian learning term, but it is between the input and the gradient of 
the output. Section 4 showed that face representations derived from ICA gave better recognition 
performance than face representations based on PCA. This suggests that information 
maximization in early processing is an effective strategy for face recognition by computer.   
 
A number of perceptual studies support the relevance of dependency encoding to human face 
perception. Perceptual effects such as other-race effects are consistent with information 
maximization coding, where probability distributions are learned over long-term perceptual 
experience.  Face adaptation studies (e.g. [35, 39, 50, 78]) are consistent with information 
maximization on short time scales. Unsupervised learning of 2nd order dependencies (PCA) 
successfully models a number of aspects of human face perception including similarity, 
typicality, recognition accuracy, and other-race effects (e.g. [20, 30, 51].  Moreover, one study 
found that ICA better accounts for human judgments of facial similarity than PCA, supporting the 
idea that the more dependencies are encoded, the better the model of human perception for some 
tasks [29].  There is also support from neurophysiology for information maximization principles 
in face coding. The response distributions of IT face cells are sparse and there is very little 
redundancy between cells [60, 61]. 
 
Two models of information maximization in adaptation were presented, one in which the visual 
system learns a high-order transfer functions to match cumulative probability densities of 
multimodal distributions, and another in which the cumulative probability density is 
approximated with a family of functions such as a sigmoid. The second model does not predict 
large increases in sensitivity near the adapting stimulus, and may help account for the weak 
evidence for such increases following adaptation.  This second model suggests that sensitivity 
should be measured at a range of stimulus values to look for shifts in the full sensitivity curve.  
 
Desirable filters may be those that are adapted to the patterns of interest and capture interesting 
structure [42]. The more the dependencies that are encoded, the more structure that is learned. 
Information theory provides a means for capturing interesting structure.  Information 
maximization leads to an efficient code of the environment, resulting in more learned structure.  
Such mechanisms predict neural codes in both vision [15, 53, 72] and audition [41]. The research 
presented here found that face representations in which high order dependencies are separated 
into individual coefficients gave superior recognition performance to representations which only 
separate second order redundancies. 
 
Carrying these learning strategies into the spatiotemporal domain can help learn visual 
invariances. Viewpoint invariant representations can be obtained by learning temporal 
relationships between images as an object moves in the environment. There are a number of 
models of learning invariances from spatiotemporal dependencies (e.g. [10, 12, 27, 55, 65, 75]).  
Support for learning spatio-temporal dependencies in the visual system comes from observations 
that optimal neural filters match spatio-temporal contrast sensitivity functions [68], as well as 
responses in the LGN to natural movies [23].  Moreover, spatio-temporal ICA on movies of 
natural images produces components that resemble the direction-selective receptive fields of V1 
neurons [69].  There is also evidence that receptive fields in the primate anterior temporal lobe 
are plastically modified by new temporal dependency structure in visual experience. After 
macaques were presented a sequence of fractal patterns for 6 weeks, the responses of AIT cells to 
neighboring stimuli in the sequence became correlated, and the correlation reduced as the 
distance in the sequence increased [49]. 
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The information maximization algorithm employed in this work assumed that the pixel values in 
face images were generated from a linear mixing process.  This linear approximation has been 
shown to hold true for the effect of lighting on face images [28]. Other influences, such as 
changes in pose and expression may be linearly approximated only to a limited extent.  
Nevertheless, filters resembling simple cells in the primary visual cortex were learned by linear 
models [15, 53]. Nonlinear independent component analysis in the absence of prior constraints is 
an ill-conditioned problem, but some progress has been made by assuming a linear mixing 
process followed by parametric nonlinear functions [38, 80]. An algorithm for nonlinear ICA 
based on kernel methods has also recently been presented [4]. Kernel methods have already 
shown to improve face recognition performance with PCA and Fisherfaces [81], and promising 
results have recently been presented for face recognition with kernel-ICA [44].  Another 
promising approach to nonlinear ICA is through a model of divisive normalization in V1 [73]. In 
this approach, weights on neighboring filters in space, scale, and orientation are learned using an 
objective function that is related to maximizing the sparseness of each normalized response 
distribution across a set of natural images.  Future work includes exploring such divisive 
normalization models for representing faces.    
 

The information maximization models discussed here do not address the case of noise.   
When the slope of the transfer function is increased, errors are magnified proportionally.  Von der 
Twer and Macleod [71] argued that the optimal transfer function should simultaneously maximize 
information transfer while minimizing a measure of error.  They showed that shallower transfer 
functions than the ones learned by information maximization, proportional to the cube root of the 
cumulative pdf, optimize information transmission in the presence of noise. They showed that 
this model accounts well for the spectral sensitivities of the primate color opponent system.  
Moreover, psychophysical estimates of the slope of the transfer function matched roughly to the 
cube-root of the probability density of the environmental input values along the red-green, blue-
yellow and light-dark dimensions of color space [46].  The infomax transfer function was shown 
to be a special case of von der Twer and Macleod’s general objective function in which the error 
function was a constant.  In other words, the infomax objective function amounts to minimizing 
errors without regard to their size. Hence another avenue of research is to explore face 
representations using optimization functions such as [71] which take the size of the error into 
account. 
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