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Abstract—We introduce a formalism for optimal sensor parameter selection for iterative state estimation in static systems. Our

optimality criterion is the reduction of uncertainty in the state estimation process, rather than an estimator-specific metric (e.g.,

minimum mean squared estimate error). The claim is that state estimation becomes more reliable if the uncertainty and ambiguity in

the estimation process can be reduced. We use Shannon’s information theory to select information-gathering actions that maximize

mutual information, thus optimizing the information that the data conveys about the true state of the system. The technique explicitly

takes into account the a priori probabilities governing the computation of the mutual information. Thus, a sequential decision process

can be formed by treating the a priori probability at a certain time step in the decision process as the a posteriori probability of the

previous time step. We demonstrate the benefits of our approach in an object recognition application using an active camera for

sequential gaze control and viewpoint selection. We describe experiments with discrete and continuous density representations that

suggest the effectiveness of the approach.

Index Terms—Computer vision, active camera control, state estimation, information theory.
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1 INTRODUCTION

THE state, or state vector, of a system describes the
relevant system parameters to be determined from

observations by sensors. We use an information theoretic
formulation to tackle the problem of optimal sensor data
selection for state estimation. Many key problems in
computer vision can be formulated as state estimation
problems: For example, object classification (the state, i.e.,
the class of an object, is discrete and time independent),
pose estimation (continuous and time independent state),
and object tracking (the state is continuous and time
variant).

Our ultimate goal is to provide a mechanism to select

that sensor data that makes the state estimation minimally

ambiguous and uncertain after interpreting the observa-

tions. Such a selection is very important since state

estimation in computer vision is a process that always has

to deal with uncertainties and ambiguities. Uncertainty

arises from the noise in the sensor data, while ambiguity is

based on inherent structure of the problem, e.g., objects

identical in some views (Fig. 4).
In contrast to classical and modern approaches for state

estimation [12], [4], our approach does not optimize a

metric related to the state estimator, like its variance.

Instead, we make use of the knowledge that is encoded in
the state estimator as conditional probability densities.
Uncertainty is improved not by changing the state
estimator’s knowledge, but by applying it in an optimal
way in a sequential decision process. Optimality is defined
in terms of reduction of uncertainty and ambiguity. A
formal description of this kind of optimality is presented in
Section 3.

The general principle and goal of our work is depicted in
Fig. 1. A sequence of actions aat is chosen in order to
transform a prior distribution pðxxtÞ over the state space xxt 2
IRn (pðxxtÞ is uniform if no knowledge about the state is
available) to a unimodal distribution with small variance
whose mode uniquely identifies the right state. An action
can be any controllable influence on image acquisition, data
selection, or data processing. In a static system, the true
state remains constant over time. In a dynamic system, the
state changes over time following a dynamic model that
itself is disturbed by noise. Although, our approach has in
principle no restrictions that prevent it from being applied
to dynamic problems (like zoom adjustments to track a
moving object optimally) we focus here on static state
estimation.

We demonstrate the benefits of the approach with an
object recognition application, using active camera para-
meter selection. Here, there is a trade-off between detailed
inspection and global overview that makes it difficult in
general to choose an optimal focal length and viewing
angle: A criterion is needed to balance this trade-off, using
the current knowledge of the state. We have studied the
adjustment of the focal length, the pan and tilt angles, and
the camera’s viewing position on a hemisphere around the
object. The framework can be used for any other actions
e.g., iris control or tuning of the focus of the camera.
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The paper is structured as follows: We start with an

overview of work applying information theoretic concepts

in computer vision. Section 3 formally states the problem,

which is tackled in Section 4 by a sequential decision

process in the case of a time invariant system using an

application of maximum mutual information (MMI) prin-

ciple and Bayesian classification. Section 5 gives an example

application for our framework, namely, active object

recognition. The experimental evaluation is summarized

in Section 6. The paper concludes with a discussion of

results and a perspective on future work.

2 RELATED WORK

Recently, the usefulness of information theoretic concepts in

computer vision has been recognized, with application in

tasks like image registration [23], viewpoint selection in

object recognition [19], [2], and feature extraction [8].

Our motivation and starting point is the approach to

active object recognition described in [19]. That work

remains the closest to our approach. In [19], an active

object recognition scheme uses transinformation (mutual

information, MI) to place receptive fields optimally over the

object of interest. We also use MI, but the contribution of

our work is in the extension to a sequential decision process

whose convergence can be proven. Technically, the main

feature of our extension is that we explicitly take the change

in the prior distrbution into account, while [19] assumes an

unchanging, uniform prior. However, they perform both

classification and localization of objects in 3D.

Another information-theoretic approach with remark-

able results in viewpoint selection [2], [3], [18], [17] is

related to, but significantly different from, ours. In contrast

to our metric, described in detail in Section 4, this prior

work uses the “average loss in entropy”

E½Hðxxjoo1; . . . ; oonÞ �Hðxxjoo1; . . . ; oon; oonþ1; aaÞ� ð1Þ

as the metric to optimize. This quantity is closely related to
the expected value of the MI: This is because the term

Hðxxjoo1; . . . ; oonÞ �Hðxxjoo1; . . . ; oon; oonþ1; aaÞ ð2Þ

is equal to the MI as long as the second term is the
conditional entropy [2, (11)]. However, [18], [17] defines

HðxxjooÞ ¼
X

pðxxjooÞ log pðxxjooÞ ð3Þ

i.e., as the entropy of the posterior. This quantity differs
from the conditional entropy, thus, leading to a quantity
that is not exactly the expected value of the MI.

These technical differences in the information-theoretic
metric (our MI versus non-MI or MI-average metrics) result
from our commitment to sequential decision making, for
which MI is the theoretically justifiable metric. The
MI approach yields a natural solution to the problems that
[3], [2] report with views from similar viewpoints (verified
in our experiments). In [3], this problem is solved by the
heuristic of masking out already visited viewpoints. Finally,
since we can prove the convergence of our proposed
sequential decision process, it is unnecessary to define an
experimentally adjusted empirical threshold for stopping
the view planning, as it is done in [17]. We believe that there
is no need to compute the average MI and we do not believe
that the use of the the difference between the entropy of the
prior and posterior probability holds in the general case.

Interestingly, this latter metric is a suitable reward
function in the reinforcement learning [18], [17], in which
Q-learning or other approximate techniques are used to
solve Bellman’s equations [20]. This reward is possible since
one observes the reward after the performed actions. Based
on this information, an action selection mechanism is
learned during trial and error steps [20]. In our work, we
want to know the best action before we perform it and the
necessary information for this is collected during a training
step where we estimate the likelihood functions pðoojxx; aaÞ for
a given action. The MI tells us which action aa is best, based
on the prior and the likelihood functions (details in
Section 4). One drawback of the reinforcement learning
approach is that it needs the learning step, in which the
action selection mechanism is trained by a trial and error
method. If one already has the conditional distribution in
(6), no training step is necessary for the action selection. All
necessary information is already encoded in the conditional
distributions and can be applied directly. However, if no
statistical classifier is applied, reinforcement learning
provides a suitable mechanism (if not the best one) to find
the best action. But then, sensor data fusion, as is done
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Fig. 1. General principle: reduce uncertainty and ambiguity (variance and multiple modes) in the pdf of the state xxt by choosing appropriate

information-acquisition actions aat.



easily by applying Bayes rule in [18], [17], remains a serious
problem.

In the area of image registration, the work of [23] is a
good example of the rigorous application of information
theoretic concepts in computer vision. The alignment of two
images that do not necessarily come from the same
modality is done by maximizing the MI. This theoretically
complicated and practically expensive step is elegantly
performed with the stochastic optimization algorithm
EMMA. The underlying pdf’s are represented by Parzen
window densities. The authors also show applications in
the area of object tracking and photometric stereo. These
techniques have parallels in principal component analysis
and function learning [24].

In [8], an information theoretic approach for feature
extraction motivated by Fano’s inequality for the error rate
in classification is presented. This work also represents the
continuous pdf’s by Parzen window densities. It can be seen
as a practical realization of a feature selection scheme based
on the MI; in fact, it can also be found in textbooks on
pattern recognition [15]. Related to our work, the approach
in [8] covers one step of our sequential decision process.

Information theoretic concepts have been investigated
recently for active vision and action selection. Examples are
active localization of robots [9], active view point selection
for object recognition [1], and sensor planning for active
object search [26]. In an interesting, but philosophically
different approach, [25], optimal (“special”) views are
defined as those that allow the best feature matching even
in the case of occlusion. In addition to the general
investigation of a geometrical definition of a special view
that is dependent of the classifier chosen, one of the main
results is a strategy for how to determine these special
views using image data only.

In the control literature, two interesting contributions use
the entropy for optimal state estimation under the special
aspect of sensor fusion. In [16], the main concept is to use
entropy for sensor fusion in Kalman-filter-like settings, i.e.,
Gaussian noise and linear dynamic systems. The relationship
between the Fisher information matrix and the Cramer-Rao
lower bound on the error in state estimation is applied to
sensor fusion. Simulated 3D tracking leads to “information
maps,” which show the best positions for two sensors capable
of measuring only the direction of a moving object. Closely
related work was first presented in [13], where the main focus
is on sensor management in data fusion. Again, the entropy is
taken as a measure of information. Although, neither
approach can be directly applied to our problem, they give
very useful hints on how to extend and formulate the optimal
sensor data selection in state estimation of linear, dynamic
systems with Gaussian noise.

Although our work is in the mainstream of information-
theoretic research, we believe that there are important
differences with other work with which we are familiar.
Our main contribution consists of the description of a
complete framework for sensor data selection based on
Shannon’s information theory (Sections 3 and 4). This
framework directly points to the metric to be optimized, the
MI. Interpreting the posterior as prior for the next time step’s
sensor, implicitly performs data fusion and a sequential

decision process emerges whose convergence can be formally
proven. Further, the entire approach can be extended to
continuous distributions through the use of differential MI
(Section 4.3).

3 FORMAL PROBLEM STATEMENT

Most problems in computer vision, especially dynamic

problems, cycle (either explicitly or implicitly) through a

state estimation and action selection stage. Based on the

image data oot or some other acquired sensor information at

time step t the unobservable true state xxt of the system

(static or time varying) is approximated by a state estimatebxxt. This estimated state is the basis for selecting a certain

action aat, which is performed in order to reach a predefined

goal. For a static system, a goal might be to improve state

estimation by using additional sensor data, which ideally

should be selected optimally. The goal in a dynamic system

might be to reduce the error between the estimated and true

state over time or to make the pdf of the state as much like a

delta function as possible.
We use a probabilistic framework: Sensor data is not

noiseless or ideal, nor can the effectiveness of actions be

known in advance. In a probabilistic framework, this

uncertainty can be modeled by adding a stochastic noise

component to the parameters that must be estimated. Noise

estimation can be done during training, or by making

assumptions that are checked and adjusted during system

operation.
In object tracking, the (time-varying) state of the

system could be the position, velocity, and acceleration

of the object in 3D and an action could be the selection of

pan and tilt movements needed to keep the moving

object in the image. In object recognition, the (static) state

of the system is the class of the object and the actions

might be camera movements to reach optimal disambig-

uating viewpoints [2], [19].
Fig. 2 gives the main elements of our approach. It shows

the transmission of a state xxt over a channel. At the other end
of the channel, an observation oot is made. The system gets
as input an a priori distribution over the state space
pðxxtjoot�1; . . . ; oo0Þ that describes the belief of being in a certain
state xxt at time t given that the previous sensor readings have
been oot�1; oot�2; . . . ; oo0. In Fig. 2, we have left out the
dependency on the past observations in pðxxtjoot�1; . . . ; oo0Þ for
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Fig. 2. Input and output relation in the channel model and some of the
important entropies, H, describing the information content. The state
estimator that estimates the state xxt based on the observation oot is
missing in this figure.



clarity. For a static system, the distribution is equal to
pðxxt�1joot�1; . . . ; oo0Þ. In a dynamic system, pðxxtjoot�1; . . . ; oo0Þ is
calculated by

pðxxtjoot�1; . . . ; oo0Þ ¼
Z
xxt�1

pðxxt�1joot�1; . . . ; oo0Þpðxxtjxxt�1Þdxxt�1

ð4Þ

using a model pðxxtjxxt�1Þ of the dynamics of the system.
With that pdf, an entropy

HðxxtÞ ¼ �
Z
xxt

pðxxtÞ logðpðxxtÞÞdxxt

is associated (definitions of relevant information-theoretic
terms can be found in [7], [5]). The entropy measures the
amount of uncertainty in a random experiment using the
pdf pðxxtÞ. The entropy is zero if the outcome of the
experiment is unambiguous; it reaches its maximum if all
outcomes of the experiment are equally likely.

The true state xxt cannot be observed. Following the
information theoretic formulation, the state is sent through
the channel, whose parameter is summarized by aa. The
transmission over the channel can be interpreted as the
image formation process. On the other end of the channel
an observation oot is received. The observation is related to
the state by the likelihood function pðootjxxt; aatÞ, which is
proportional to the probability that an observation oot is
made if the state xxt is sent through the channel. The
likelihood function also serves as a model of the noise
component in the channel; for example, pðootjxxt; aatÞ might be
a Gaussian distribution with mean value xxt and variance
depending on the chosen action aat or on both the state xxt
and the action aat. The pdf pðootjaatÞ of the observation is
defined as

pðootjaatÞ ¼
Z
xxt

pðootjxxt; aatÞpðxxtÞdxxt:

Again, an entropy HðootjaatÞ can be associated with the
distribution pðootjaatÞ. The important quantity in this form-
alism is the chosen action aat. Since the likelihood function
pðootjxxt; aatÞ is conditioned on this action, the action itself
influences the properties of the channel. Still, the goal is to
estimate the true state xxt, given the observation oot. In
information theory, mutual information (MI) (or transinforma-

tion) defines how much uncertainty is reduced in xxt if the
observation oot is made. Since the information flow through
the channel depends on the parameter aat, we need to define
conditional MI as

Iðxxt; ootjaatÞ ¼ HðxxtÞ �Hðxxtjoot; aatÞ: ð5Þ

Some properties of the MI are discussed in [7]. Using the

above notation for the conditional probabilities and the

definition of the entropies HðxxtÞ and Hðxxtjoot; aatÞ, the MI

becomes

Iðxxt; ootjaatÞ ¼
Z
xxt

Z
oot

pðxxtÞpðootjxxt; aatÞ log
pðootjxxt; aatÞ
pðootjaatÞ

� �
dootdxxt:

ð6Þ

Since we are interested in reducing the uncertainty, if the

state is sent through the channel and an observation is made

on the other end of the channel, we have to maximize the

MI. The MI is a function of the parameter aat and, thus, the

optimal action aa
t , given an a priori distribution pðxxtÞ and a

model for the channel noise pðootjxxt; aatÞ, is

aa
t ¼ argmax
aat

Iðxxt; ootjaatÞ: ð7Þ

4 SEQUENTIAL DECISION MAKING

Our MI framework leads naturally to an iterative algorithm

for state estimation. The general formulation of a provably-

convergent sequential decision process for optimal sensor

data selection is the main contribution of our paper. The

relation to previously published work is given in Section 2.

Continuous random variables and Monte Carlo techniques

are addressed in Section 4.2 and Section 4.3.
The use of the MI allows a recursive evaluation and

judgment of the next viewpoint and thus forms a sequential

decision process, as shown in Fig. 3.
At the beginning of the sequential decision process (say,

at time t ¼ 0), the a priori probability over the state space

pðxx0Þ is initialized (uniformly, unless reliable, nonuniform

priors are known). The first camera parameter aa0 is selected

by maximizing the MI (7). The resulting image (using

camera parameter aa0) or some information extracted from

this image serves as observation oo0. Bayes rule returns the a

posteriori probability pðxx0joo0; aa0Þ ¼ pðoo0jxx;aa0Þpðxx0Þ
pðoo0jaa0Þ , justified by

the fact that the a priori probability does not depend on the

chosen camera parameters.
The computed a posteriori probabilities can be inter-

preted as new a priori probabilities for the next view-

planning step, i.e., pðxx1Þ ¼ pðxx0joo0; aa0Þ. As a consequence,

the MI in (6) will change after the first update of the state

estimate. In general, after the nth view-planning step, one

gets as prior probability of time step nþ 1,
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Fig. 3. Sequential decision process of maximum mutual information (MMI) for camera parameter selection and Bayesian update of pðxxjoo; aaÞ based

on the observed feature oo.



pðxxnþ1Þ ¼
pðoonjxxn; aanÞpðxxnjoon�1; . . . ; oo0Þ

pðoonjaanÞ
; ð8Þ

and

aan ¼ argmax
aa

Iðxxn; oojaaÞ: ð9Þ

Here, the plausible assumption is made that the distribution
of the features of view n depends only on the class and the
chosen view, but not on the past views and that the
properties of the channel, i.e., the likelihood function, does
not change. Equations (8) and (9) define the process of
recursive viewpoint selection.

Formulating sequential decisions as a Markov decision
process (MDP) suggests dynamic programming, the tech-
nique that is the basis of most algorithms for configuring
MDPs from examples (see, for example, the textbook on
reinforcement learning by Sutton and Barto [20]). Recently,
the partially observable (POMDP) case [11] has been
treated, but still by either applying dynamic programming
or directly solving the Bellman equations. Our method
avoids time and memory-intensive dynamic programming.
However, in our approach, the estimation of the necessary
statistical information (6) is not a trivial task. Ideally, this
estimation could be unnecessary if such knowledge is
provided by the state estimator.

4.1 Convergence and Optimality of the Sequential
Decision Making

The experiments in Section 6, show that the sequential
decision making process converges in practice. Actually,
this convergence can also be formally proven [7]. One
consequence of the proof is that, under certain difficult-to-
verify conditions, the sequential decision process is also
guaranteed to identify the true state. Under general
conditions, proving this remains an unsolved problem.

What can be proven is the optimality in the sense of
reduction in uncertainty. Since the MI for a fixed a priori
probability depends only on the conditional entropy, i.e.,
the mean value of the entropy of the a posteriori probability
averaged over all possible observations, maximizing the MI
means minimizing the conditional entropy (compare (5)).
This follows directly from the definition of MI. One cannot
assure that, for every single step in the sequential decision
process, the uncertainty is reduced. The change in un-
certainty depends on the current observation. On average
i.e., in the long run, by definition of the MI, the uncertainty
will be reduced, which was one of our main goals defined
in Section 1.

4.2 Differential Entropy and Mutual Information

A discrete representation of the pdf’s simplifies the
evaluation of the MI. We now extend the sequential
decision process to use MI evaluated from a continuous pdf.

The differential entropy hðxÞ of a continuous random
variable x with density pðxÞ is defined as [5]

hðxÞ ¼ �
Z

pðxÞ logðpðxÞÞdx; ð10Þ

where the integral being evaluated over the support set of
the random variable x. One main difference between
discrete and differential entropies is that the differential

entropy can become negative. However, we shall see that

the differential version of the MI (the difference between

two entropies) will always be nonnegative.
In the same way as in the discrete case, conditional

entropy and joint entropy can be defined for continuous

random variables. The differential MI Iðx; yÞ is given by

Iðx; yÞ ¼ hðxÞ � hðxjyÞ ¼
Z

pðxÞ
Z

pðyjxÞ log pðyjxÞ
pðyÞ

� �
dydx:

ð11Þ

It can be proven that the differential MI has the same

properties as in the discrete case.
One practical problem with the definition of the

differential MI is the evaluation of the double integral term.

Even for Gaussian distributed random variables there exists

no closed form solution for (11). In the next section, we will

show that (11) can be evaluated under very general

assumptions using Monte Carlo methods. Alternatively,

the continuous random variables underlying the differential

entropy and MI may be quantized. It can be shown that the

discrete entropy of an n-bit quantization of a continuous

random variable is approximately hðxÞ þ n if hðxÞ is the

continuous entropy [5]. For the MI, it turns out to be even

simpler to find a relation between the discrete and the

differential versions since

Iðx4; y4Þ ¼ Hðx4Þ �Hðx4jy4Þ ð12Þ
� hðxÞ þ n� ðhðxjyÞ þ nÞ ð13Þ
¼ Iðx; yÞ; ð14Þ

where x4 and y4 are the n-bit quantized versions of the

continuous random variables x and y, respectively. In other

words, for practical considerations one could treat differ-

ential MI by using a suitable quantization of the continuous

pdf’s and evaluating the discrete MI. This relationship

might also serve as justification of the discretization of the

feature space done in Section 5.

4.3 Monte Carlo Evaluation of Mutual Information

Section 5 describes the quantization of continuous random

variables. Here, we turn to the computation of MI by Monte

Carlo sampling, which is a standard technique described in

many textbooks (see, for example [21], as a statistically

oriented one). It has been used recently in other contexts in

computer vision [10] and robotics [9]. Equation (11) shows

an interesting fact of the MI that can be exploited during

evaluation and (11) can be rewritten as

Iðx; yÞ ¼ EpðxÞ EpðyjxÞ log
pðyjxÞ
pðyÞ

� �� �� �
; ð15Þ

where we compute the expected value of a random variable

twice, first of the random variableZ1 ¼ log pðyjxÞ
pðyÞ

� 	
distributed

with pðZ1Þ ¼ pðyjxÞ for fixed x and then the expectation of the

random variable

Z2 ¼ EpðyjxÞ log
pðyjxÞ
pðyÞ

� �� �
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distributed with pðZ2Þ ¼ pðxÞ. The expected value of a
random variable fðZÞ can be computed by sampling zi from
the distribution pðZÞ and computing the mean

bEpðZÞ fðZÞ½ � ¼ 1

n

X
zi

fðziÞ ð16Þ

for 1  i  n. The law of large numbers states thatbEpðzÞ fðzÞ½ � will converge to EpðzÞ½fðzÞ� with probability

one [21]. The estimated Monte Carlo standard error ofbEpðZÞ fðZÞ½ � is

1ffiffiffi
n

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
fðziÞ � bEpðZÞ fðZÞ½ �

� 	2

n� 1

vuut
: ð17Þ

Under the assumption that one can sample from pðyjxÞ and
pðxÞ and that both distributions can be evaluated at y and x,
respectively, the differential MI in (11) can be approximated
using (15) and the Monte Carlo sampling defined in (16).

The assumptions are easily fulfilled by many distribu-
tions that occur in computer vision, like Gaussian distribu-
tions and even mixtures of Gaussian distributions. Since it is
known that any distribution can be approximated by a
mixture of Gaussians, the proposition above holds for
practically any distribution. Using a mixture of Gaussians
for the distributions yields an approach similar to Parzen
densities as nonparametric representations of arbitrary
densities [23]. We are less interested in a Parzen representa-
tion of arbitrary densities and more in the evaluation of the
MI for a given continuous pdf, especially of Gaussian
distributions used in the next section.

5 CAMERA PARAMETER SELECTION IN OBJECT

RECOGNITION

If an object recognition system makes its decision based on
a single image, ambiguities between objects cannot always
be resolved. In the first view of Fig. 4, the unique feature,
the lamp in the hand of one of the manikins (see image two
and three in Fig. 4), cannot be seen. Depending on the costs
for misclassification in such an ambiguous case, either the
object should be rejected or a class should be guessed. In
any event, taking a second view, where the presence of the
lamp can be determined (second and third images), yields a
better chance for correct recognition.

Ambiguity is a more serious problem during the design
or training of the classifier because such ambiguous views
form the difficult examples. Sometimes they cannot be
classified correctly even if they are in the training set. Thus,

the ultimate goal would be to provide the classifier only
with views that are easy to classify. In the context of active
object recognition, the MI defines the usefulness of certain
views for the following classification step.

In the following experimental section, we look for an
optimal camera parameter setting to classify an object. The
motivation is that nearly ambiguous objects are easier to
classify using their distinguishing subparts. A related idea
is to select the best viewpoint (compare Fig. 4). Both ways
are tested in the experimental section, i.e., adjusting the
(pan, tilt, zoom) settings of the camera (gaze control), as
well as, moving the camera on a hemisphere around the
object (viewpoint selection).

During a training step for each camera parameter aal, we
observe for each object ��, � ¼ 1 . . .K, a certain feature cc.
The class label �� can be related to the state xx used in
Section 3. The feature cc is the observation oo. Obviously, the
state xx is time invariant in a pure classification problem.
Embedded in a statistical context, this means that the pdfs

pðccj��; aalÞ and pðccjaalÞ ð18Þ

can be estimated during training. A common approach is to
make some assumptions about the underlying distributions
and to estimate the parameters of the distribution. For the
estimation, one approach is to choose some or all camera
parameters aal in a supervised learning step. A feature
extraction mechanism transforms the image ffaal into a
feature cc. All that matters is that pðccj��; aalÞ and pðccÞ must be
represented (for example, a look-up table in the discrete
case, or a parametric function like a Gaussian distribution in
the continuous case) and estimated during a training step
(for example, estimating the parameters of the Gaussian
distribution by a ML estimation) or that these distributions
be known by modeling and analysis. One feature we use
below, is the mean image gray-level value. This simple
scalar feature is easy to extract and learn and it illustrates
that even such a weak feature is effective if the camera
parameters are chosen using our scheme.

As soon as the densities in (18) have been estimated (in
the discrete case, the relative frequency of an observed
feature for a given class and action is computed) as already
described in Section 3 the MI can be used to decide on the
optimal parameters aal given the a priori probability p� ¼
pð��Þ of each of the classes ��. The new camera parameters
are used to take a new image. The MI in the notation given
above is

Ið�; ccjaalÞ ¼
XK
�

Z
cc

p�pðccj��; aalÞ log
pðccj��; aalÞ
pðccjaalÞ

dcc; ð19Þ

where � ¼ 1 . . .K is the class label. The value of Ið�; ccjaalÞ is
zero if the classes and the features are uncorrelated and
reaches its maximum at �

P
p� log p� if each feature can be

observed only for exactly one object.
For the experiments in Section 6.1, the range of the

feature cc is discretized, so that the integration in (19) is
reduced to a summation over the discrete values cci

Ið�; ccjaalÞ ¼
X
�

X
cci

p�pðccij��; aalÞ log
pðccij��; aalÞ
pðccijaalÞ

: ð20Þ
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Fig. 4. Four images of three different objects: The first is ambiguous with
respect to the objects in image two and three. The second and third view
allow for a distinction of objects two and three, but not to distinguish
object one from four (the objects with and without quiver on the back).



We discretized the range of the feature values representing
the mean gray value in the image from zero to 255 into eight
equally sized intervals. Now, the discrete densities
pðccij��; aalÞ and pðccijaalÞ can be estimated in a training step
for each camera parameter setting. The estimation is done
by counting the occurrence of pairs of �� and cci for a given
action aal.

One straightforward way to generalize the tabular
representation of the densities is to use a Parzen window
density representation and apply the stochastic maximiza-
tion algorithm EMMA to the maximization of the MI as
described in [24], [23]. In Section 4.2, we presented another
way to use continuous densities and Monte Carlo evalua-
tion of the MI. It is applied in the experiments in Section 6.2.
In the experiments, we also employ a second Bayesian
classifier that uses an eigenspace classifier [14], briefly
summarized next.

5.1 Statistical Eigenspace Classifier

In contrast to the Bayesian classifier based on the weak

feature of the mean gray value and the discrete MI, in

Section 6.2, we will also show how we apply the concept of

differential MI to view point selection for object recognition.

In order to do so, we use a more sophisticated statistical

classifier [3], [17] that is derived from an eigenspace

approach. The main idea and formalism are summarized

here. The eigenspace approach was first introduced in [14].

The key idea is to transform the images interpreted as a row

vector of pixel values into a lower dimensional space using

principal component analysis (PCA). The mapping � from

high dimensional image space ff to low dimensional feature

space cc ¼ �ff is defined by computing the eigenvalues of

the matrix QQ ¼ FFFFT with FF containing the normalized

training images of the different objects from the database.

The eigenvectors ’’l that correspond to the k largest

eigenvalues of QQ then form the matrix

� ¼ ð’’1; ’’2; . . . ; ’’kÞ
T :

For the selection of the best (pan, tilt, zoom) setting of the

camera defined by the maximum of MI, we need a

description of the relationships of object class and image

(feature) in a probabilistic framework. This means that we

need densities pðccj��Þ for each object class. Although, there

exists a very promising approach for probabilistic principal

component analysis that results directly in the desired

densities [22], for simplicity our implementation follows the

approach of [2].
In the following, we assume that, for a given transforma-

tion�, images ff from class�� are Gaussian distributed in the
feature space cc. In other words, one can define pðccj��Þ by

pðccj��Þ ¼ pð�ffj��Þ ¼ Nð���;��1
� Þ; ð21Þ

Maximum-likelihood estimation for the parameters ��� and

��1
� can be done by projecting a large number of test images

of object class �� into the eigenspace using the computed

transformation matrix �.
In the case of view point selection, the densities pðccj��; aaÞ

can be estimated the same way, i.e., for each (pan, tilt,

zoom) setting aa of the camera we train a Gaussian
distribution

pðccj��; aaÞ ¼ Naað���;��1
� Þ: ð22Þ

A detailed discussion of the original work can be found in [3],

[17]. Finally, for n classes and m different (pan, tilt, zoom)

settings aa, we end up with a total number of m � n Gaussian

distributions, which are necessary for the computation of the

differential MI in (11). In our case, m ¼ 776 and n ¼ 9.

6 EXPERIMENTAL RESULTS

In Section 6.1, we describe experiments with real camera

movements using a discrete density representation and the

Bayesian classifier based on the discretized mean gray value

as feature. With this feature, it is impossible to classify

objects reliably without smart sensor data acquisition. Of

course, we are aware of all the obvious problems of this

ridiculously weak feature: We chose it exactly because the

benefits of our approach can be best shown with a feature

that obviously needs smart sensor data selection. To show

that strong, modern techniques can also benefit from our

approach, in Section 6.2, we present experiments using a

statistical eigenspace approach as classifier, continuous

densities, and Monte Carlo evaluation of the MI. More

experiments with real data and simulated camera para-

meters appear in [7].

6.1 Parameter Selection Using Discrete Mutual
Information

Our data set consists of nine different objects (Fig. 5). Some

of the objects have been modified so that they look similar.

Two objects (o2 and o5) are so similar that a distinction

using the discretized mean gray value as feature is

impossible (the central patch is actually a different color).

From Fig. 5, it is obvious that, with this impoverished

feature, a classification without smart focal length and gaze

control is impossible. In fact, the eight-level quantized mean

gray value is the same for all the full-resolution overview

images shown in Fig. 5.
To perform classification, the following quantities from

Section 5 must be specified, where, in contrast to the general
case, the state and the observation are scalar values:

. The state x is a discrete class number from 0 to 8.

. The observation o is the mean gray value in the
observed image, discretized uniformly to values
from 0 to 7.

. The action aa ¼ ðp; t; zÞT , with p, t, and z being the
(pan, tilt, zoom) setting of the camera.

Also, these quantities are discrete values. For the zoom

position, six discrete values have been chosen, resulting in a

range between overview and close-up view, indicated in

Fig. 6. The range of pan and tilt is dependent on the selected

focal length to avoid imaging the background.
During training, the different densities in (19) must be

estimated. The most important part is the estimation of the

conditional density pðojx; aaÞ. Thus, for all objects in a
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supervised step, different parameters for the camera are set

and the feature is extracted from the resulting image. While

repeating this a sufficient number of times (in the

experiments each (pan, tilt, zoom) setting was set for each

object between 100 and 10,000 times to check the influence

of the number of training examples during training on the

selected camera parameter during test), the density pðojx; aaÞ
can be estimated by computing the relative frequency of the

observed feature o.
The experiments were performed as follows (compare

Fig. 3):

1. Initialization. The distribution over the nine classes
are initialized uniformly, to take into account that a
priori (and from the overview images) no informa-
tion favoring any class is available.

2. Parameter selection. Based on the a priori prob-
ability, the best (pan, tilt, zoom) setting is computed
using the MMI criterion (7).

3. Imaging and feature extraction. The (pan, tilt,
zoom) settings are commanded to the camera. An
image is taken and the feature (quantized mean gray
value) is extracted.

4. Bayes decision. Bayes formula is used to compute
the a posteriori probability for the nine classes.

5. Loop or end. If the a posteriori probability for one
class is greater than 0.9 (an arbitrary constant) or 10
views (another arbitrary constant) have been already
taken, then end. Else, set the a priori probability for
the next time step to the current a posteriori
probability. Go to 2.

The reader must remember that the information used by
the automatic process is simply one of eight scalar integer
numbers—the quantized mean gray value of the image.

Fig. 7 depicts a typical experiment. Several more can be
found in [7]. Besides the change in belief state for the nine
classes, one can also see the change in entropy of the
distribution over the classes. Except for the transition from
view 2 to view 3, the entropy is reduced step by step, which
finally results in a unique and correct decision for object
number 6. The increase in entropy can be explained by an
error in the noise model, i.e., the true noise has been
underestimated in this case. Nevertheless, the sequential
decision process results in the correct classification.

Fig. 7 is also a good example to show that the system has
learned to look at the important parts of the objects. After
the first selected view, it can exclude object 1, 7, and 8 from
the hypotheses set. Then, only the Matlab boxes are possible
hypotheses and, therefore, the center of the boxes contains
the most information at the next time step. This part is
focused on during the next time interval, as can be seen in
Fig. 7, view 2 (top row, second image). The reason for the
repeated, identical look to the center (view 2 and view 5)
can be explained by a mismatch between the learned and
the true underlying model for the objects. One can observe
that the entropy after selected view 2 increases. Also, the
maximum a posteriori probability would return object
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Fig. 6. Range in focal length: Left, shortest focal length. Right, longest

focal length.

Fig. 5. Data set for classification using zoom planning.



number 0 as the classification result. During the next
verification steps, the system comes back to the right
decision, i.e., maximum a posteriori probability for object
number 6. And to finally certify this result, another gaze to
the center (view 5 in Fig. 7) is necessary.

With higher noise in the camera parameter control, the
result is that the entropy never increases [7], but the
decrease in uncertainty is dramatically reduced and, also,
the final decision is not as unambiguous as for the
experiment shown in Fig. 7. Regardless, the maximum a
posteriori decision after the last view returns the right class,
i.e., object number 6.

Table 1 gives the recognition results for the nine objects.
In the first row, the noise in the camera movement and focal
length adjustment has been assumed to be low; in the
second row it has been assumed to be high. Actually, the
true noise in the control of the camera parameter is
unknown and has not been estimated for this work. The
last row shows the results for random gaze and focal length
control for selected objects. Objects 2 and 5 could not be
distinguished based on the mean gray value (compare also
Fig. 5), Thus, both objects are considered as one class that is
distinguished from the other seven classes. As expected,
assuming more noise in the camera control the system will
less often choose a close-up view, which results in a
reduced total recognition rate, although the easier objects (1,
7, and 8) can be recognized as well as or even more reliably
compared to the experiments with an optimistic noise
assumption. Comparing the results with a random gaze

control (third row in Table 1) for objects 1, 2, and 6, one can
conclude the following: For the easy recognizable object 1, a
random strategy results in the same recognition rate,
although the mean number of views is increased from 1
to 2.5 views (compare Table 2). For object 2, which is more
complicated to recognize reliably, one gets an error of
30 percent compared to zero error using the proposed
sequential decision process. Finally, object 6 is an example
where the random strategy practically fails completely with
an error rate of 80 percent.

6.2 Parameter Selection Using Differential Mutual
Information

In this section, we present experiments with the statistical
eigenspace classifier and differential MI. First, we use same
data set as before (Fig. 5). Then, we present experiments
with a different data set and viewpoint selection actions.

In the training step for each (pan, tilt, zoom) setting aa, we
took views from each object class �� to compute the
transformation matrix �aa. Afterwards, we synthetically
created a total number of 100 new disturbed views for each
object class and projected the images into the eigenspace.
The disturbance during this training step is a random shift
in x and y position of the captured window as well as
pixelwise additive Gaussian noise with a variance of
�2 ¼ 15. The noise components model inaccuracies in
camera positioning and noisy image formation. The result-
ing feature vectors cci are used for a maximum-likelihood
estimation of the parameters of the Gaussian densities.
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Fig. 7. Top: object recognition using gaze control for object number 6 (the initial overview has been left out). Bottom: the corresponding a posteriori

probability over the objects number 0 to 8 and the resulting entropy for the views 1 to 5 from the top figure .

TABLE 1
Recognition Results (in Percent)

First row, a low noise assumption; second row, a high noise assumption; third row (for selected objects), a random strategy.



During the test, we compared the sequential decision
process again with a random strategy. The procedure is the
same as already described earlier. The main differences
with the Bayesian classifier using the mean gray value is
that now continuous probability densities are used together
with differential MI for selection of the best next (pan, tilt,
zoom) setting aa and that a statistical Eigenspace approach
for classification is applied.

Table 3 gives the results for the view point planning
strategy based on the maximum of MI. The decision for the
next view is made by Monte Carlo evaluation (with 1,000
samples) of the MI as described in Section 4.3. Almost all
objects could be recognized perfectly although the number of
views necessary for the decision varies between the different
classes. For example, the objects o0, o2, o3, o4, o5, and o6 are
the difficult cases since these objects look very similar. This
similarity is expressed in the results by an increased mean
number of views necessary for recognition. However, the
recognition rate still is 100 percent or close to it.

It is natural that object o1 is recognizable in any case in
the first view. It is interesting to look at the maximum a
posteriori probability that results after the right decision has
been made. Again, in almost every case, the maximum a
posteriori probability is greater than 0:95, which corre-
sponds to a very certain decision for the right class or—in
other words—in a small entropy for the a posteriori
probability.

In comparison to the random strategy shown in Table 3,
the maximum a posteriori probability is much less than 0:9
in the case of a correct decision. As a consequence, the
decision is more uncertain. Also, the recognition rate is
dramatically reduced (with the exception of objects o1, o7,

and o8). In most cases, the full number of 10 trials is made
after which the decision is finally forced.

Although, the recognition rate for the “easy” objects—o1,
o7, and o8—is comparable to the results using view point
planning, the mean number of views that are necessary to
return an a posteriori probability of more than 0:9 is almost
twice as large for object o7 and o8. Object o1 turned out to
be recognizable quickly and robustly in either case,
although a marginal difference exists in the overall results
for recognition rate and mean number of views.

The total recognition rate is improved from 81.4 percent
for random strategy to 99.8 percent for with gaze planning.
Our gaze selection strategy based on MMI works in practice
for a standard, state of the art classification method and
outperforms a random strategy.

Finally, we did experiments with active viewpoint
selection [3], [17]. Five toy manikins form the data set
(three of them are shown in Fig. 4). There are only certain
views from which the objects can be distinguished. The
experimental setup consists of a turntable and a robot arm
with a camera mounted that can move around the turntable.
The experimental setup is described in more detail in [6].
The actions aa ¼ ð ; !ÞT define the position of the camera on
the hemisphere. Again, the statistical eigenspace approach
is used for the classifier.

Table 4 summarizes the results. As before, the planning
based on MMI outperforms a random strategy. However,
the gain in recognition rate is less than in the case of gaze
control since the object are less ambiguous. In fact, in most
cases, the object can be recognized with three views at the
latest. In Fig. 8 (left), the MI (from (19)) is shown at the
beginning of the sequential decision process, i.e., the prior is
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TABLE 2
Average Number of Views until Decision

First row, low noise assumption; second row, high noise assumption; third row, (for selected objects) a random strategy.

TABLE 3
Results for Gaze Planning and Random Gaze Control (1,000 Trials per Object)

Recognition rate, mean number of views, and maximum a posteriori probability for the right class after the decision has been made.



assumed to be uniform. The x- and y-axis are the motorsteps
for moving the turntable and the robot arm, to define views
on the hemisphere. The motorstep values correspond to a
rotation between 0 and 360 degrees for the turntable and
�90 to 90 degree for the robot arm. The MI has been
computed by Monte Carlo simulation as described in
Section 4.2. The maximum in this 2D function in the case
of viewpoint selection defines the best action (viewpoint) to
be chosen. In Fig. 8 (right), the corresponding view of the
object is shown (for one of the objects as an example). This
viewpoint is plausible since the presence of the quiver as
well as the lamp can be determined, so that three of the five
objects can already be distinguished.

The computation time for the computation of the best
action depends in the case of a discrete action space on the
number of actions aa, the number of discrete features and the
number of classes. In the case of the differential MI, the
computation time depends on the number of actions, the
number of classes, and the number of samples taken to
approximate the differential MI. In practice, for optimal
gaze selection less than one second is needed on a Pentium
II/300 for the computation of the best action using 1,000
samples, nine classes, and a total of 776 different actions.

7 CONCLUSION

State estimation is a formalism that can be used to frame the
most important problems in computer vision. Clearly, the
observations (images, features, high-level structures) have a

strong influence on the accuracy of state estimation. Thus,
either implicitly or explicitly most systems cycle through a
state estimation and action selection stage. In the paradigm
of active vision, it remains an unsolved problem in general
which sensor data should be selected at a certain stage of
state estimation.

Rather than optimizing an estimator-specific metric
(building a better edge-finder or classification algorithm),
we desire a general way to reduce the uncertainty in any
state estimation process using estimator independent
techniques. The main assumption is that every state
estimator will return better results if the uncertainty in the
state estimation process is reduced in advance. This
separation of our process from a particular state estimator
makes our approach most general and independent from
the state estimator at hand. While we do not (currently)
improve the state estimator, we do provide the state
estimator with the best sensor data at each decision stage.

To measure the uncertainty in the state estimation process,
we have introduced a formalism based on Shannon’s
information theory. The important quantity in our work is
the conditional MI, conditioned on the selected camera
parameters. The MI between the distributions over the state
and the observations measures how much information the
observation will contain about the state, or, in other words,
how much uncertainty about the state is reduced by collecting
observations. As a consequence, maximizing the conditional
MI with respect to the controllable information-acquiring
actions returns the best action in terms of reduction in
uncertainty.
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TABLE 4
Results for Viewpoint Planning and Random Viewpoint Control (100 Trials per Object)

Recognition rate, mean number of views, and maximum a posteriori probability for the right class after the decision has been made.

Fig. 8. Left: MI in the viewpoint selection example assuming a uniform prior (computed by Monte Carlo evaluation). The x and y are the motorsteps

for the turntable and robot arm, respectively. Along the z, the MI is ploted. Right: best view aa decided by the maximum in the MI, depicted left

(aa ¼ ð2; 550; 1; 500Þ).



To show the quality and problems of our approach, we
used an object recognition scenario, i.e., a state estimation
problem of a static system using active gaze control. In the
experiments, our approach was able to achieve a recogni-
tion rate of more than 77 percent despite a very weak
feature and a very difficult data set. Without active sensor
data selection, the objects could not be classified at all. Also,
our approach outperforms a random strategy for action
selection in both the number of views necessary for
classification as well as in the recognition rate. We show
similar results with a more sophisticated statistical eigen-
space classifier. The camera parameter selection strategy
based on the differential mutual information (recognition
rate, 99.8 percent) again outperforms the random strategy
(recognition rate: 81.4 percent). The higher overall recogni-
tion rate is due to the better features extracted in the
eigenspace approach. Similar results could be reported for a
view point selection scenario.

The benefits of our approach lie in the systematic
reduction of uncertainty about the true state by selecting
an optimal sequence of actions and the independence from
the state estimator. Another important result is that the
convergence of the sequential decision process can be
proven. The approach can be combined with any state
estimator that fulfills the following assumptions: First, the
unobservable, true state is estimated using observations
that are correlated with the true state. Second, the state
estimator returns an a posteriori probability distribution
over the state space. Last, the conditional pdf’s (conditioned
on the action) for the observations and the likelihood
function must be known or estimated in a training step.
These three assumptions are met by many if not by most of
the state estimators used in computer vision.

Our approach is completely embedded in a statistical
framework and the estimation of the parameters of the
densities is not a trivial problem, especially in higher
dimensional spaces (state, feature, and action). So far, we do
not optimize or adapt the parameters of the state estimator.
As a consequence, the sequential decision process will not
improve state estimation if the state estimator system-
atically returns wrong or strongly biased state estimates. A
quite natural idea would be to look for an integration of this
sequential decision process into a framework that allows
the optimization of the state estimator itself by changing its
parameters. One promising starting point for such an
integration of our work with approaches from state
estimation is the work on active learning [4].

In our future work, we will apply a more general approach
for representing pdf’s of random vectors, the so-called Parzen
window density estimation. In [24], [23], an approach,
EMMA, has been developed for maximizing the MI of two
random variables represented by a Parzen window density
for alignment of images of different modalities. Such an
algorithm for maximization of the MI could be directly
relevant when we extend the discrete actions space to a
continuous one. Finally, we are working on extending our
framework to state estimation in dynamic systems.
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