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Abstract

While computer vision systems often assume simple illu-
mination models, real-world illumination is highly complex,
consisting of reflected light from every direction as well as
distributed and localized primary light sources. One can
capture the illumination incident at a point in the real world
from every direction photographically using a spherical il-
lumination map. This paper illustrates, through analysis
of photographically-acquired, high dynamic range illumi-
nation maps, that real-world illumination shares many of
the statistical properties of natural images. In particular,
the marginal and joint wavelet coefficient distributions, di-
rectional derivative distributions, and harmonic spectra of
illumination maps resemble those documented in the natu-
ral image statistics literature. However, illumination maps
differ from standard photographs in that illumination maps
are statistically non-stationary and may contain localized
light sources that dominate their power spectra. Our work
provides a foundation for statistical models of real-world
illumination that may facilitate robust estimation of shape,
reflectance, and illumination from images.

1. Introduction

Computer vision systems have traditionally relied on
idealized models of illumination, such as a single point light
source or a uniform hemispherical source. Real-world illu-
mination, on the other hand, is highly complex. Surfaces
are illuminated not only by luminous sources such as the
sun, sky, or indoor lights, but also by light reflected from
other surfaces in the environment.

The appearance of a surface depends on its illumination
as well as its geometry and reflectance properties. Highly
specular surfaces such as chrome or shiny plastic reflect the
detailed spatial structure of their illumination. Estimating
surface geometry or surface reflectance from images under
unknown illumination is therefore difficult. Algorithms for
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Figure 1. (A) A shiny sphere rendered under illu-
mination by a point light source. (B) The same
sphere rendered under photographically-acquired
real-world illumination. Traditional algorithms for
recovery of shape and reflectance, which are de-
signed for the conditions of A, tend to fail on B.
Humans perceive reflectance properties more ac-
curately in B ([8]).

shape from shading or surface reflectance recovery often ad-
dress this problem by assuming that all light radiates from a
single point source. While these algorithms may work prop-
erly for images taken in a laboratory, they often fail in the
real world (Figure 1). We would like to overcome these lim-
itations by designing computer vision systems based on an
accurate statistical description of real-world illumination.
This paper takes a first step in that direction, describing sta-
tistical properties of real-world illumination based on em-
pirical observation.

In a similar spirit, researchers have recently devoted a
great deal of effort to capturing statistics of natural op-
tical images [11, 7, 21, 19]. They have found that nor-
mal photographs of indoor and outdoor scenes display a
great deal of regularity, particularly in power spectra and
distributions of wavelet coefficients. These statistics have
proven useful for explaining the architecture of biological
visual systems [7, 14], developing efficient image coding
schemes [21], denoising images [18], and providing models



for probabilistic or Bayesian modeling.
One can measure the illumination incident from every di-

rection at a particular point in the real world using a camera
whose optical center is located at the point of interest. By
combining photographs representing illumination from ev-
ery direction, one can compose a spherical map describing
illumination at that point. Such spherical images are used as
environment maps in computer graphics [3]. If all sources
of direct and indirect illumination are relatively distant, the
illumination map changes slowly as the hypothetical cam-
era moves through space.

An illumination map is a type of image. However, ac-
curate real-world illumination maps differ from the pho-
tographs studied in the natural image statistics literature
in several regards. First, illumination maps cover a much
wider view angle, spanning the entire sphere instead of a
narrow view angle near the horizontal. Second, accurate il-
lumination maps possess a much higher dynamic range than
previously analyzed photographs. In fact, they may contain
localized primary light sources such as incandescent lights
or the sun itself.

We determine the similarities and differences between
the statistics of previously studied photographs and those
of high dynamic range, photographically-acquired illumi-
nation maps. Working with two sets of illumination maps,
we analyze marginal and joint distributions of illumination
intensity (Sections 4 and 6), distributions of directional in-
tensity derivatives (Section 5), spherical harmonic power
spectra (Section 7), and marginal and joint wavelet coef-
ficient distributions (Section 8). When possible, we com-
pare our results to those of Huang and Mumford [11], who
analyzed a set of over 4000 restricted-angle outdoor pho-
tographs collected and calibrated by van Hateren and van
der Schaaf [24]. Like Huang and Mumford, we typically
work with log pixel intensities and subtract out the mean of
the log of each image to normalize for overall brightness.

We find that the statistics of illumination are surprisingly
similar to those of more typical photographs. We encounter
several significant differences, however, some of which are
due to the marked non-stationarity of illumination statistics
and to the presence of concentrated light sources that can
dominate power spectral measures.

These results might be used as priors to improve the
recovery of illumination fields from incomplete data for
image-based rendering in computer graphics, as in [15].
An accurate description of illumination statistics may facili-
tate the development of shape-from-shading algorithms that
function robustly under complex, unknown illumination.

The statistics of real-world illumination also play a ma-
jor role in the recognition of surface reflectance properties
from an image, both by humans [8] and by machines [6, 25].
Our work provides a foundation for statistical models of il-
lumination to improve algorithms for reflectance recovery
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Figure 2. Examples of the illumination maps we
used, shown in equal-area cylindrical projection.
(a) and (c) are drawn from Teller’s data set, while
(b) and (d) are drawn from Debevec’s. Dynamic
range has been compressed for display purposes.

and material recognition.

2. Datasets

We worked with two different data sets, each consist-
ing of high dynamic range images that represent the radi-
ance incident at a point in the real world. The first data
set consisted of 95 illumination maps based on imagery
acquired by Telleret al. [23] in the environs of the MIT
campus (http://city.lcs.mit.edu/data). The second set con-
sisted of 9 maps from Debevec’s Light Probe Image Gallery
(http://www.debevec.org/Probes/) [4]. Debevec’s maps rep-
resent diverse lighting conditions from four indoor settings
and five outdoor settings. Two examples from each data set
are shown in Figure 2.

The images in both data sets were acquired by combin-
ing photographs at multiple exposures to obtain pixel val-
ues that are linear in luminance, using the technique of De-
bevec and Malik [5]. We converted them all to gray-scale
images that are logarithmic in luminance. Debevec’s illu-
mination maps, which were computed from photographs of
a chrome ball, cover the entire sphere. Teller’s illumination
maps were each mosaiced from multiple calibrated narrow-
angle images. These mosaics cover the entire upper hemi-
sphere as well as a band below the equator.

3. Spherical projection

Whereas image statistics have previously been analyzed
on a planar domain, illumination maps are naturally defined
on a sphere. We will describe our handling of this issue
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Figure 3. To produce the equal area cylindrical pro-
jection of a spherical map, one projects each point
on the surface of the sphere horizontally outward
onto the cylinder, then unwraps the cylinder to ob-
tain a rectangular map.

in each of the following sections. We found that storing
the illumination map in an equal area cylindrical projec-
tion [2] facilitated certain computations. To construct this
projection, one places the sphere at the center of a vertically
oriented cylinder and projects each point on the spherical
surface horizontally outward to the surface of the cylinder
(Figure 3). One then unwraps the cylinder to obtain a rect-
angular map of finite extent. Regions of equal area on the
sphere map to regions of equal area on the cylinder.1 Fig-
ure 2 displays illumination maps in equal-area projection
with k = 2

π , wherek is the ratio of the radius of the cylin-
der to the radius of the sphere.

4. Illumination Intensity Distribution

To compute the distribution of illumination intensities in-
cident from all directions, one must take into account the
solid angle corresponding to each pixel of the illumina-
tion map. For an equal area projection, this solid angle is
constant, so we can estimate the distribution with a sim-
ple pixel histogram. Figure 4 shows total illumination in-
tensity distributions for the95 Teller images and for the9
Debevec images. Huang and Mumford [11] noted asym-
metry in their single pixel distribution due to the presence
of sky in many of their images. Our distributions exhibit

1In particular, an infinitesimal patch on the sphere at latitudeθ will
find itself expanded by a factor ofk 1

cos θ
in the horizontal direction and

reduced by a factor ofcos θ in the vertical direction. Because the product
of these two factors is a constantk, this projection preserves areas, even
though it heavily distorts angles near the poles.
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Figure 4. Illumination intensity distribution: log
histogram of ln(I(θi, φi))−mean(ln(I)). Left:
statistics for 95 Teller images. Right: statistics
for 9 Debevec images.

more striking asymmetries, partly because both the Teller
and Debevec data sets contain not only sky but other local-
ized light sources. The distribution for the Teller set is par-
ticularly asymmetric due to the presence of the sun in many
images and to undersaturation in the imaging system at very
low light intensities. Our distributions are also much noisier
than Mumford’s because we averaged over fewer images.
Pixel intensity distributions vary much more from image to
image than power spectra or wavelet statistics (Sections 7
and 8).

Following Huang and Mumford [11], we computed the
standard deviationσ, skewnessS, kurtosisκ, and differen-
tial entropyH.2 For the Teller images, we foundσ = 1.04,
S = −0.02, κ = 4.04, andH = 2.06. For the De-
bevec images, we haveσ = 1.32, S = 0.36, κ = 12.49,
andH = 2.21. Huang and Mumford foundσ = 0.79,
S = 0.22, κ = 4.56, andH = 1.66. Hence our illumina-
tion maps have a higher variance and entropy, and a much
larger kurtosis. This difference is due to the higher dynamic
range of our images and to the inclusion of bright localized
light sources, including the sun.

4.1. Non-stationarity

Illumination statistics vary with direction. Figure 5(a)
and (b) show mean luminance as a function of elevation. As
expected, illumination generally increases with elevation.
Interestingly, the mean intensity reaches a local minimum
at the horizontal view direction because both data sets con-
tain illumination maps in which the ground reflects a sig-
nificant amount of light from above, while visible surfaces
in the horizontal direction are shadowed (e.g., Figure 2b).
Panels (c) and (d) of Figure 5 each show two histograms
at different ranges of elevations. The histograms for higher
view directions have a larger mean as well as heavier posi-
tive tails, reflecting the larger probability of bright localized

2These distributions have mean 0, because we subtract out the mean
log value before processing.
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Figure 5. Dependence of illumination on elevation.
(a) and (b) show mean luminance as a function of
elevation. (c) and (d) each show two histograms of
illumination intensities, one for directions within
30◦ of the upward vertical and the other for direc-
tions from 0 ◦ to 15◦ below the equator.
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Figure 6. Solid lines indicate distribution of hor-
izontal derivatives for log luminance illumination
maps. Dashed lines are generalized Laplacian fits.

sources at higher elevations. Lack of statistical stationarity
is seldom reported in the natural image literature due to the
limited field of view of the images analyzed. It has, how-
ever, been observed in range data [10].

5. Derivative Statistics

Following Huang and Mumford, we approximate hori-
zontal derivatives as differences between horizontally ad-
jacent samples and compute their marginal distribution.
We define the horizontal direction in the global coordinate
frame, such that horizontal derivatives correspond to differ-
ences along lines of latitude. Because lines of latitude differ
in length, we define horizontally adjacent positions as being
separated by a fixed distance on the sphere. This distance is
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Figure 7. Joint histogram of horizontally adjacent
positions in Teller’s illumination maps.

chosen such that the equator is divided into 512 parts.
Figure 6 shows the resulting marginal distributions of

horizontal derivatives for the two datasets. Both distribu-
tions, like the distribution reported by Huang and Mumford,
are symmetric with very high kurtoses. We foundκ = 15.9
for the Teller images andκ = 341.86 for the Debevec
images, while Huang and Mumford foundκ = 17.4. As
Huang and Mumford point out, the computed kurtoses are
very sensitive to outliers; this is particularly true for the De-
bevec data set, which consists of a small number of images.
Interestingly, the variance of our distributions (σ = 0.45
for the Teller images andσ = 0.26 for the Debevec im-
ages) is also similar to that reported by Huang and Mum-
ford (σ = 0.26), even though the angular distance between
their adjacent samples is approximately seven times smaller
than ours.

We fit generalized Laplacian distributions of the form
P(x) ∝ exp(−|x/s|α) to both histograms using a
maximum-likelihood criterion, obtainingα = 0.53 ands =
0.055 for the Teller images andα = 0.56 ands = 0.034
for the Debevec images (Figure 6). While these parame-
ters are similar to those of Huang and Mumford, who found
α = 0.55, our distributions are not as well modeled by
generalized Laplacians as theirs. This difference, as well
as the difference between the distributions of our two data
sets, may stem from the different distributions of luminous
sources.

6. Joint Distribution of Illumination from Two
Adjacent Directions

Again following Huang and Mumford, we computed the
joint distribution of log intensities at horizontally adjacent
positions in the illumination maps. Specifically, we com-
pute the joint distribution ofp1 andp2, wherep1 andp2 rep-
resent log luminances at positions on the sphere that are hor-
izontally adjacent as defined in Section 5. Figure 7 shows a
contour plot of the resulting distribution over all of Teller’s
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illumination maps. The distribution has a shape similar to
that of Huang and Mumford, who also found some asym-
metry between the upper right and lower left quadrants. In
our case, the increased extent of the joint distribution in the
upper right quadrant compared to the lower left reflects the
asymmetry of the marginal distribution illustrated in Fig-
ure 4.

In agreement with Huang and Mumford, we found that
while p1 andp2 are highly correlated,p1 + p2 andp1 − p2

are more nearly independent. In particular, the mutual in-
formation ofp1 andp2 is 2.41 bits, while that ofp1+p2 and
p1− p2 is only 0.103 bits. Hence, the percentage difference
between the luminance incident from two horizontally ad-
jacent spatial directions is roughly independent of the mean
luminance from those two directions.

7. Spherical harmonic power spectra

Much early work on natural image statistics focused on
the regularity of power spectra. A number of authors [7, 19]
have observed that two-dimensional power spectra of natu-
ral images typically fall off as1/f2+η, wheref represents
the modulus of the frequency andη is a small constant that
varies from scene to scene.

The natural spherical equivalent of the planar Fourier
transform is a spherical harmonic decomposition. The
spherical harmonics form a countable orthonormal basis for
square integrable functions on the sphere. Associated with
each basis function is an orderL, a nonnegative integer
analogous to frequency. The2L + 1 spherical harmonics
of orderL span a space that is closed under rotation [12].

Just as planar white noise has a flat two-dimensional
power spectrum, white noise on the sphere produces equal
power in every spherical harmonic. Similarly, if the regular-
ities observed in the natural image statistics literature carry
over to spherical illumination maps, the average power of
the spherical harmonics at orderL will fall off as 1/L2+η.

We computed spherical harmonic coefficients up to or-
der 256 for the illumination maps in both data sets using the
formulas given by Inui [12]. We obtained average power
at each orderL as the mean of squares of the coefficients
at that order. Teller’s data lacks information about the low-
est portion of the illumination hemisphere. We applied a
smooth spatial window to these illumination maps before
transforming them to the spherical harmonic domain.

Figure 8 shows the relationship between average power
and harmonic order for the four illumination maps of Fig-
ure 2, when pixel value is proportional to log luminance. All
four images have power spectra that lie close to a straight
line of slope−2 on log-log axes, corresponding to a power
spectrum of the formk/L2. The great majority of images
in both data sets exhibit similar behavior.
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Figure 8. Spherical harmonic power spectra (solid
lines) of illumination maps (a), (b), (c), and (d) in
Figure 2, with pixel value proportional to log lumi-
nance. The dotted lines of slope −2 correspond
to power spectra of the form k/L2.

We obtain very different results for the same illumi-
nations when we compute power spectra for illumination
maps whose pixel values are linear in luminance. Illumina-
tion maps such as those of Figure 2a and b, which lack con-
centrated primary light sources, have spherical harmonic
spectra that are well approximated byk/L2+η with η small.
On the other hand, illumination maps that contain intense,
localized light sources have smooth power spectra that re-
main flat at low frequencies before falling off sharply at
higher frequencies. The illuminations of Figure 2c and d
both display this behavior; the power spectrum of a linear
luminance version of Figure 2c is shown in Figure 9. In
these images, one or a few luminous sources, such as the
sun or incandescent lights, dominate the power spectrum.
Because these light sources approximate point sources, their
spectrum is flat at low frequencies. If one clips the brightest
pixel values in these images, the power spectra return to the
familiar k/L2+η form (Figure 9).

Previous work on natural images has reported1/f2+η

power spectra whether pixel values are linear or logarith-
mic in luminance [19]. These results on linear luminance
images differ from ours because most previous researchers
have avoided photographs of point-like luminous sources
and have used cameras of limited dynamic range, such that
a few maximum intensity pixels could not dominate the im-
age power spectra. A natural illumination map, on the other
hand, may be dominated by light sources occupying a small
spatial area. Once the relative strength of such sources is
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Figure 9. Left, the spherical harmonic power spec-
trum of illumination map (c) with pixel value lin-
ear in luminance. Right, the corresponding spec-
trum after the pixel values corresponding to the
sun have been clipped to a luminance value only
slightly greater than that of the sky. Clipping these
extremely bright pixels reduces power at all fre-
quencies and produces a more linear power spec-
trum. The dotted lines of slope −2 correspond to
power spectra of the form k/L2.

reduced through clipping or a logarithmic transformation,
illumination maps have power spectra similar to those of
typical photographs.

8. Wavelet Statistics

Perhaps the most powerful characterizations of natural
images in the current literature are in the wavelet domain.
Distributions of wavelet coefficients at various scales and
orientations share a great deal of structure from image to
image, as do joint distributions of wavelet coefficients at
different scales, orientations, or spatial positions. A number
of authors have used properties of these distributions for im-
age denoising [18, 22], texture characterization [9, 17], or
reflectance classification [6].

Previous analysis of natural images and textures has as-
sumed that the data is defined on a planar domain. One
could use spherical wavelets [20] to analyze the statistics
of spherical illumination maps. In order to better compare
our results with those of the natural image statistics liter-
ature, however, we elected to use planar wavelets. In par-
ticular, spherical wavelets lack the natural sense of orien-
tation of planar wavelets. The plots shown in this section
are based on equal area cylindrical projections of spherical
log-luminance illumination maps, withk = 2

π . We exper-
imented with several projections of the sphere to the plane
for the purpose of wavelet analysis and obtained similar re-
sults.

Figure 10a shows marginal distributions of horizon-
tally oriented Haar wavelet coefficients at three succes-
sive scales, together with maximum likelihood generalized
Laplacian fits. Each marginal distribution is highly kurtotic
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Figure 10. Distributions of Haar wavelet coeffi-
cients at successive scales (thick lines), along with
generalized Laplacian fits (thin lines), for the 95
Teller images. Left, horizontal bands. Right, verti-
cal bands. Parameters of fits are: horizontal, finest
scale, α = 0.58, s = 0.043; second-finest scale, α =
0.52, s = 0.056; third-finest scale, α = 0.50, s = 0.10;
vertical, finest scale, α = 0.54, s = 0.043; second-
finest scale, α = 0.48, s = 0.052; third-finest scale,
α = 0.43, s = 0.067.

and fits the generalized Laplacian closely. The marginal
distributions increase in variance at successively coarser
scales. Figure 10b shows the corresponding distributions
for vertically oriented wavelets. The generalized Laplacian
fit is poorest at the finest scale; this particular distribution
corresponds approximately to the distribution of horizontal
pixel-wise differences in Figure 6a. The poor fit may be due
to noise at the finest scale.

Figure 11 shows contour plots of joint distributions of
wavelet coefficients with various relationships. In these
plots, “horizontal component”, “vertical component”, and
“diagonal component” refer to the wavelet coefficients of
different orientations at a given scale and spatial position.
“Upper brother”, “left brother”, and “upper left brother” re-
fer to wavelet coefficients that are horizontally, vertically,
or diagonally spatially adjacent at the same scale and ori-
entation. “Parent” and “child” refer to wavelet coefficients
of the same spatial position and orientation at successive
scales. In order to compare our results to those of Huang
and Mumford, we used the same wavelet decomposition
(Haar) and plotted distributions of the same pairs of coef-
ficients. We obtained contour plots with structure similar
to theirs. Huang and Mumford found that cross sections
through the origin of these two-dimensional histograms can
be accurately fit with generalized Laplacian curves. While
we also found this to be the case for most cross sections, we
found some cross sections with shapes reminiscent of the
marginal distribution of Figure 6a.

Haar wavelets often perform poorly in practical image
processing because of artifacts associated with their lack of
smoothness and lack of localization in the frequency do-
main. To test whether the structure of the distributions of
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Figure 11. Contour plot of the log(histogram) of
finest scale wavelet coefficient pairs for the Teller
data set. We have chosen coefficient pairs corre-
sponding to those that Huang and Mumford com-
puted for their set of photographs. Note that the
horizontal axes of the bottom two plots are com-
pressed by a factor of two.
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Figure 12. Contour plot of the log(histogram) of co-
efficient pairs corresponding to those in the sec-
ond row of Figure 11, but using a QMF basis rather
than a Haar basis. These are the two contour plots
that depend most significantly on the basis.

Figure 11 is an artifact of the Haar basis, we repeated the de-
composition using an eight-tap quadrature mirror filter [13].
The contour plots maintained their structure. Figure 12 il-
lustrates the two plots that changed the most.

9. Discussion

We have found that most of the regularities observed
through earlier studies of low dynamic range, restricted
field-of-view photographs carry over to real-world illumina-
tion maps, providing a solid foundation for statistical mod-
els of illumination. These similarities are accompanied by
several significant differences. Illumination statistics are
significantly non-stationary due to their elevation depen-
dence. The presence of bright point sources can signifi-
cantly alter the power spectrum, so that ak/f2+η model
does not suffice in general for natural illumination unless
the illumination map is passed through a compressive non-
linearity. Generalized Laplacian distributions model the
distributions of wavelet coefficients and derivatives reason-
ably well, but the fits are not as close as those observed for
more typical photographs.

These conclusions have important implications for ro-
bust estimation of shape, illumination, and reflectance from
images. For example, in [6] we consider the problem of dif-
ferentiating between surfaces of different reflectance, such
as chrome, shiny plastic, and paper, on the basis of a single
image under unknown illumination. The fact that real-world
illumination possesses greater regularity in the wavelet do-
main than in the frequency domain helps guide the choice
of image features for use in classifying images according to
surface reflectance.

We hope to extend our statistical description of illumi-
nation by considering the statistics of the five-dimensional
plenoptic function that describes all the rays of light pass-
ing through every point in a three-dimensional volume [1].
In addition to understanding the statistics of illumination
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maps, we wish to understand how an illumination map
changes as the camera recording it moves in space. Because
image-based rendering involves resampling the plenoptic
function [16], statistical priors on this function could facili-
tate image-based rendering with sparse data.
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